File size: 7,538 Bytes
6c25a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import logging
from dataclasses import dataclass
from typing import List, Dict, Optional, Union

import torch
from datasets import load_dataset
import json
from tqdm import tqdm
from PIL import Image
import requests
from io import BytesIO
import argparse
from pathlib import Path
from enum import Enum

# Import custom modules
from data import (
    DatasetType,
    DatasetConfig,
    get_dataset_config,
    get_formatted_instruction,
    process_response,
    save_descriptions,
    load_image_dataset,
    get_processed_response
)
from torch.utils.data import Dataset, DataLoader, DistributedSampler
import torch.distributed as dist
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from vllm import LLM, SamplingParams


import io
import base64
from PIL import Image

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('evaluation.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

INSTRUCTION =  "\n\nYour final answer MUST BE put in \\boxed{}."

def pil_to_base64(image_pil, format="PNG"):
    buffered = io.BytesIO()
    image_pil.save(buffered, format=format)
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str

def base64_to_pil(base64_string):
    img_data = base64.b64decode(base64_string)
    image_pil = Image.open(io.BytesIO(img_data))
    return image_pil

class InstanceDataset(Dataset):

    def __init__(self, data):
        self.data = data
    
    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        item = self.data[index]
        for k in item:
            if k == 'options' or k == 'choices':
                if item[k] == None:
                    item[k] = ""
                else:
                    item[k] = str(item[k])
        if 'image_url' in item:
            image_url = item['image_url']
            image_str = pil_to_base64(image_url)
            item['image_url'] = image_str
        instance = {'index': index, 'item': item}
        return instance

def main():
    parser = argparse.ArgumentParser(description='Evaluate model on various math datasets')
    parser.add_argument('--dataset', type=str, choices=['mathvista', 'mathverse', 'mathvision', 'mathvision-mini', 'hallusionbench', 'mmmu-pro-vision', 'we-math', 'math500', 'gpqa', 'dynamath', 'logicvista'],
                      default='mathvista', help='Dataset to evaluate on')
    parser.add_argument('--model_path', type=str, help='Path to the model', default="Qwen/Qwen3-VL-2B-Instruct")
    parser.add_argument('--name', type=str, help='model save name', default="plm")
    parser.add_argument('--bsz', type=int, help='batch size', default=2)

    args = parser.parse_args()
    
    # device = int(os.environ['LOCAL_RANK'])
    # torch.cuda.set_device(f'cuda:{device}')
    
    # Configuration
    dataset_type = DatasetType(args.dataset)
    dataset_config = get_dataset_config(dataset_type)
    
    output_folder = f"./outputs/{dataset_type.value}_{args.name}"
    os.makedirs(output_folder, exist_ok=True)

    MODEL_PATH = args.model_path
    processor = AutoProcessor.from_pretrained(MODEL_PATH)
    vlm = LLM(MODEL_PATH, limit_mm_per_prompt={"image": 1}, tensor_parallel_size=torch.cuda.device_count())
    sampling_params = SamplingParams(max_tokens=2048, temperature=0.7, top_p=0.8, top_k=20, repetition_penalty=1.0, presence_penalty=1.5)

    # Load dataset
    logger.info(f"Loading dataset {dataset_config.name}")
    data = load_image_dataset(dataset_config)
    
    # dist.init_process_group()
    dataset = InstanceDataset(data)
    # sampler = DistributedSampler(dataset, shuffle=False)
    dataloader = DataLoader(dataset, batch_size=args.bsz)

    # Load model
    # local_rank = int(os.environ['LOCAL_RANK'])
    # logger.info(f"Loaded model {args.model_path} | local rank: {local_rank}")

    for batch in tqdm(dataloader):
        
        indices = batch['index']

        run_input_instances = []
        run_indices = []
        run_processed_responses = []
        run_items = []
        run_formatted_instructions = []

        for j in range(len(indices)):
            index = indices[j].item()
            output_file = os.path.join(output_folder, f'{index}.json')
            global_item = batch['item']
            if not os.path.exists(output_file):
                item = {}
                for k in global_item:
                    item[k] = global_item[k][j]

                for k in item:
                    if len(item[k]) > 0:
                        if k == 'choices' or k == 'options':
                            # print(f'item[k]: {item[k]}')
                            try:
                                item[k] = eval(item[k])
                            except:
                                item[k] = item[k]
                    if k == 'image_url':
                        item['image_url'] = base64_to_pil(item['image_url'])

                formatted_instruction = get_formatted_instruction(dataset_type, item)
                formatted_instruction = formatted_instruction + INSTRUCTION
                
                if 'image_url' in item:
                    message = [{"role": "user", "content": [{"type": "image", "image": ""}, {"type": "text", "text": formatted_instruction}]}]
                else:
                    message = [{"role": "user", "content": [{"type": "text", "text": formatted_instruction}]}]

                text = processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
                if 'image_url' in item:
                    input_instance = {'prompt': text, 'multi_modal_data': {'image': item['image_url']}}
                else:
                    input_instance = {'prompt': text}
                
                # print(f'input_instance: {input_instance}')

                run_input_instances.append(input_instance)
                run_indices.append(index)
            
                processed_response = get_processed_response(dataset_type, item)
                # print(f'response: {item["response"]} | processed_response: {processed_response} | choices: {item["choices"]} | ')
                run_processed_responses.append(processed_response)
                run_items.append(item)
                run_formatted_instructions.append(formatted_instruction)

            outputs = vlm.generate(run_input_instances, sampling_params=sampling_params)

            for j in range(len(run_indices)):
                answer = outputs[j].outputs[0].text
                processed_response = run_processed_responses[j]
                item = run_items[j]
                formatted_instruction = run_formatted_instructions[j]
                
                if 'image_url' in item:
                    del item['image_url']

                description = {
                    'index': j,
                    'item': json.dumps(item),
                    'formatted_instruction': formatted_instruction,
                    'processed_response': processed_response,
                    'answer': answer
                }

                with open(output_file, 'w') as f:
                    json.dump(description, f, indent = 4)

if __name__ == "__main__":
    main()

# 
#  VLLM_WORKER_MULTIPROC_METHOD=spawn  VLLM_DISABLE_COMPILE_CACHE=1 CUDA_VISIBLE_DEVICES=3,4,5,6 python eval_qwen_multi_vllm.py --dataset mathvista --name qwen3_vl_2b_instruct_vllm
#