YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
mBART Fine-tuned: English ↔ Telugu
This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt for English ↔ Telugu machine translation.
🚀 Usage
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model_name = "your-username/mbart-en-te"
tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)
# English → Telugu
text = "How are you?"
inputs = tokenizer(text, return_tensors="pt")
tokenizer.src_lang = "en_XX"
generated = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["te_IN"])
print(tokenizer.decode(generated[0], skip_special_tokens=True))
# "మీరు ఎలా ఉన్నారు?"
# Telugu → English
text = "మీరు ఎలా ఉన్నారు?"
inputs = tokenizer(text, return_tensors="pt")
tokenizer.src_lang = "te_IN"
generated = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
print(tokenizer.decode(generated[0], skip_special_tokens=True))
# "How are you?"
Training
Base model: facebook/mbart-large-50-many-to-many-mmt
Task: English ↔ Telugu translation
Framework: Hugging Face Transformers (PyTorch)
Training setup: [Add epochs, batch size, learning rate here]
Dataset: [Mention dataset name or source]
⚠️ Limitations
Works best on short to medium sentences.
May struggle with idiomatic or domain-specific text.
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support