SentenceTransformer based on google-bert/bert-base-cased
This is a sentence-transformers model finetuned from google-bert/bert-base-cased on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jinoooooooooo/bert-base-cased-nli-tsdae")
# Run inference
sentences = [
'A finds humorous that.',
'A older gentleman finds it humorous that he is getting his picture taken while doing his laundry.',
'A woman walks on a sidewalk wearing a white dress with a blue plaid pattern.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
damagedandoriginal - Approximate statistics based on the first 1000 samples:
damaged original type string string details - min: 3 tokens
- mean: 5.45 tokens
- max: 22 tokens
- min: 7 tokens
- mean: 10.49 tokens
- max: 46 tokens
- Samples:
damaged original a horse jumps aA person on a horse jumps over a broken down airplane.atChildren smiling and waving at cameraboy jumping a.A boy is jumping on skateboard in the middle of a red bridge. - Loss:
DenoisingAutoEncoderLoss
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
damagedandoriginal - Approximate statistics based on the first 1000 samples:
damaged original type string string details - min: 3 tokens
- mean: 8.52 tokens
- max: 32 tokens
- min: 6 tokens
- mean: 18.26 tokens
- max: 69 tokens
- Samples:
damaged original Two while packages.Two women are embracing while holding to go packages.young children, with the number one with 2 are standing wooden in a bathroom in sink.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.A a during world city ofA man selling donuts to a customer during a world exhibition event held in the city of Angeles - Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.016 | 100 | 7.3226 | 7.2198 |
| 0.032 | 200 | 3.7141 | 6.3506 |
| 0.048 | 300 | 3.0632 | 5.8854 |
| 0.064 | 400 | 2.6549 | 5.7539 |
| 0.08 | 500 | 2.5332 | 5.5007 |
| 0.096 | 600 | 2.3137 | 5.5201 |
| 0.112 | 700 | 2.2533 | 5.3476 |
| 0.128 | 800 | 2.0654 | 5.3438 |
| 0.144 | 900 | 1.9943 | 5.3552 |
| 0.16 | 1000 | 1.9587 | 5.2709 |
| 0.176 | 1100 | 1.8053 | 5.4117 |
| 0.192 | 1200 | 1.7414 | 5.4315 |
| 0.208 | 1300 | 1.6773 | 5.2983 |
| 0.224 | 1400 | 1.6035 | 5.5064 |
| 0.24 | 1500 | 1.5592 | 5.5167 |
| 0.256 | 1600 | 1.5837 | 5.4428 |
| 0.272 | 1700 | 1.469 | 5.5266 |
| 0.288 | 1800 | 1.384 | 5.5159 |
| 0.304 | 1900 | 1.3616 | 5.4305 |
| 0.32 | 2000 | 1.3065 | 5.5076 |
| 0.336 | 2100 | 1.3045 | 5.5460 |
| 0.352 | 2200 | 1.3447 | 5.3051 |
| 0.368 | 2300 | 1.3367 | 5.4867 |
| 0.384 | 2400 | 1.148 | 5.6086 |
| 0.4 | 2500 | 1.2229 | 5.5027 |
| 0.416 | 2600 | 1.16 | 5.4446 |
| 0.432 | 2700 | 1.1809 | 5.4059 |
| 0.448 | 2800 | 1.2099 | 5.6255 |
| 0.464 | 2900 | 1.1264 | 5.2683 |
| 0.48 | 3000 | 1.1589 | 5.3651 |
| 0.496 | 3100 | 1.0954 | 5.3109 |
| 0.512 | 3200 | 1.0962 | 5.4071 |
| 0.528 | 3300 | 1.1185 | 5.4022 |
| 0.544 | 3400 | 1.0656 | 5.2648 |
| 0.56 | 3500 | 1.0935 | 5.2185 |
| 0.576 | 3600 | 1.0235 | 5.2950 |
| 0.592 | 3700 | 1.0256 | 5.3534 |
| 0.608 | 3800 | 0.9711 | 5.2015 |
| 0.624 | 3900 | 0.9901 | 5.1011 |
| 0.64 | 4000 | 0.9959 | 5.2055 |
| 0.656 | 4100 | 1.0018 | 5.2456 |
| 0.672 | 4200 | 0.9836 | 5.3166 |
| 0.688 | 4300 | 1.0481 | 5.2324 |
| 0.704 | 4400 | 0.9917 | 5.1831 |
| 0.72 | 4500 | 0.9595 | 5.1268 |
| 0.736 | 4600 | 1.0096 | 5.1112 |
| 0.752 | 4700 | 0.9986 | 5.0724 |
| 0.768 | 4800 | 0.9405 | 5.1163 |
| 0.784 | 4900 | 0.9057 | 5.0673 |
| 0.8 | 5000 | 0.9938 | 4.9926 |
| 0.816 | 5100 | 0.9849 | 4.9733 |
| 0.832 | 5200 | 0.8973 | 5.0531 |
| 0.848 | 5300 | 0.924 | 5.0007 |
| 0.864 | 5400 | 0.9516 | 5.0079 |
| 0.88 | 5500 | 0.9637 | 4.9513 |
| 0.896 | 5600 | 0.9232 | 5.0035 |
| 0.912 | 5700 | 0.9518 | 4.9339 |
| 0.928 | 5800 | 0.8939 | 4.9783 |
| 0.944 | 5900 | 0.8752 | 4.9495 |
| 0.96 | 6000 | 0.9187 | 4.9496 |
| 0.976 | 6100 | 0.8987 | 4.9177 |
| 0.992 | 6200 | 0.9034 | 4.9224 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- -
Model tree for jinoooooooooo/bert-base-cased-nli-tsdae
Base model
google-bert/bert-base-cased