make-lora-stateless
#25
by
jupyterjazz
- opened
- block.py +1 -1
- configuration_xlm_roberta.py +2 -0
- embedding.py +4 -3
- mha.py +11 -3
- mlp.py +4 -3
- modeling_lora.py +61 -79
- modeling_xlm_roberta.py +18 -20
- rotary.py +44 -21
block.py
CHANGED
|
@@ -233,7 +233,7 @@ class Block(nn.Module):
|
|
| 233 |
is_rms_norm=isinstance(self.norm1, RMSNorm),
|
| 234 |
)
|
| 235 |
if not isinstance(self.mlp, nn.Identity):
|
| 236 |
-
mlp_out = self.mlp(hidden_states)
|
| 237 |
if self.return_residual: # mlp out is actually a pair here
|
| 238 |
mlp_out, hidden_states = mlp_out
|
| 239 |
if not self.fused_dropout_add_ln:
|
|
|
|
| 233 |
is_rms_norm=isinstance(self.norm1, RMSNorm),
|
| 234 |
)
|
| 235 |
if not isinstance(self.mlp, nn.Identity):
|
| 236 |
+
mlp_out = self.mlp(hidden_states, task_type=mixer_kwargs.get('task_type'))
|
| 237 |
if self.return_residual: # mlp out is actually a pair here
|
| 238 |
mlp_out, hidden_states = mlp_out
|
| 239 |
if not self.fused_dropout_add_ln:
|
configuration_xlm_roberta.py
CHANGED
|
@@ -23,6 +23,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
| 23 |
use_cache=True,
|
| 24 |
classifier_dropout=None,
|
| 25 |
lora_adaptations=None,
|
|
|
|
| 26 |
lora_rank=4,
|
| 27 |
lora_dropout_p=0.0,
|
| 28 |
lora_alpha=1,
|
|
@@ -55,6 +56,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
| 55 |
self.classifier_dropout = classifier_dropout
|
| 56 |
self.load_trained_adapters = load_trained_adapters
|
| 57 |
self.lora_adaptations = lora_adaptations
|
|
|
|
| 58 |
self.lora_rank = lora_rank
|
| 59 |
self.lora_dropout_p = lora_dropout_p
|
| 60 |
self.lora_alpha = lora_alpha
|
|
|
|
| 23 |
use_cache=True,
|
| 24 |
classifier_dropout=None,
|
| 25 |
lora_adaptations=None,
|
| 26 |
+
lora_prompts=None,
|
| 27 |
lora_rank=4,
|
| 28 |
lora_dropout_p=0.0,
|
| 29 |
lora_alpha=1,
|
|
|
|
| 56 |
self.classifier_dropout = classifier_dropout
|
| 57 |
self.load_trained_adapters = load_trained_adapters
|
| 58 |
self.lora_adaptations = lora_adaptations
|
| 59 |
+
self.lora_prompts = lora_prompts
|
| 60 |
self.lora_rank = lora_rank
|
| 61 |
self.lora_dropout_p = lora_dropout_p
|
| 62 |
self.lora_alpha = lora_alpha
|
embedding.py
CHANGED
|
@@ -40,14 +40,15 @@ class XLMRobertaEmbeddings(nn.Module):
|
|
| 40 |
if self.type_vocab_size > 0:
|
| 41 |
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs)
|
| 42 |
|
| 43 |
-
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
| 44 |
"""
|
| 45 |
input_ids: (batch, seqlen)
|
| 46 |
position_ids: (batch, seqlen)
|
| 47 |
token_type_ids: (batch, seqlen)
|
| 48 |
"""
|
| 49 |
batch_size, seqlen = input_ids.shape
|
| 50 |
-
|
|
|
|
| 51 |
if self.max_position_embeddings > 0:
|
| 52 |
if position_ids is None:
|
| 53 |
position_ids = create_position_ids_from_input_ids(input_ids, padding_idx=self.word_embeddings.padding_idx).to(input_ids.device)
|
|
@@ -57,6 +58,6 @@ class XLMRobertaEmbeddings(nn.Module):
|
|
| 57 |
if self.type_vocab_size > 0:
|
| 58 |
if token_type_ids is None:
|
| 59 |
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
| 60 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 61 |
embeddings = embeddings + token_type_embeddings
|
| 62 |
return embeddings
|
|
|
|
| 40 |
if self.type_vocab_size > 0:
|
| 41 |
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs)
|
| 42 |
|
| 43 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None, task_type=None):
|
| 44 |
"""
|
| 45 |
input_ids: (batch, seqlen)
|
| 46 |
position_ids: (batch, seqlen)
|
| 47 |
token_type_ids: (batch, seqlen)
|
| 48 |
"""
|
| 49 |
batch_size, seqlen = input_ids.shape
|
| 50 |
+
lora_kwargs = {'task_type': task_type} if task_type is not None else {}
|
| 51 |
+
embeddings = self.word_embeddings(input_ids, **lora_kwargs)
|
| 52 |
if self.max_position_embeddings > 0:
|
| 53 |
if position_ids is None:
|
| 54 |
position_ids = create_position_ids_from_input_ids(input_ids, padding_idx=self.word_embeddings.padding_idx).to(input_ids.device)
|
|
|
|
| 58 |
if self.type_vocab_size > 0:
|
| 59 |
if token_type_ids is None:
|
| 60 |
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
| 61 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids, **lora_kwargs)
|
| 62 |
embeddings = embeddings + token_type_embeddings
|
| 63 |
return embeddings
|
mha.py
CHANGED
|
@@ -450,6 +450,7 @@ class MHA(nn.Module):
|
|
| 450 |
|
| 451 |
if fused_bias_fc and FusedDense is None:
|
| 452 |
raise ImportError("fused_dense is not installed")
|
|
|
|
| 453 |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
| 454 |
linear_resid_cls = (
|
| 455 |
LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
|
|
@@ -589,6 +590,7 @@ class MHA(nn.Module):
|
|
| 589 |
max_seqlen=None,
|
| 590 |
mixer_subset=None,
|
| 591 |
inference_params=None,
|
|
|
|
| 592 |
**kwargs,
|
| 593 |
):
|
| 594 |
"""
|
|
@@ -643,10 +645,14 @@ class MHA(nn.Module):
|
|
| 643 |
batch, seqlen = x.shape[:2]
|
| 644 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
| 645 |
assert x_kv is None and mixer_subset is None
|
|
|
|
| 646 |
if not self.return_residual:
|
| 647 |
-
qkv = self.Wqkv(x)
|
| 648 |
else:
|
| 649 |
-
|
|
|
|
|
|
|
|
|
|
| 650 |
if self.dwconv:
|
| 651 |
qkv = rearrange(
|
| 652 |
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
|
@@ -731,5 +737,7 @@ class MHA(nn.Module):
|
|
| 731 |
context = self._update_kvcache_attention(q, kv, inference_params)
|
| 732 |
else:
|
| 733 |
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
| 734 |
-
|
|
|
|
|
|
|
| 735 |
return out if not self.return_residual else (out, x)
|
|
|
|
| 450 |
|
| 451 |
if fused_bias_fc and FusedDense is None:
|
| 452 |
raise ImportError("fused_dense is not installed")
|
| 453 |
+
|
| 454 |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
| 455 |
linear_resid_cls = (
|
| 456 |
LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
|
|
|
|
| 590 |
max_seqlen=None,
|
| 591 |
mixer_subset=None,
|
| 592 |
inference_params=None,
|
| 593 |
+
task_type=None,
|
| 594 |
**kwargs,
|
| 595 |
):
|
| 596 |
"""
|
|
|
|
| 645 |
batch, seqlen = x.shape[:2]
|
| 646 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
| 647 |
assert x_kv is None and mixer_subset is None
|
| 648 |
+
lora_kwargs = {'task_type': task_type} if task_type is not None else {}
|
| 649 |
if not self.return_residual:
|
| 650 |
+
qkv = self.Wqkv(x, **lora_kwargs)
|
| 651 |
else:
|
| 652 |
+
if lora_kwargs:
|
| 653 |
+
lora_kwargs['residual'] = True
|
| 654 |
+
qkv, x = self.Wqkv(x, **lora_kwargs)
|
| 655 |
+
|
| 656 |
if self.dwconv:
|
| 657 |
qkv = rearrange(
|
| 658 |
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
|
|
|
| 737 |
context = self._update_kvcache_attention(q, kv, inference_params)
|
| 738 |
else:
|
| 739 |
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
| 740 |
+
|
| 741 |
+
lora_kwargs.pop('residual', None)
|
| 742 |
+
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"), **lora_kwargs)
|
| 743 |
return out if not self.return_residual else (out, x)
|
mlp.py
CHANGED
|
@@ -47,10 +47,11 @@ class Mlp(nn.Module):
|
|
| 47 |
self.activation = activation
|
| 48 |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
| 49 |
|
| 50 |
-
def forward(self, x):
|
| 51 |
-
|
|
|
|
| 52 |
y = self.activation(y)
|
| 53 |
-
y = self.fc2(y)
|
| 54 |
return y if not self.return_residual else (y, x)
|
| 55 |
|
| 56 |
|
|
|
|
| 47 |
self.activation = activation
|
| 48 |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
| 49 |
|
| 50 |
+
def forward(self, x, task_type=None):
|
| 51 |
+
lora_kwargs = {'task_type': task_type} if task_type is not None else {}
|
| 52 |
+
y = self.fc1(x, **lora_kwargs)
|
| 53 |
y = self.activation(y)
|
| 54 |
+
y = self.fc2(y, **lora_kwargs)
|
| 55 |
return y if not self.return_residual else (y, x)
|
| 56 |
|
| 57 |
|
modeling_lora.py
CHANGED
|
@@ -9,14 +9,12 @@ import torch
|
|
| 9 |
import torch.nn.utils.parametrize as parametrize
|
| 10 |
from torch import nn
|
| 11 |
from torch.nn import Parameter
|
|
|
|
| 12 |
from transformers import PretrainedConfig
|
| 13 |
|
| 14 |
from .modeling_xlm_roberta import XLMRobertaFlashConfig, XLMRobertaModel, XLMRobertaPreTrainedModel
|
| 15 |
|
| 16 |
|
| 17 |
-
LORA_NO_UPDATE = '__lora_no_update__'
|
| 18 |
-
|
| 19 |
-
|
| 20 |
def initialized_weights(
|
| 21 |
shape: Tuple[int], num_adaptations: int, init: str = "kaiming"
|
| 22 |
) -> torch.Tensor:
|
|
@@ -91,22 +89,19 @@ class LoRAParametrization(nn.Module):
|
|
| 91 |
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
| 92 |
persistent=False,
|
| 93 |
)
|
| 94 |
-
self.forward_fn = lambda x: x
|
| 95 |
-
self.current_task = None
|
| 96 |
|
| 97 |
def _dropout(self, A):
|
| 98 |
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
|
| 99 |
return A * self.lora_dropout(self.lora_dropout_mask)
|
| 100 |
|
| 101 |
-
def lora_forward(self, X):
|
| 102 |
-
assert self.current_task is not None
|
| 103 |
return (
|
| 104 |
X
|
| 105 |
+ torch.matmul(
|
| 106 |
*self.swap(
|
| 107 |
(
|
| 108 |
-
self.lora_B[
|
| 109 |
-
self.dropout_fn(self.lora_A[
|
| 110 |
)
|
| 111 |
)
|
| 112 |
).view(X.shape)
|
|
@@ -114,19 +109,7 @@ class LoRAParametrization(nn.Module):
|
|
| 114 |
)
|
| 115 |
|
| 116 |
def forward(self, X):
|
| 117 |
-
return
|
| 118 |
-
|
| 119 |
-
@property
|
| 120 |
-
def current_task(self):
|
| 121 |
-
return self._current_task
|
| 122 |
-
|
| 123 |
-
@current_task.setter
|
| 124 |
-
def current_task(self, task: Union[None, int]):
|
| 125 |
-
self._current_task = task
|
| 126 |
-
if task is None:
|
| 127 |
-
self.forward_fn = lambda x: x
|
| 128 |
-
else:
|
| 129 |
-
self.forward_fn = self.lora_forward
|
| 130 |
|
| 131 |
@classmethod
|
| 132 |
def from_linear(
|
|
@@ -178,6 +161,7 @@ class LoRAParametrization(nn.Module):
|
|
| 178 |
rank: int,
|
| 179 |
dropout_p: float,
|
| 180 |
alpha: float,
|
|
|
|
| 181 |
):
|
| 182 |
if isinstance(layer, nn.Linear):
|
| 183 |
parametrize.register_parametrization(
|
|
@@ -191,6 +175,22 @@ class LoRAParametrization(nn.Module):
|
|
| 191 |
alpha=alpha,
|
| 192 |
),
|
| 193 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
elif isinstance(layer, nn.Embedding):
|
| 195 |
parametrize.register_parametrization(
|
| 196 |
layer,
|
|
@@ -204,10 +204,20 @@ class LoRAParametrization(nn.Module):
|
|
| 204 |
),
|
| 205 |
)
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
|
| 213 |
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
@@ -231,6 +241,16 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 231 |
raise ValueError(
|
| 232 |
f'`lora_adaptations` must be a list and contain at least one element'
|
| 233 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
self._adaptation_map = {
|
| 235 |
name: idx for idx, name in enumerate(self._lora_adaptations)
|
| 236 |
}
|
|
@@ -244,9 +264,7 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 244 |
alpha=self._alpha,
|
| 245 |
)
|
| 246 |
self.main_params_trainable = config.lora_main_params_trainable
|
| 247 |
-
|
| 248 |
-
# By default, disable LoRA until it's specified which adapter/task to use
|
| 249 |
-
self.current_task = None
|
| 250 |
|
| 251 |
@property
|
| 252 |
def main_params_trainable(self):
|
|
@@ -300,42 +318,11 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 300 |
rank=rank,
|
| 301 |
dropout_p=dropout_p,
|
| 302 |
alpha=alpha,
|
|
|
|
| 303 |
)
|
| 304 |
)
|
| 305 |
|
| 306 |
-
|
| 307 |
-
def current_task(self):
|
| 308 |
-
"""Which LoRA is currently selected
|
| 309 |
-
:return: Integer or None (when LoRA is disabled)
|
| 310 |
-
"""
|
| 311 |
-
return self._task_idx
|
| 312 |
-
|
| 313 |
-
@current_task.setter
|
| 314 |
-
def current_task(self, task_name: Union[None, str]):
|
| 315 |
-
"""Set the LoRA that is to be used.
|
| 316 |
-
The LoRA is specified by `task_idx`, which may be an integer >= 0,
|
| 317 |
-
indexing the available LoRAs. If it is None, no LoRA is used.
|
| 318 |
-
:param task_name: Which LoRA to use
|
| 319 |
-
:return:
|
| 320 |
-
"""
|
| 321 |
-
if task_name and task_name not in self._lora_adaptations:
|
| 322 |
-
raise ValueError(
|
| 323 |
-
f"Unsupported task '{task_name}'. "
|
| 324 |
-
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
| 325 |
-
f"Alternatively, set `task` to `None` if you want to disable LoRA."
|
| 326 |
-
)
|
| 327 |
-
task_idx = self._adaptation_map[task_name] if task_name else None
|
| 328 |
-
if self._task_idx != task_idx:
|
| 329 |
-
# In this case, we need to update the LoRAs everywhere
|
| 330 |
-
self._task_idx = task_idx
|
| 331 |
-
self.apply(
|
| 332 |
-
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
def forward(self, *args, task: Union[str, None] = LORA_NO_UPDATE, **kwargs):
|
| 336 |
-
if task != LORA_NO_UPDATE:
|
| 337 |
-
self.current_task = task
|
| 338 |
-
|
| 339 |
return self.roberta(*args, **kwargs)
|
| 340 |
|
| 341 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
|
@@ -355,27 +342,22 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 355 |
def encode(
|
| 356 |
self,
|
| 357 |
*args,
|
| 358 |
-
|
| 359 |
**kwargs,
|
| 360 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 361 |
"""
|
| 362 |
Computes sentence embeddings
|
| 363 |
|
| 364 |
-
|
| 365 |
-
Specifies the task for which the encoding is intended.
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
existing adapter configuration. If `task` is explicitly set to `None`, all LoRA
|
| 369 |
-
adapters are disabled, and the model reverts to its original, general-purpose weights.
|
| 370 |
-
If `task` is set to a specific LoRA adaptation, that adaptation is activated.
|
| 371 |
"""
|
| 372 |
-
if
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
)
|
| 379 |
-
self.current_task = task
|
| 380 |
|
| 381 |
-
return self.roberta.encode(*args, **kwargs)
|
|
|
|
| 9 |
import torch.nn.utils.parametrize as parametrize
|
| 10 |
from torch import nn
|
| 11 |
from torch.nn import Parameter
|
| 12 |
+
from torch.nn import functional as F
|
| 13 |
from transformers import PretrainedConfig
|
| 14 |
|
| 15 |
from .modeling_xlm_roberta import XLMRobertaFlashConfig, XLMRobertaModel, XLMRobertaPreTrainedModel
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
def initialized_weights(
|
| 19 |
shape: Tuple[int], num_adaptations: int, init: str = "kaiming"
|
| 20 |
) -> torch.Tensor:
|
|
|
|
| 89 |
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
| 90 |
persistent=False,
|
| 91 |
)
|
|
|
|
|
|
|
| 92 |
|
| 93 |
def _dropout(self, A):
|
| 94 |
# to mimic the original implementation: A @ dropout(x), we do (A * dropout(ones)) @ x
|
| 95 |
return A * self.lora_dropout(self.lora_dropout_mask)
|
| 96 |
|
| 97 |
+
def lora_forward(self, X, current_task):
|
|
|
|
| 98 |
return (
|
| 99 |
X
|
| 100 |
+ torch.matmul(
|
| 101 |
*self.swap(
|
| 102 |
(
|
| 103 |
+
self.lora_B[current_task],
|
| 104 |
+
self.dropout_fn(self.lora_A[current_task]),
|
| 105 |
)
|
| 106 |
)
|
| 107 |
).view(X.shape)
|
|
|
|
| 109 |
)
|
| 110 |
|
| 111 |
def forward(self, X):
|
| 112 |
+
return X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
@classmethod
|
| 115 |
def from_linear(
|
|
|
|
| 161 |
rank: int,
|
| 162 |
dropout_p: float,
|
| 163 |
alpha: float,
|
| 164 |
+
adaptation_map: dict,
|
| 165 |
):
|
| 166 |
if isinstance(layer, nn.Linear):
|
| 167 |
parametrize.register_parametrization(
|
|
|
|
| 175 |
alpha=alpha,
|
| 176 |
),
|
| 177 |
)
|
| 178 |
+
|
| 179 |
+
def new_forward(self, input, task_type, residual=False):
|
| 180 |
+
task_idx = adaptation_map[task_type] if task_type else None
|
| 181 |
+
if task_idx is not None:
|
| 182 |
+
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
| 183 |
+
else:
|
| 184 |
+
weights = self.weight
|
| 185 |
+
|
| 186 |
+
out = F.linear(input, weights, self.bias)
|
| 187 |
+
|
| 188 |
+
if residual:
|
| 189 |
+
return out, input
|
| 190 |
+
return out
|
| 191 |
+
|
| 192 |
+
layer.forward = new_forward.__get__(layer, layer.__class__)
|
| 193 |
+
|
| 194 |
elif isinstance(layer, nn.Embedding):
|
| 195 |
parametrize.register_parametrization(
|
| 196 |
layer,
|
|
|
|
| 204 |
),
|
| 205 |
)
|
| 206 |
|
| 207 |
+
def new_forward(self, input, task_type):
|
| 208 |
+
task_idx = adaptation_map[task_type] if task_type else None
|
| 209 |
+
if task_idx is not None:
|
| 210 |
+
weights = self.parametrizations.weight[0].lora_forward(self.weight, current_task=task_idx)
|
| 211 |
+
else:
|
| 212 |
+
weights = self.weight
|
| 213 |
+
|
| 214 |
+
out = F.embedding(
|
| 215 |
+
input, weights, self.padding_idx, self.max_norm,
|
| 216 |
+
self.norm_type, self.scale_grad_by_freq, self.sparse)
|
| 217 |
+
|
| 218 |
+
return out
|
| 219 |
+
|
| 220 |
+
layer.forward = new_forward.__get__(layer, layer.__class__)
|
| 221 |
|
| 222 |
|
| 223 |
class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
|
|
| 241 |
raise ValueError(
|
| 242 |
f'`lora_adaptations` must be a list and contain at least one element'
|
| 243 |
)
|
| 244 |
+
self._lora_prompts = config.lora_prompts
|
| 245 |
+
if (
|
| 246 |
+
not isinstance(self._lora_prompts, dict)
|
| 247 |
+
or len(self._lora_prompts) != len(self._lora_adaptations)
|
| 248 |
+
or not all([v in self._lora_adaptations for v in self._lora_prompts.keys()])
|
| 249 |
+
):
|
| 250 |
+
raise ValueError(
|
| 251 |
+
f'`lora_prompts` must be a dict and contain the same number of elements '
|
| 252 |
+
f'as `lora_adaptations` with all keys in `lora_prompts` present in `lora_adaptations`.'
|
| 253 |
+
)
|
| 254 |
self._adaptation_map = {
|
| 255 |
name: idx for idx, name in enumerate(self._lora_adaptations)
|
| 256 |
}
|
|
|
|
| 264 |
alpha=self._alpha,
|
| 265 |
)
|
| 266 |
self.main_params_trainable = config.lora_main_params_trainable
|
| 267 |
+
|
|
|
|
|
|
|
| 268 |
|
| 269 |
@property
|
| 270 |
def main_params_trainable(self):
|
|
|
|
| 318 |
rank=rank,
|
| 319 |
dropout_p=dropout_p,
|
| 320 |
alpha=alpha,
|
| 321 |
+
adaptation_map=self._adaptation_map,
|
| 322 |
)
|
| 323 |
)
|
| 324 |
|
| 325 |
+
def forward(self, *args, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
return self.roberta(*args, **kwargs)
|
| 327 |
|
| 328 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
|
|
|
| 342 |
def encode(
|
| 343 |
self,
|
| 344 |
*args,
|
| 345 |
+
task_type: Optional[str] = None,
|
| 346 |
**kwargs,
|
| 347 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 348 |
"""
|
| 349 |
Computes sentence embeddings
|
| 350 |
|
| 351 |
+
task_type(`str`, *optional*, defaults to `None`):
|
| 352 |
+
Specifies the task for which the encoding is intended. If `task_type` is not provide,
|
| 353 |
+
all LoRA adapters are disabled, and the model reverts to its original,
|
| 354 |
+
general-purpose weights.
|
|
|
|
|
|
|
|
|
|
| 355 |
"""
|
| 356 |
+
if task_type and task_type not in self._lora_adaptations:
|
| 357 |
+
raise ValueError(
|
| 358 |
+
f"Unsupported task '{task_type}'. "
|
| 359 |
+
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
| 360 |
+
f"Alternatively, don't pass the `task_type` argument to disable LoRA."
|
| 361 |
+
)
|
|
|
|
|
|
|
| 362 |
|
| 363 |
+
return self.roberta.encode(*args, task_type=task_type, **kwargs)
|
modeling_xlm_roberta.py
CHANGED
|
@@ -21,7 +21,7 @@ import torch.nn.functional as F
|
|
| 21 |
import torch.utils.checkpoint
|
| 22 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 23 |
from einops import rearrange
|
| 24 |
-
from transformers import PretrainedConfig
|
| 25 |
from transformers.modeling_utils import PreTrainedModel
|
| 26 |
from transformers.modeling_outputs import MaskedLMOutput,SequenceClassifierOutput
|
| 27 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
|
@@ -204,7 +204,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 204 |
def gradient_checkpointing(self, value):
|
| 205 |
self._grad_checkpointing = value
|
| 206 |
|
| 207 |
-
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
|
| 208 |
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
| 209 |
This means that we only compute the last layer output for these tokens.
|
| 210 |
subset_mask: (batch, seqlen), dtype=torch.bool
|
|
@@ -215,6 +215,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 215 |
if key_padding_mask is not None
|
| 216 |
else None
|
| 217 |
)
|
|
|
|
| 218 |
for layer in self.layers:
|
| 219 |
if self._grad_checkpointing:
|
| 220 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
@@ -232,7 +233,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
| 232 |
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
|
| 233 |
hidden_states, key_padding_mask
|
| 234 |
)
|
| 235 |
-
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
|
| 236 |
if subset_mask is None:
|
| 237 |
for layer in self.layers:
|
| 238 |
if self._grad_checkpointing:
|
|
@@ -309,11 +310,13 @@ class XLMRobertaPooler(nn.Module):
|
|
| 309 |
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
| 310 |
self.activation = nn.Tanh()
|
| 311 |
|
| 312 |
-
def forward(self, hidden_states, pool=True):
|
| 313 |
# We "pool" the model by simply taking the hidden state corresponding
|
| 314 |
# to the first token.
|
|
|
|
|
|
|
| 315 |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
| 316 |
-
pooled_output = self.dense(first_token_tensor)
|
| 317 |
pooled_output = self.activation(pooled_output)
|
| 318 |
return pooled_output
|
| 319 |
|
|
@@ -440,7 +443,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 440 |
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
|
| 441 |
|
| 442 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
| 443 |
-
|
| 444 |
|
| 445 |
@torch.inference_mode()
|
| 446 |
def encode(
|
|
@@ -454,6 +457,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 454 |
device: Optional[torch.device] = None,
|
| 455 |
normalize_embeddings: bool = False,
|
| 456 |
truncate_dim: Optional[int] = None,
|
|
|
|
| 457 |
**tokenizer_kwargs,
|
| 458 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 459 |
"""
|
|
@@ -492,12 +496,6 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 492 |
If convert_to_tensor, a stacked tensor is returned.
|
| 493 |
If convert_to_numpy, a numpy matrix is returned.
|
| 494 |
"""
|
| 495 |
-
from transformers import AutoTokenizer
|
| 496 |
-
|
| 497 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 498 |
-
self.name_or_path, trust_remote_code=True
|
| 499 |
-
)
|
| 500 |
-
|
| 501 |
is_training = self.training
|
| 502 |
self.eval()
|
| 503 |
|
|
@@ -544,14 +542,14 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 544 |
)
|
| 545 |
else:
|
| 546 |
range_iter = range(0, len(sentences), batch_size)
|
| 547 |
-
|
| 548 |
for i in range_iter:
|
| 549 |
encoded_input = self.tokenizer(
|
| 550 |
sentences[i : i + batch_size],
|
| 551 |
return_tensors='pt',
|
| 552 |
**tokenizer_kwargs,
|
| 553 |
).to(self.device)
|
| 554 |
-
token_embs = self.forward(**encoded_input)[0]
|
| 555 |
|
| 556 |
# Accumulate in fp32 to avoid overflow
|
| 557 |
token_embs = token_embs.float()
|
|
@@ -639,7 +637,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 639 |
layer output for these tokens.
|
| 640 |
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
|
| 641 |
"""
|
| 642 |
-
|
| 643 |
if kwargs:
|
| 644 |
for key, value in kwargs.items():
|
| 645 |
if value is not None:
|
|
@@ -653,7 +651,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 653 |
)
|
| 654 |
|
| 655 |
hidden_states = self.embeddings(
|
| 656 |
-
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
|
| 657 |
)
|
| 658 |
# TD [2022-12:18]: Don't need to force residual in fp32
|
| 659 |
# BERT puts embedding LayerNorm before embedding dropout.
|
|
@@ -677,12 +675,12 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 677 |
subset_mask = None
|
| 678 |
|
| 679 |
sequence_output = self.encoder(
|
| 680 |
-
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
|
| 681 |
)
|
| 682 |
|
| 683 |
if masked_tokens_mask is None:
|
| 684 |
pooled_output = (
|
| 685 |
-
self.pooler(sequence_output) if self.pooler is not None else None
|
| 686 |
)
|
| 687 |
else:
|
| 688 |
# TD [2022-03-01]: the indexing here is very tricky.
|
|
@@ -696,7 +694,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
| 696 |
pool_input = sequence_output[first_col_mask[subset_mask]]
|
| 697 |
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
|
| 698 |
pooled_output = (
|
| 699 |
-
self.pooler(pool_input, pool=False) if self.pooler is not None else None
|
| 700 |
)
|
| 701 |
|
| 702 |
if not return_dict:
|
|
@@ -1278,4 +1276,4 @@ class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
|
| 1278 |
logits=logits,
|
| 1279 |
hidden_states=outputs.hidden_states,
|
| 1280 |
attentions=outputs.attentions,
|
| 1281 |
-
)
|
|
|
|
| 21 |
import torch.utils.checkpoint
|
| 22 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 23 |
from einops import rearrange
|
| 24 |
+
from transformers import PretrainedConfig, AutoTokenizer
|
| 25 |
from transformers.modeling_utils import PreTrainedModel
|
| 26 |
from transformers.modeling_outputs import MaskedLMOutput,SequenceClassifierOutput
|
| 27 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
|
|
|
| 204 |
def gradient_checkpointing(self, value):
|
| 205 |
self._grad_checkpointing = value
|
| 206 |
|
| 207 |
+
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None, task_type=None):
|
| 208 |
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
| 209 |
This means that we only compute the last layer output for these tokens.
|
| 210 |
subset_mask: (batch, seqlen), dtype=torch.bool
|
|
|
|
| 215 |
if key_padding_mask is not None
|
| 216 |
else None
|
| 217 |
)
|
| 218 |
+
mixer_kwargs['task_type'] = task_type
|
| 219 |
for layer in self.layers:
|
| 220 |
if self._grad_checkpointing:
|
| 221 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
|
|
|
| 233 |
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
|
| 234 |
hidden_states, key_padding_mask
|
| 235 |
)
|
| 236 |
+
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch, "task_type": task_type}
|
| 237 |
if subset_mask is None:
|
| 238 |
for layer in self.layers:
|
| 239 |
if self._grad_checkpointing:
|
|
|
|
| 310 |
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
| 311 |
self.activation = nn.Tanh()
|
| 312 |
|
| 313 |
+
def forward(self, hidden_states, pool=True, task_type=None):
|
| 314 |
# We "pool" the model by simply taking the hidden state corresponding
|
| 315 |
# to the first token.
|
| 316 |
+
lora_kwargs = {'task_type': task_type} if task_type is not None else {}
|
| 317 |
+
|
| 318 |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
| 319 |
+
pooled_output = self.dense(first_token_tensor, **lora_kwargs)
|
| 320 |
pooled_output = self.activation(pooled_output)
|
| 321 |
return pooled_output
|
| 322 |
|
|
|
|
| 443 |
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None
|
| 444 |
|
| 445 |
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
| 446 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.name_or_path, trust_remote_code=True)
|
| 447 |
|
| 448 |
@torch.inference_mode()
|
| 449 |
def encode(
|
|
|
|
| 457 |
device: Optional[torch.device] = None,
|
| 458 |
normalize_embeddings: bool = False,
|
| 459 |
truncate_dim: Optional[int] = None,
|
| 460 |
+
task_type: Optional[str] = None,
|
| 461 |
**tokenizer_kwargs,
|
| 462 |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 463 |
"""
|
|
|
|
| 496 |
If convert_to_tensor, a stacked tensor is returned.
|
| 497 |
If convert_to_numpy, a numpy matrix is returned.
|
| 498 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
is_training = self.training
|
| 500 |
self.eval()
|
| 501 |
|
|
|
|
| 542 |
)
|
| 543 |
else:
|
| 544 |
range_iter = range(0, len(sentences), batch_size)
|
| 545 |
+
lora_kwargs = {'task_type': task_type} if task_type is not None else {}
|
| 546 |
for i in range_iter:
|
| 547 |
encoded_input = self.tokenizer(
|
| 548 |
sentences[i : i + batch_size],
|
| 549 |
return_tensors='pt',
|
| 550 |
**tokenizer_kwargs,
|
| 551 |
).to(self.device)
|
| 552 |
+
token_embs = self.forward(**encoded_input, **lora_kwargs)[0]
|
| 553 |
|
| 554 |
# Accumulate in fp32 to avoid overflow
|
| 555 |
token_embs = token_embs.float()
|
|
|
|
| 637 |
layer output for these tokens.
|
| 638 |
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
|
| 639 |
"""
|
| 640 |
+
task_type = kwargs.pop('task_type', None)
|
| 641 |
if kwargs:
|
| 642 |
for key, value in kwargs.items():
|
| 643 |
if value is not None:
|
|
|
|
| 651 |
)
|
| 652 |
|
| 653 |
hidden_states = self.embeddings(
|
| 654 |
+
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, task_type=task_type
|
| 655 |
)
|
| 656 |
# TD [2022-12:18]: Don't need to force residual in fp32
|
| 657 |
# BERT puts embedding LayerNorm before embedding dropout.
|
|
|
|
| 675 |
subset_mask = None
|
| 676 |
|
| 677 |
sequence_output = self.encoder(
|
| 678 |
+
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask, task_type=task_type
|
| 679 |
)
|
| 680 |
|
| 681 |
if masked_tokens_mask is None:
|
| 682 |
pooled_output = (
|
| 683 |
+
self.pooler(sequence_output, task_type=task_type) if self.pooler is not None else None
|
| 684 |
)
|
| 685 |
else:
|
| 686 |
# TD [2022-03-01]: the indexing here is very tricky.
|
|
|
|
| 694 |
pool_input = sequence_output[first_col_mask[subset_mask]]
|
| 695 |
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
|
| 696 |
pooled_output = (
|
| 697 |
+
self.pooler(pool_input, pool=False, task_type=task_type) if self.pooler is not None else None
|
| 698 |
)
|
| 699 |
|
| 700 |
if not return_dict:
|
|
|
|
| 1276 |
logits=logits,
|
| 1277 |
hidden_states=outputs.hidden_states,
|
| 1278 |
attentions=outputs.attentions,
|
| 1279 |
+
)
|
rotary.py
CHANGED
|
@@ -6,11 +6,13 @@ from typing import Optional, Tuple, Union
|
|
| 6 |
|
| 7 |
import torch
|
| 8 |
from einops import rearrange, repeat
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def rotate_half(x, interleaved=False):
|
|
@@ -29,6 +31,10 @@ def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
|
| 29 |
"""
|
| 30 |
ro_dim = cos.shape[-1] * 2
|
| 31 |
assert ro_dim <= x.shape[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 33 |
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 34 |
return torch.cat(
|
|
@@ -60,6 +66,7 @@ class ApplyRotaryEmb(torch.autograd.Function):
|
|
| 60 |
interleaved=interleaved,
|
| 61 |
inplace=inplace,
|
| 62 |
)
|
|
|
|
| 63 |
if isinstance(seqlen_offsets, int):
|
| 64 |
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
| 65 |
ctx.seqlen_offsets = seqlen_offsets
|
|
@@ -82,6 +89,7 @@ class ApplyRotaryEmb(torch.autograd.Function):
|
|
| 82 |
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
| 83 |
if not ctx.interleaved and not ctx.inplace:
|
| 84 |
do = do.clone()
|
|
|
|
| 85 |
dx = apply_rotary(
|
| 86 |
do,
|
| 87 |
cos,
|
|
@@ -150,21 +158,37 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
| 150 |
# batch, seqlen, three, nheads, headdim = qkv.shape
|
| 151 |
assert qkv.shape[-3] == 3
|
| 152 |
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
qk,
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
else:
|
| 169 |
cos_k = cos if cos_k is None else cos_k
|
| 170 |
sin_k = sin if sin_k is None else sin_k
|
|
@@ -228,7 +252,6 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
| 228 |
sin_k = sin if sin_k is None else sin_k
|
| 229 |
dq, dk = dqkv[..., 0, :, :], dqkv[..., 1, :, :]
|
| 230 |
apply_rotary(
|
| 231 |
-
|
| 232 |
dq,
|
| 233 |
cos,
|
| 234 |
sin,
|
|
|
|
| 6 |
|
| 7 |
import torch
|
| 8 |
from einops import rearrange, repeat
|
| 9 |
+
|
| 10 |
+
if torch.cuda.is_available():
|
| 11 |
+
try:
|
| 12 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 13 |
+
except ImportError:
|
| 14 |
+
def apply_rotary(*args, **kwargs):
|
| 15 |
+
raise RuntimeError('RoPE requires flash-attention to be installed')
|
| 16 |
|
| 17 |
|
| 18 |
def rotate_half(x, interleaved=False):
|
|
|
|
| 31 |
"""
|
| 32 |
ro_dim = cos.shape[-1] * 2
|
| 33 |
assert ro_dim <= x.shape[-1]
|
| 34 |
+
cos, sin = (
|
| 35 |
+
cos[:x.shape[1]],
|
| 36 |
+
sin[:x.shape[1]],
|
| 37 |
+
)
|
| 38 |
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 39 |
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 40 |
return torch.cat(
|
|
|
|
| 66 |
interleaved=interleaved,
|
| 67 |
inplace=inplace,
|
| 68 |
)
|
| 69 |
+
|
| 70 |
if isinstance(seqlen_offsets, int):
|
| 71 |
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
| 72 |
ctx.seqlen_offsets = seqlen_offsets
|
|
|
|
| 89 |
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
| 90 |
if not ctx.interleaved and not ctx.inplace:
|
| 91 |
do = do.clone()
|
| 92 |
+
|
| 93 |
dx = apply_rotary(
|
| 94 |
do,
|
| 95 |
cos,
|
|
|
|
| 158 |
# batch, seqlen, three, nheads, headdim = qkv.shape
|
| 159 |
assert qkv.shape[-3] == 3
|
| 160 |
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
| 161 |
+
|
| 162 |
+
if torch.cuda.is_available():
|
| 163 |
+
# Call 1 kernel instead of 2 kernels
|
| 164 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
| 165 |
+
# dimensions, we get the same tensor
|
| 166 |
+
qk = rearrange(qkv[..., :2, :, :], "... t h d -> ... (t h) d")
|
| 167 |
+
# qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
|
| 168 |
+
apply_rotary(
|
| 169 |
+
qk,
|
| 170 |
+
cos,
|
| 171 |
+
sin,
|
| 172 |
+
seqlen_offsets=seqlen_offsets,
|
| 173 |
+
interleaved=interleaved,
|
| 174 |
+
inplace=True,
|
| 175 |
+
cu_seqlens=cu_seqlens,
|
| 176 |
+
max_seqlen=max_seqlen,
|
| 177 |
+
)
|
| 178 |
+
else:
|
| 179 |
+
q_rot = apply_rotary_emb_torch(
|
| 180 |
+
qkv[:, :, 0],
|
| 181 |
+
cos,
|
| 182 |
+
sin,
|
| 183 |
+
interleaved=interleaved,
|
| 184 |
+
)
|
| 185 |
+
k_rot = apply_rotary_emb_torch(
|
| 186 |
+
qkv[:, :, 1],
|
| 187 |
+
cos,
|
| 188 |
+
sin,
|
| 189 |
+
interleaved=interleaved,
|
| 190 |
+
)
|
| 191 |
+
qkv = torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
| 192 |
else:
|
| 193 |
cos_k = cos if cos_k is None else cos_k
|
| 194 |
sin_k = sin if sin_k is None else sin_k
|
|
|
|
| 252 |
sin_k = sin if sin_k is None else sin_k
|
| 253 |
dq, dk = dqkv[..., 0, :, :], dqkv[..., 1, :, :]
|
| 254 |
apply_rotary(
|
|
|
|
| 255 |
dq,
|
| 256 |
cos,
|
| 257 |
sin,
|