Create eval_qwen.py
Browse files- eval_qwen.py +205 -0
eval_qwen.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import List, Dict, Optional, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import json
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import requests
|
| 12 |
+
from io import BytesIO
|
| 13 |
+
import argparse
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from enum import Enum
|
| 16 |
+
|
| 17 |
+
# Import custom modules
|
| 18 |
+
from data import (
|
| 19 |
+
DatasetType,
|
| 20 |
+
DatasetConfig,
|
| 21 |
+
get_dataset_config,
|
| 22 |
+
get_formatted_instruction,
|
| 23 |
+
process_response,
|
| 24 |
+
save_descriptions,
|
| 25 |
+
load_image_dataset,
|
| 26 |
+
get_processed_response
|
| 27 |
+
)
|
| 28 |
+
from torch.utils.data import Dataset, DataLoader, DistributedSampler
|
| 29 |
+
import torch.distributed as dist
|
| 30 |
+
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
|
| 31 |
+
from vllm import LLM, SamplingParams
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
import io
|
| 35 |
+
import base64
|
| 36 |
+
from PIL import Image
|
| 37 |
+
|
| 38 |
+
# Configure logging
|
| 39 |
+
logging.basicConfig(
|
| 40 |
+
level=logging.INFO,
|
| 41 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 42 |
+
handlers=[
|
| 43 |
+
logging.FileHandler('evaluation.log'),
|
| 44 |
+
logging.StreamHandler()
|
| 45 |
+
]
|
| 46 |
+
)
|
| 47 |
+
logger = logging.getLogger(__name__)
|
| 48 |
+
|
| 49 |
+
INSTRUCTION = "\n\nYour final answer MUST BE put in \\boxed{}."
|
| 50 |
+
|
| 51 |
+
def pil_to_base64(image_pil, format="PNG"):
|
| 52 |
+
buffered = io.BytesIO()
|
| 53 |
+
image_pil.save(buffered, format=format)
|
| 54 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 55 |
+
return img_str
|
| 56 |
+
|
| 57 |
+
def base64_to_pil(base64_string):
|
| 58 |
+
img_data = base64.b64decode(base64_string)
|
| 59 |
+
image_pil = Image.open(io.BytesIO(img_data))
|
| 60 |
+
return image_pil
|
| 61 |
+
|
| 62 |
+
class InstanceDataset(Dataset):
|
| 63 |
+
|
| 64 |
+
def __init__(self, data):
|
| 65 |
+
self.data = data
|
| 66 |
+
|
| 67 |
+
def __len__(self):
|
| 68 |
+
return len(self.data)
|
| 69 |
+
|
| 70 |
+
def __getitem__(self, index):
|
| 71 |
+
item = self.data[index]
|
| 72 |
+
for k in item:
|
| 73 |
+
if k == 'options' or k == 'choices':
|
| 74 |
+
if item[k] == None:
|
| 75 |
+
item[k] = ""
|
| 76 |
+
else:
|
| 77 |
+
item[k] = str(item[k])
|
| 78 |
+
if 'image_url' in item:
|
| 79 |
+
image_url = item['image_url']
|
| 80 |
+
image_str = pil_to_base64(image_url)
|
| 81 |
+
item['image_url'] = image_str
|
| 82 |
+
instance = {'index': index, 'item': item}
|
| 83 |
+
return instance
|
| 84 |
+
|
| 85 |
+
def main():
|
| 86 |
+
parser = argparse.ArgumentParser(description='Evaluate model on various math datasets')
|
| 87 |
+
parser.add_argument('--dataset', type=str, choices=['mathvista', 'mathverse', 'mathvision', 'mathvision-mini', 'hallusionbench', 'mmmu-pro-vision', 'we-math', 'math500', 'gpqa', 'dynamath', 'logicvista'],
|
| 88 |
+
default='mathvista', help='Dataset to evaluate on')
|
| 89 |
+
parser.add_argument('--model_path', type=str, help='Path to the model', default="Qwen/Qwen3-VL-2B-Instruct")
|
| 90 |
+
parser.add_argument('--name', type=str, help='model save name', default="plm")
|
| 91 |
+
parser.add_argument('--bsz', type=int, help='batch size', default=2)
|
| 92 |
+
|
| 93 |
+
args = parser.parse_args()
|
| 94 |
+
|
| 95 |
+
# device = int(os.environ['LOCAL_RANK'])
|
| 96 |
+
# torch.cuda.set_device(f'cuda:{device}')
|
| 97 |
+
|
| 98 |
+
# Configuration
|
| 99 |
+
dataset_type = DatasetType(args.dataset)
|
| 100 |
+
dataset_config = get_dataset_config(dataset_type)
|
| 101 |
+
|
| 102 |
+
output_folder = f"./outputs/{dataset_type.value}_{args.name}"
|
| 103 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 104 |
+
|
| 105 |
+
MODEL_PATH = args.model_path
|
| 106 |
+
processor = AutoProcessor.from_pretrained(MODEL_PATH)
|
| 107 |
+
vlm = LLM(MODEL_PATH, limit_mm_per_prompt={"image": 1}, tensor_parallel_size=torch.cuda.device_count())
|
| 108 |
+
sampling_params = SamplingParams(max_tokens=2048, temperature=0.7, top_p=0.8, top_k=20, repetition_penalty=1.0, presence_penalty=1.5)
|
| 109 |
+
|
| 110 |
+
# Load dataset
|
| 111 |
+
logger.info(f"Loading dataset {dataset_config.name}")
|
| 112 |
+
data = load_image_dataset(dataset_config)
|
| 113 |
+
|
| 114 |
+
# dist.init_process_group()
|
| 115 |
+
dataset = InstanceDataset(data)
|
| 116 |
+
# sampler = DistributedSampler(dataset, shuffle=False)
|
| 117 |
+
dataloader = DataLoader(dataset, batch_size=args.bsz)
|
| 118 |
+
|
| 119 |
+
# Load model
|
| 120 |
+
# local_rank = int(os.environ['LOCAL_RANK'])
|
| 121 |
+
# logger.info(f"Loaded model {args.model_path} | local rank: {local_rank}")
|
| 122 |
+
|
| 123 |
+
for batch in tqdm(dataloader):
|
| 124 |
+
|
| 125 |
+
indices = batch['index']
|
| 126 |
+
|
| 127 |
+
run_input_instances = []
|
| 128 |
+
run_indices = []
|
| 129 |
+
run_processed_responses = []
|
| 130 |
+
run_items = []
|
| 131 |
+
run_formatted_instructions = []
|
| 132 |
+
|
| 133 |
+
for j in range(len(indices)):
|
| 134 |
+
index = indices[j].item()
|
| 135 |
+
output_file = os.path.join(output_folder, f'{index}.json')
|
| 136 |
+
global_item = batch['item']
|
| 137 |
+
if not os.path.exists(output_file):
|
| 138 |
+
item = {}
|
| 139 |
+
for k in global_item:
|
| 140 |
+
item[k] = global_item[k][j]
|
| 141 |
+
|
| 142 |
+
for k in item:
|
| 143 |
+
if len(item[k]) > 0:
|
| 144 |
+
if k == 'choices' or k == 'options':
|
| 145 |
+
# print(f'item[k]: {item[k]}')
|
| 146 |
+
try:
|
| 147 |
+
item[k] = eval(item[k])
|
| 148 |
+
except:
|
| 149 |
+
item[k] = item[k]
|
| 150 |
+
if k == 'image_url':
|
| 151 |
+
item['image_url'] = base64_to_pil(item['image_url'])
|
| 152 |
+
|
| 153 |
+
formatted_instruction = get_formatted_instruction(dataset_type, item)
|
| 154 |
+
formatted_instruction = formatted_instruction + INSTRUCTION
|
| 155 |
+
|
| 156 |
+
if 'image_url' in item:
|
| 157 |
+
message = [{"role": "user", "content": [{"type": "image", "image": ""}, {"type": "text", "text": formatted_instruction}]}]
|
| 158 |
+
else:
|
| 159 |
+
message = [{"role": "user", "content": [{"type": "text", "text": formatted_instruction}]}]
|
| 160 |
+
|
| 161 |
+
text = processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
|
| 162 |
+
if 'image_url' in item:
|
| 163 |
+
input_instance = {'prompt': text, 'multi_modal_data': {'image': item['image_url']}}
|
| 164 |
+
else:
|
| 165 |
+
input_instance = {'prompt': text}
|
| 166 |
+
|
| 167 |
+
# print(f'input_instance: {input_instance}')
|
| 168 |
+
|
| 169 |
+
run_input_instances.append(input_instance)
|
| 170 |
+
run_indices.append(index)
|
| 171 |
+
|
| 172 |
+
processed_response = get_processed_response(dataset_type, item)
|
| 173 |
+
# print(f'response: {item["response"]} | processed_response: {processed_response} | choices: {item["choices"]} | ')
|
| 174 |
+
run_processed_responses.append(processed_response)
|
| 175 |
+
run_items.append(item)
|
| 176 |
+
run_formatted_instructions.append(formatted_instruction)
|
| 177 |
+
|
| 178 |
+
outputs = vlm.generate(run_input_instances, sampling_params=sampling_params)
|
| 179 |
+
|
| 180 |
+
for j in range(len(run_indices)):
|
| 181 |
+
answer = outputs[j].outputs[0].text
|
| 182 |
+
processed_response = run_processed_responses[j]
|
| 183 |
+
item = run_items[j]
|
| 184 |
+
formatted_instruction = run_formatted_instructions[j]
|
| 185 |
+
|
| 186 |
+
if 'image_url' in item:
|
| 187 |
+
del item['image_url']
|
| 188 |
+
|
| 189 |
+
description = {
|
| 190 |
+
'index': j,
|
| 191 |
+
'item': json.dumps(item),
|
| 192 |
+
'formatted_instruction': formatted_instruction,
|
| 193 |
+
'processed_response': processed_response,
|
| 194 |
+
'answer': answer
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
with open(output_file, 'w') as f:
|
| 198 |
+
json.dump(description, f, indent = 4)
|
| 199 |
+
|
| 200 |
+
if __name__ == "__main__":
|
| 201 |
+
main()
|
| 202 |
+
|
| 203 |
+
#
|
| 204 |
+
# VLLM_WORKER_MULTIPROC_METHOD=spawn VLLM_DISABLE_COMPILE_CACHE=1 CUDA_VISIBLE_DEVICES=3,4,5,6 python eval_qwen_multi_vllm.py --dataset mathvista --name qwen3_vl_2b_instruct_vllm
|
| 205 |
+
#
|