File size: 7,538 Bytes
6c25a84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
import logging
from dataclasses import dataclass
from typing import List, Dict, Optional, Union
import torch
from datasets import load_dataset
import json
from tqdm import tqdm
from PIL import Image
import requests
from io import BytesIO
import argparse
from pathlib import Path
from enum import Enum
# Import custom modules
from data import (
DatasetType,
DatasetConfig,
get_dataset_config,
get_formatted_instruction,
process_response,
save_descriptions,
load_image_dataset,
get_processed_response
)
from torch.utils.data import Dataset, DataLoader, DistributedSampler
import torch.distributed as dist
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from vllm import LLM, SamplingParams
import io
import base64
from PIL import Image
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('evaluation.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
INSTRUCTION = "\n\nYour final answer MUST BE put in \\boxed{}."
def pil_to_base64(image_pil, format="PNG"):
buffered = io.BytesIO()
image_pil.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def base64_to_pil(base64_string):
img_data = base64.b64decode(base64_string)
image_pil = Image.open(io.BytesIO(img_data))
return image_pil
class InstanceDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
item = self.data[index]
for k in item:
if k == 'options' or k == 'choices':
if item[k] == None:
item[k] = ""
else:
item[k] = str(item[k])
if 'image_url' in item:
image_url = item['image_url']
image_str = pil_to_base64(image_url)
item['image_url'] = image_str
instance = {'index': index, 'item': item}
return instance
def main():
parser = argparse.ArgumentParser(description='Evaluate model on various math datasets')
parser.add_argument('--dataset', type=str, choices=['mathvista', 'mathverse', 'mathvision', 'mathvision-mini', 'hallusionbench', 'mmmu-pro-vision', 'we-math', 'math500', 'gpqa', 'dynamath', 'logicvista'],
default='mathvista', help='Dataset to evaluate on')
parser.add_argument('--model_path', type=str, help='Path to the model', default="Qwen/Qwen3-VL-2B-Instruct")
parser.add_argument('--name', type=str, help='model save name', default="plm")
parser.add_argument('--bsz', type=int, help='batch size', default=2)
args = parser.parse_args()
# device = int(os.environ['LOCAL_RANK'])
# torch.cuda.set_device(f'cuda:{device}')
# Configuration
dataset_type = DatasetType(args.dataset)
dataset_config = get_dataset_config(dataset_type)
output_folder = f"./outputs/{dataset_type.value}_{args.name}"
os.makedirs(output_folder, exist_ok=True)
MODEL_PATH = args.model_path
processor = AutoProcessor.from_pretrained(MODEL_PATH)
vlm = LLM(MODEL_PATH, limit_mm_per_prompt={"image": 1}, tensor_parallel_size=torch.cuda.device_count())
sampling_params = SamplingParams(max_tokens=2048, temperature=0.7, top_p=0.8, top_k=20, repetition_penalty=1.0, presence_penalty=1.5)
# Load dataset
logger.info(f"Loading dataset {dataset_config.name}")
data = load_image_dataset(dataset_config)
# dist.init_process_group()
dataset = InstanceDataset(data)
# sampler = DistributedSampler(dataset, shuffle=False)
dataloader = DataLoader(dataset, batch_size=args.bsz)
# Load model
# local_rank = int(os.environ['LOCAL_RANK'])
# logger.info(f"Loaded model {args.model_path} | local rank: {local_rank}")
for batch in tqdm(dataloader):
indices = batch['index']
run_input_instances = []
run_indices = []
run_processed_responses = []
run_items = []
run_formatted_instructions = []
for j in range(len(indices)):
index = indices[j].item()
output_file = os.path.join(output_folder, f'{index}.json')
global_item = batch['item']
if not os.path.exists(output_file):
item = {}
for k in global_item:
item[k] = global_item[k][j]
for k in item:
if len(item[k]) > 0:
if k == 'choices' or k == 'options':
# print(f'item[k]: {item[k]}')
try:
item[k] = eval(item[k])
except:
item[k] = item[k]
if k == 'image_url':
item['image_url'] = base64_to_pil(item['image_url'])
formatted_instruction = get_formatted_instruction(dataset_type, item)
formatted_instruction = formatted_instruction + INSTRUCTION
if 'image_url' in item:
message = [{"role": "user", "content": [{"type": "image", "image": ""}, {"type": "text", "text": formatted_instruction}]}]
else:
message = [{"role": "user", "content": [{"type": "text", "text": formatted_instruction}]}]
text = processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
if 'image_url' in item:
input_instance = {'prompt': text, 'multi_modal_data': {'image': item['image_url']}}
else:
input_instance = {'prompt': text}
# print(f'input_instance: {input_instance}')
run_input_instances.append(input_instance)
run_indices.append(index)
processed_response = get_processed_response(dataset_type, item)
# print(f'response: {item["response"]} | processed_response: {processed_response} | choices: {item["choices"]} | ')
run_processed_responses.append(processed_response)
run_items.append(item)
run_formatted_instructions.append(formatted_instruction)
outputs = vlm.generate(run_input_instances, sampling_params=sampling_params)
for j in range(len(run_indices)):
answer = outputs[j].outputs[0].text
processed_response = run_processed_responses[j]
item = run_items[j]
formatted_instruction = run_formatted_instructions[j]
if 'image_url' in item:
del item['image_url']
description = {
'index': j,
'item': json.dumps(item),
'formatted_instruction': formatted_instruction,
'processed_response': processed_response,
'answer': answer
}
with open(output_file, 'w') as f:
json.dump(description, f, indent = 4)
if __name__ == "__main__":
main()
#
# VLLM_WORKER_MULTIPROC_METHOD=spawn VLLM_DISABLE_COMPILE_CACHE=1 CUDA_VISIBLE_DEVICES=3,4,5,6 python eval_qwen_multi_vllm.py --dataset mathvista --name qwen3_vl_2b_instruct_vllm
# |