lora-instructions
#36
by
jupyterjazz
- opened
- configuration_xlm_roberta.py +8 -2
- mha.py +1 -0
- modeling_lora.py +18 -15
- modeling_xlm_roberta.py +7 -7
- rotary.py +13 -5
configuration_xlm_roberta.py
CHANGED
|
@@ -5,6 +5,9 @@ from transformers import PretrainedConfig
|
|
| 5 |
|
| 6 |
|
| 7 |
class XLMRobertaFlashConfig(PretrainedConfig):
|
|
|
|
|
|
|
|
|
|
| 8 |
def __init__(
|
| 9 |
self,
|
| 10 |
vocab_size: int = 250002,
|
|
@@ -25,9 +28,10 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
| 25 |
position_embedding_type: str = "rotary",
|
| 26 |
rotary_emb_base: float = 10000.0,
|
| 27 |
use_cache: bool = True,
|
|
|
|
| 28 |
classifier_dropout: Optional[float] = None,
|
| 29 |
lora_adaptations: Optional[List[str]] = None,
|
| 30 |
-
|
| 31 |
lora_rank: int = 4,
|
| 32 |
lora_dropout_p: float = 0.0,
|
| 33 |
lora_alpha: int = 1,
|
|
@@ -62,6 +66,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
| 62 |
position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
|
| 63 |
rotary_emb_base (float): Base for rotary embeddings.
|
| 64 |
use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
|
|
|
|
| 65 |
classifier_dropout (Optional[float]): The dropout ratio for the classification head.
|
| 66 |
lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
|
| 67 |
lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
|
|
@@ -100,10 +105,11 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
| 100 |
self.position_embedding_type = position_embedding_type
|
| 101 |
self.rotary_emb_base = rotary_emb_base
|
| 102 |
self.use_cache = use_cache
|
|
|
|
| 103 |
self.classifier_dropout = classifier_dropout
|
| 104 |
self.load_trained_adapters = load_trained_adapters
|
| 105 |
self.lora_adaptations = lora_adaptations
|
| 106 |
-
self.
|
| 107 |
self.lora_rank = lora_rank
|
| 108 |
self.lora_dropout_p = lora_dropout_p
|
| 109 |
self.lora_alpha = lora_alpha
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class XLMRobertaFlashConfig(PretrainedConfig):
|
| 8 |
+
|
| 9 |
+
model_type = "xlm-roberta"
|
| 10 |
+
|
| 11 |
def __init__(
|
| 12 |
self,
|
| 13 |
vocab_size: int = 250002,
|
|
|
|
| 28 |
position_embedding_type: str = "rotary",
|
| 29 |
rotary_emb_base: float = 10000.0,
|
| 30 |
use_cache: bool = True,
|
| 31 |
+
use_reentrant: bool = False,
|
| 32 |
classifier_dropout: Optional[float] = None,
|
| 33 |
lora_adaptations: Optional[List[str]] = None,
|
| 34 |
+
task_instructions: Optional[Dict[str, str]] = None,
|
| 35 |
lora_rank: int = 4,
|
| 36 |
lora_dropout_p: float = 0.0,
|
| 37 |
lora_alpha: int = 1,
|
|
|
|
| 66 |
position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
|
| 67 |
rotary_emb_base (float): Base for rotary embeddings.
|
| 68 |
use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
|
| 69 |
+
use_reentrant (bool): Whether or not the model should enable the 'use_reentrant' flag in gradient checkpointing.
|
| 70 |
classifier_dropout (Optional[float]): The dropout ratio for the classification head.
|
| 71 |
lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
|
| 72 |
lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
|
|
|
|
| 105 |
self.position_embedding_type = position_embedding_type
|
| 106 |
self.rotary_emb_base = rotary_emb_base
|
| 107 |
self.use_cache = use_cache
|
| 108 |
+
self.use_reentrant = use_reentrant
|
| 109 |
self.classifier_dropout = classifier_dropout
|
| 110 |
self.load_trained_adapters = load_trained_adapters
|
| 111 |
self.lora_adaptations = lora_adaptations
|
| 112 |
+
self.task_instructions = task_instructions
|
| 113 |
self.lora_rank = lora_rank
|
| 114 |
self.lora_dropout_p = lora_dropout_p
|
| 115 |
self.lora_alpha = lora_alpha
|
mha.py
CHANGED
|
@@ -463,6 +463,7 @@ class MHA(nn.Module):
|
|
| 463 |
scale_base=rotary_emb_scale_base,
|
| 464 |
interleaved=rotary_emb_interleaved,
|
| 465 |
device=device,
|
|
|
|
| 466 |
)
|
| 467 |
|
| 468 |
if fused_bias_fc and FusedDense is None:
|
|
|
|
| 463 |
scale_base=rotary_emb_scale_base,
|
| 464 |
interleaved=rotary_emb_interleaved,
|
| 465 |
device=device,
|
| 466 |
+
use_flash_attn=use_flash_attn,
|
| 467 |
)
|
| 468 |
|
| 469 |
if fused_bias_fc and FusedDense is None:
|
modeling_lora.py
CHANGED
|
@@ -11,6 +11,7 @@ from torch.nn import Parameter
|
|
| 11 |
from torch.nn import functional as F
|
| 12 |
from transformers import PretrainedConfig
|
| 13 |
|
|
|
|
| 14 |
from .modeling_xlm_roberta import (XLMRobertaFlashConfig, XLMRobertaModel,
|
| 15 |
XLMRobertaPreTrainedModel)
|
| 16 |
|
|
@@ -164,7 +165,6 @@ class LoRAParametrization(nn.Module):
|
|
| 164 |
):
|
| 165 |
"""
|
| 166 |
Registering LoRA adapters to all embedding and linear layers.
|
| 167 |
-
|
| 168 |
Additionally, we implement a custom forward function for LoRA parametrization.
|
| 169 |
This function modifies the layer's forward pass to optionally use task-specific
|
| 170 |
parameters. When a `task_id` is provided, it employs a LoRA parametrization
|
|
@@ -241,6 +241,7 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 241 |
"""
|
| 242 |
A wrapper class around the Jina XLM-RoBERTa model that integrates LoRA (Low-Rank Adaptation) adapters.
|
| 243 |
"""
|
|
|
|
| 244 |
def __init__(
|
| 245 |
self, config: XLMRobertaFlashConfig, roberta: Optional[XLMRobertaModel] = None
|
| 246 |
):
|
|
@@ -258,15 +259,17 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 258 |
raise ValueError(
|
| 259 |
f"`lora_adaptations` must be a list and contain at least one element"
|
| 260 |
)
|
| 261 |
-
self.
|
| 262 |
if (
|
| 263 |
-
not isinstance(self.
|
| 264 |
-
or len(self.
|
| 265 |
-
or not all(
|
|
|
|
|
|
|
| 266 |
):
|
| 267 |
raise ValueError(
|
| 268 |
-
f"`
|
| 269 |
-
f"as `lora_adaptations` with all keys in `
|
| 270 |
)
|
| 271 |
self._adaptation_map = {
|
| 272 |
name: idx for idx, name in enumerate(self._lora_adaptations)
|
|
@@ -322,16 +325,13 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 322 |
use_safetensors: bool = None,
|
| 323 |
**kwargs,
|
| 324 |
):
|
| 325 |
-
config
|
| 326 |
-
pretrained_model_name_or_path, *model_args, **kwargs
|
| 327 |
-
)
|
| 328 |
-
if config.load_trained_adapters: # checkpoint already contains LoRA adapters
|
| 329 |
return super().from_pretrained(
|
| 330 |
-
pretrained_model_name_or_path, *model_args, **kwargs
|
| 331 |
)
|
| 332 |
-
else:
|
| 333 |
roberta = XLMRobertaModel.from_pretrained(
|
| 334 |
-
pretrained_model_name_or_path, *model_args, **kwargs
|
| 335 |
)
|
| 336 |
return cls(config, roberta=roberta)
|
| 337 |
|
|
@@ -372,7 +372,6 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 372 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 373 |
"""
|
| 374 |
Computes sentence embeddings.
|
| 375 |
-
|
| 376 |
sentences(`str` or `List[str]`):
|
| 377 |
Sentence or sentences to be encoded
|
| 378 |
task_type(`str`, *optional*, defaults to `None`):
|
|
@@ -393,6 +392,10 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 393 |
adapter_mask = torch.full(
|
| 394 |
(num_examples,), task_id, dtype=torch.int32, device=self.device
|
| 395 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 396 |
return self.roberta.encode(
|
| 397 |
sentences, *args, adapter_mask=adapter_mask, **kwargs
|
| 398 |
)
|
|
|
|
| 11 |
from torch.nn import functional as F
|
| 12 |
from transformers import PretrainedConfig
|
| 13 |
|
| 14 |
+
from .rotary import RotaryEmbedding
|
| 15 |
from .modeling_xlm_roberta import (XLMRobertaFlashConfig, XLMRobertaModel,
|
| 16 |
XLMRobertaPreTrainedModel)
|
| 17 |
|
|
|
|
| 165 |
):
|
| 166 |
"""
|
| 167 |
Registering LoRA adapters to all embedding and linear layers.
|
|
|
|
| 168 |
Additionally, we implement a custom forward function for LoRA parametrization.
|
| 169 |
This function modifies the layer's forward pass to optionally use task-specific
|
| 170 |
parameters. When a `task_id` is provided, it employs a LoRA parametrization
|
|
|
|
| 241 |
"""
|
| 242 |
A wrapper class around the Jina XLM-RoBERTa model that integrates LoRA (Low-Rank Adaptation) adapters.
|
| 243 |
"""
|
| 244 |
+
|
| 245 |
def __init__(
|
| 246 |
self, config: XLMRobertaFlashConfig, roberta: Optional[XLMRobertaModel] = None
|
| 247 |
):
|
|
|
|
| 259 |
raise ValueError(
|
| 260 |
f"`lora_adaptations` must be a list and contain at least one element"
|
| 261 |
)
|
| 262 |
+
self._task_instructions = config.task_instructions
|
| 263 |
if (
|
| 264 |
+
not isinstance(self._task_instructions, dict)
|
| 265 |
+
or len(self._task_instructions) != len(self._lora_adaptations)
|
| 266 |
+
or not all(
|
| 267 |
+
[v in self._lora_adaptations for v in self._task_instructions.keys()]
|
| 268 |
+
)
|
| 269 |
):
|
| 270 |
raise ValueError(
|
| 271 |
+
f"`task_instructions` must be a dict and contain the same number of elements "
|
| 272 |
+
f"as `lora_adaptations` with all keys in `task_instructions` present in `lora_adaptations`."
|
| 273 |
)
|
| 274 |
self._adaptation_map = {
|
| 275 |
name: idx for idx, name in enumerate(self._lora_adaptations)
|
|
|
|
| 325 |
use_safetensors: bool = None,
|
| 326 |
**kwargs,
|
| 327 |
):
|
| 328 |
+
if config.load_trained_adapters: # checkpoint already contains LoRA adapters
|
|
|
|
|
|
|
|
|
|
| 329 |
return super().from_pretrained(
|
| 330 |
+
pretrained_model_name_or_path, *model_args, use_flash_attn=config.use_flash_attn, **kwargs
|
| 331 |
)
|
| 332 |
+
else: # initializing new adapters
|
| 333 |
roberta = XLMRobertaModel.from_pretrained(
|
| 334 |
+
pretrained_model_name_or_path, *model_args, use_flash_attn=config.use_flash_attn, **kwargs
|
| 335 |
)
|
| 336 |
return cls(config, roberta=roberta)
|
| 337 |
|
|
|
|
| 372 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 373 |
"""
|
| 374 |
Computes sentence embeddings.
|
|
|
|
| 375 |
sentences(`str` or `List[str]`):
|
| 376 |
Sentence or sentences to be encoded
|
| 377 |
task_type(`str`, *optional*, defaults to `None`):
|
|
|
|
| 392 |
adapter_mask = torch.full(
|
| 393 |
(num_examples,), task_id, dtype=torch.int32, device=self.device
|
| 394 |
)
|
| 395 |
+
if isinstance(sentences, str):
|
| 396 |
+
sentences = self._task_instructions[task_type] + sentences
|
| 397 |
+
else:
|
| 398 |
+
sentences = [self._task_instructions[task_type] + sentence for sentence in sentences]
|
| 399 |
return self.roberta.encode(
|
| 400 |
sentences, *args, adapter_mask=adapter_mask, **kwargs
|
| 401 |
)
|
modeling_xlm_roberta.py
CHANGED
|
@@ -30,6 +30,7 @@ from transformers.models.bert.modeling_bert import (
|
|
| 30 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import \
|
| 31 |
XLMRobertaLMHead
|
| 32 |
|
|
|
|
| 33 |
from .block import Block
|
| 34 |
from .configuration_xlm_roberta import XLMRobertaFlashConfig
|
| 35 |
from .embedding import XLMRobertaEmbeddings
|
|
@@ -63,9 +64,7 @@ logger = logging.getLogger(__name__)
|
|
| 63 |
|
| 64 |
|
| 65 |
def get_use_flash_attn(config: XLMRobertaFlashConfig):
|
| 66 |
-
if not getattr(config, "use_flash_attn", False):
|
| 67 |
-
return False
|
| 68 |
-
if not torch.cuda.is_available():
|
| 69 |
return False
|
| 70 |
if importlib.util.find_spec("flash_attn") is None:
|
| 71 |
logger.warning(
|
|
@@ -181,6 +180,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 181 |
def __init__(self, config: XLMRobertaFlashConfig):
|
| 182 |
super().__init__()
|
| 183 |
self.use_flash_attn = get_use_flash_attn(config)
|
|
|
|
| 184 |
self.layers = nn.ModuleList(
|
| 185 |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
| 186 |
)
|
|
@@ -210,7 +210,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 210 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 211 |
layer,
|
| 212 |
hidden_states,
|
| 213 |
-
use_reentrant=
|
| 214 |
mixer_kwargs=mixer_kwargs,
|
| 215 |
)
|
| 216 |
else:
|
|
@@ -234,7 +234,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 234 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 235 |
layer,
|
| 236 |
hidden_states,
|
| 237 |
-
use_reentrant=
|
| 238 |
mixer_kwargs=mixer_kwargs,
|
| 239 |
)
|
| 240 |
else:
|
|
@@ -246,7 +246,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 246 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 247 |
layer,
|
| 248 |
hidden_states,
|
| 249 |
-
use_reentrant=
|
| 250 |
mixer_kwargs=mixer_kwargs,
|
| 251 |
)
|
| 252 |
else:
|
|
@@ -284,7 +284,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 284 |
torch.utils.checkpoint.checkpoint(
|
| 285 |
self.layers[-1],
|
| 286 |
hidden_states_subset,
|
| 287 |
-
use_reentrant=
|
| 288 |
mixer_kwargs=mixer_kwargs,
|
| 289 |
)
|
| 290 |
else:
|
|
|
|
| 30 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import \
|
| 31 |
XLMRobertaLMHead
|
| 32 |
|
| 33 |
+
from .rotary import RotaryEmbedding
|
| 34 |
from .block import Block
|
| 35 |
from .configuration_xlm_roberta import XLMRobertaFlashConfig
|
| 36 |
from .embedding import XLMRobertaEmbeddings
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
def get_use_flash_attn(config: XLMRobertaFlashConfig):
|
| 67 |
+
if not getattr(config, "use_flash_attn", False) or not torch.cuda.is_available():
|
|
|
|
|
|
|
| 68 |
return False
|
| 69 |
if importlib.util.find_spec("flash_attn") is None:
|
| 70 |
logger.warning(
|
|
|
|
| 180 |
def __init__(self, config: XLMRobertaFlashConfig):
|
| 181 |
super().__init__()
|
| 182 |
self.use_flash_attn = get_use_flash_attn(config)
|
| 183 |
+
self.use_reentrant = config.use_reentrant
|
| 184 |
self.layers = nn.ModuleList(
|
| 185 |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
| 186 |
)
|
|
|
|
| 210 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 211 |
layer,
|
| 212 |
hidden_states,
|
| 213 |
+
use_reentrant=self.use_reentrant,
|
| 214 |
mixer_kwargs=mixer_kwargs,
|
| 215 |
)
|
| 216 |
else:
|
|
|
|
| 234 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 235 |
layer,
|
| 236 |
hidden_states,
|
| 237 |
+
use_reentrant=self.use_reentrant,
|
| 238 |
mixer_kwargs=mixer_kwargs,
|
| 239 |
)
|
| 240 |
else:
|
|
|
|
| 246 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 247 |
layer,
|
| 248 |
hidden_states,
|
| 249 |
+
use_reentrant=self.use_reentrant,
|
| 250 |
mixer_kwargs=mixer_kwargs,
|
| 251 |
)
|
| 252 |
else:
|
|
|
|
| 284 |
torch.utils.checkpoint.checkpoint(
|
| 285 |
self.layers[-1],
|
| 286 |
hidden_states_subset,
|
| 287 |
+
use_reentrant=self.use_reentrant,
|
| 288 |
mixer_kwargs=mixer_kwargs,
|
| 289 |
)
|
| 290 |
else:
|
rotary.py
CHANGED
|
@@ -4,7 +4,6 @@
|
|
| 4 |
|
| 5 |
# Copyright (c) 2023, Tri Dao.
|
| 6 |
|
| 7 |
-
import math
|
| 8 |
from typing import Optional, Tuple, Union
|
| 9 |
|
| 10 |
import torch
|
|
@@ -16,7 +15,10 @@ if torch.cuda.is_available():
|
|
| 16 |
except ImportError:
|
| 17 |
|
| 18 |
def apply_rotary(*args, **kwargs):
|
| 19 |
-
raise RuntimeError(
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def rotate_half(x, interleaved=False):
|
|
@@ -169,12 +171,13 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
| 169 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 170 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 171 |
max_seqlen: Optional[int] = None,
|
|
|
|
| 172 |
):
|
| 173 |
# batch, seqlen, three, nheads, headdim = qkv.shape
|
| 174 |
assert qkv.shape[-3] == 3
|
| 175 |
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
| 176 |
|
| 177 |
-
if
|
| 178 |
# Call 1 kernel instead of 2 kernels
|
| 179 |
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
| 180 |
# dimensions, we get the same tensor
|
|
@@ -288,7 +291,7 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
| 288 |
cu_seqlens=cu_seqlens,
|
| 289 |
max_seqlen=ctx.max_seqlen,
|
| 290 |
)
|
| 291 |
-
return dqkv, None, None, None, None, None, None, None, None
|
| 292 |
|
| 293 |
|
| 294 |
def apply_rotary_emb_qkv_(
|
|
@@ -301,6 +304,7 @@ def apply_rotary_emb_qkv_(
|
|
| 301 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 302 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 303 |
max_seqlen: Optional[int] = None,
|
|
|
|
| 304 |
):
|
| 305 |
"""
|
| 306 |
Arguments:
|
|
@@ -321,7 +325,7 @@ def apply_rotary_emb_qkv_(
|
|
| 321 |
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
| 322 |
"""
|
| 323 |
return ApplyRotaryEmbQKV_.apply(
|
| 324 |
-
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
|
| 325 |
)
|
| 326 |
|
| 327 |
|
|
@@ -443,6 +447,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 443 |
scale_base=None,
|
| 444 |
pos_idx_in_fp32=True,
|
| 445 |
device=None,
|
|
|
|
| 446 |
):
|
| 447 |
"""
|
| 448 |
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
|
@@ -462,6 +467,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 462 |
self.dim = dim
|
| 463 |
self._base = float(base)
|
| 464 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
|
|
|
| 465 |
# Generate and save the inverse frequency buffer (non trainable)
|
| 466 |
inv_freq = self._compute_inv_freq(device)
|
| 467 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
@@ -588,6 +594,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 588 |
seqlen_offsets=seqlen_offset,
|
| 589 |
cu_seqlens=cu_seqlens,
|
| 590 |
max_seqlen=max_seqlen,
|
|
|
|
| 591 |
)
|
| 592 |
else:
|
| 593 |
return apply_rotary_emb_qkv_(
|
|
@@ -600,6 +607,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 600 |
seqlen_offsets=seqlen_offset,
|
| 601 |
cu_seqlens=cu_seqlens,
|
| 602 |
max_seqlen=max_seqlen,
|
|
|
|
| 603 |
)
|
| 604 |
else:
|
| 605 |
q = qkv
|
|
|
|
| 4 |
|
| 5 |
# Copyright (c) 2023, Tri Dao.
|
| 6 |
|
|
|
|
| 7 |
from typing import Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch
|
|
|
|
| 15 |
except ImportError:
|
| 16 |
|
| 17 |
def apply_rotary(*args, **kwargs):
|
| 18 |
+
raise RuntimeError(
|
| 19 |
+
"FlashAttention is not installed. To proceed with training, please install FlashAttention. "
|
| 20 |
+
"For inference, you have two options: either install FlashAttention or disable it by setting use_flash_attn=False when loading the model."
|
| 21 |
+
)
|
| 22 |
|
| 23 |
|
| 24 |
def rotate_half(x, interleaved=False):
|
|
|
|
| 171 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 172 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 173 |
max_seqlen: Optional[int] = None,
|
| 174 |
+
use_flash_attn: bool = True,
|
| 175 |
):
|
| 176 |
# batch, seqlen, three, nheads, headdim = qkv.shape
|
| 177 |
assert qkv.shape[-3] == 3
|
| 178 |
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
| 179 |
|
| 180 |
+
if use_flash_attn:
|
| 181 |
# Call 1 kernel instead of 2 kernels
|
| 182 |
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
| 183 |
# dimensions, we get the same tensor
|
|
|
|
| 291 |
cu_seqlens=cu_seqlens,
|
| 292 |
max_seqlen=ctx.max_seqlen,
|
| 293 |
)
|
| 294 |
+
return dqkv, None, None, None, None, None, None, None, None, None
|
| 295 |
|
| 296 |
|
| 297 |
def apply_rotary_emb_qkv_(
|
|
|
|
| 304 |
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 305 |
cu_seqlens: Optional[torch.Tensor] = None,
|
| 306 |
max_seqlen: Optional[int] = None,
|
| 307 |
+
use_flash_attn=True,
|
| 308 |
):
|
| 309 |
"""
|
| 310 |
Arguments:
|
|
|
|
| 325 |
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
| 326 |
"""
|
| 327 |
return ApplyRotaryEmbQKV_.apply(
|
| 328 |
+
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen, use_flash_attn,
|
| 329 |
)
|
| 330 |
|
| 331 |
|
|
|
|
| 447 |
scale_base=None,
|
| 448 |
pos_idx_in_fp32=True,
|
| 449 |
device=None,
|
| 450 |
+
use_flash_attn=True,
|
| 451 |
):
|
| 452 |
"""
|
| 453 |
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
|
|
|
| 467 |
self.dim = dim
|
| 468 |
self._base = float(base)
|
| 469 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 470 |
+
self.use_flash_attn = use_flash_attn
|
| 471 |
# Generate and save the inverse frequency buffer (non trainable)
|
| 472 |
inv_freq = self._compute_inv_freq(device)
|
| 473 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
| 594 |
seqlen_offsets=seqlen_offset,
|
| 595 |
cu_seqlens=cu_seqlens,
|
| 596 |
max_seqlen=max_seqlen,
|
| 597 |
+
use_flash_attn=self.use_flash_attn,
|
| 598 |
)
|
| 599 |
else:
|
| 600 |
return apply_rotary_emb_qkv_(
|
|
|
|
| 607 |
seqlen_offsets=seqlen_offset,
|
| 608 |
cu_seqlens=cu_seqlens,
|
| 609 |
max_seqlen=max_seqlen,
|
| 610 |
+
use_flash_attn=self.use_flash_attn,
|
| 611 |
)
|
| 612 |
else:
|
| 613 |
q = qkv
|