SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("gabrielegabellone/bert-base-uncased-snli")
# Run inference
sentences = [
'A dog running through tall grass.',
'Dog lying in an open field.',
'The woman is outside.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 549,367 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 6 tokens
- mean: 16.75 tokens
- max: 73 tokens
- min: 4 tokens
- mean: 10.57 tokens
- max: 29 tokens
- 0: ~36.60%
- 1: ~33.00%
- 2: ~30.40%
- Samples:
sentence_0 sentence_1 label A woman in wearing a white hat holding a scythe and a cutting of wheat.A sad woman in wearing a white hat holding a scythe and a cutting of wheat.1There is an old man sitting on the edge of a concrete pillar wearing a hat.A man sits outside.0A man dressed as a cook enjoys a meal and bottle of wine in an empty restaurant.There is a chef that is waiting for people to come to his restaurant and is preparing food.1 - Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0146 | 500 | 0.9507 |
| 0.0291 | 1000 | 0.8171 |
| 0.0437 | 1500 | 0.7619 |
| 0.0582 | 2000 | 0.7505 |
| 0.0728 | 2500 | 0.7221 |
| 0.0874 | 3000 | 0.6913 |
| 0.1019 | 3500 | 0.6753 |
| 0.1165 | 4000 | 0.6658 |
| 0.1311 | 4500 | 0.6578 |
| 0.1456 | 5000 | 0.6438 |
| 0.1602 | 5500 | 0.6348 |
| 0.1747 | 6000 | 0.6286 |
| 0.1893 | 6500 | 0.6261 |
| 0.2039 | 7000 | 0.6154 |
| 0.2184 | 7500 | 0.6184 |
| 0.2330 | 8000 | 0.6107 |
| 0.2476 | 8500 | 0.6189 |
| 0.2621 | 9000 | 0.6087 |
| 0.2767 | 9500 | 0.612 |
| 0.2912 | 10000 | 0.6026 |
| 0.3058 | 10500 | 0.603 |
| 0.3204 | 11000 | 0.5987 |
| 0.3349 | 11500 | 0.5999 |
| 0.3495 | 12000 | 0.5893 |
| 0.3640 | 12500 | 0.5767 |
| 0.3786 | 13000 | 0.59 |
| 0.3932 | 13500 | 0.5898 |
| 0.4077 | 14000 | 0.5854 |
| 0.4223 | 14500 | 0.571 |
| 0.4369 | 15000 | 0.5811 |
| 0.4514 | 15500 | 0.569 |
| 0.4660 | 16000 | 0.5751 |
| 0.4805 | 16500 | 0.5714 |
| 0.4951 | 17000 | 0.5605 |
| 0.5097 | 17500 | 0.5687 |
| 0.5242 | 18000 | 0.5566 |
| 0.5388 | 18500 | 0.5642 |
| 0.5534 | 19000 | 0.5468 |
| 0.5679 | 19500 | 0.5733 |
| 0.5825 | 20000 | 0.5582 |
| 0.5970 | 20500 | 0.5534 |
| 0.6116 | 21000 | 0.5417 |
| 0.6262 | 21500 | 0.5483 |
| 0.6407 | 22000 | 0.5446 |
| 0.6553 | 22500 | 0.5581 |
| 0.6699 | 23000 | 0.5353 |
| 0.6844 | 23500 | 0.5513 |
| 0.6990 | 24000 | 0.5521 |
| 0.7135 | 24500 | 0.5402 |
| 0.7281 | 25000 | 0.5371 |
| 0.7427 | 25500 | 0.554 |
| 0.7572 | 26000 | 0.5322 |
| 0.7718 | 26500 | 0.5404 |
| 0.7863 | 27000 | 0.5372 |
| 0.8009 | 27500 | 0.5465 |
| 0.8155 | 28000 | 0.5387 |
| 0.8300 | 28500 | 0.5363 |
| 0.8446 | 29000 | 0.5296 |
| 0.8592 | 29500 | 0.5356 |
| 0.8737 | 30000 | 0.5341 |
| 0.8883 | 30500 | 0.54 |
| 0.9028 | 31000 | 0.527 |
| 0.9174 | 31500 | 0.5261 |
| 0.9320 | 32000 | 0.5424 |
| 0.9465 | 32500 | 0.5286 |
| 0.9611 | 33000 | 0.5262 |
| 0.9757 | 33500 | 0.5255 |
| 0.9902 | 34000 | 0.5221 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- -
Model tree for gabrielegabellone/bert-base-uncased-snli
Base model
google-bert/bert-base-uncased