Llama-3.2-1B-Instruct-bnb-4bit-gsm8k - GGUF Format

GGUF format quantizations for llama.cpp/Ollama.

Model Details

Related Models

Prompt Format

This model uses the Llama 3.2 chat template.

Ollama Template Format

{{ if .Messages }}
{{- if or .System .Tools }}<|start_header_id|>system<|end_header_id|>
{{- if .System }}

{{ .System }}
{{- end }}
{{- if .Tools }}

You are a helpful assistant with tool calling capabilities. When you receive a tool call response, use the output to format an answer to the original use question.
{{- end }}
{{- end }}<|eot_id|>
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 }}
{{- if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>
{{- if and $.Tools $last }}

Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.

Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables.

{{ $.Tools }}
{{- end }}

{{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|>

{{ end }}
{{- else if eq .Role "assistant" }}<|start_header_id|>assistant<|end_header_id|>
{{- if .ToolCalls }}

{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "parameters": {{ .Function.Arguments }}}{{ end }}
{{- else }}

{{ .Content }}{{ if not $last }}<|eot_id|>{{ end }}
{{- end }}
{{- else if eq .Role "tool" }}<|start_header_id|>ipython<|end_header_id|>

{{ .Content }}<|eot_id|>{{ if $last }}<|start_header_id|>assistant<|end_header_id|>

{{ end }}
{{- end }}
{{- end }}
{{- else }}
{{- if .System }}<|start_header_id|>system<|end_header_id|>

{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>

{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>

{{ end }}{{ .Response }}{{ if .Response }}<|eot_id|>{{ end }}

Training Details

  • LoRA Rank: 32
  • Training Steps: 1870
  • Training Loss: 0.7500
  • Max Seq Length: 2048
  • Training Scope: 7,473 samples (2 epoch(s), full dataset)

For complete training configuration, see the LoRA adapters repository/directory.

Benchmark Results

Benchmarked on the merged 16-bit safetensor model

Evaluated: 2025-11-24 14:29

Model Type gsm8k
unsloth/Llama-3.2-1B-Instruct-bnb-4bit Base 0.1463
Llama-3.2-1B-Instruct-bnb-4bit-gsm8k Fine-tuned 0.3230

Available Quantizations

Quantization File Size Quality
F16 Llama-3.2-1B-Instruct-bnb-4bit-gsm8k-F16.gguf 2.31 GB Full precision (largest)
Q4_K_M Llama-3.2-1B-Instruct-bnb-4bit-gsm8k-Q4_K_M.gguf 0.75 GB Good balance (recommended)
Q6_K Llama-3.2-1B-Instruct-bnb-4bit-gsm8k-Q6_K.gguf 0.95 GB High quality
Q8_0 Llama-3.2-1B-Instruct-bnb-4bit-gsm8k-Q8_0.gguf 1.23 GB Very high quality, near original

Usage: Use the dropdown menu above to select a quantization, then follow HuggingFace's provided instructions.

License

Based on unsloth/Llama-3.2-1B-Instruct-bnb-4bit and trained on openai/gsm8k. Please refer to the original model and dataset licenses.

Credits

Trained by: Your Name

Training pipeline:

Base components:

Downloads last month
83
GGUF
Model size
1B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

4-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for fs90/Llama-3.2-1B-Instruct-bnb-4bit-gsm8k-GGUF