bert-base-uncased-finetuned-rte-run_8_best
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8601
- Accuracy: 0.7256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.387670620549943e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 1.0 | 20 | 0.6376 | 0.6426 |
| No log | 2.0 | 40 | 0.6699 | 0.6968 |
| No log | 3.0 | 60 | 0.6570 | 0.7148 |
| No log | 4.0 | 80 | 0.8601 | 0.7256 |
| No log | 5.0 | 100 | 0.9858 | 0.7004 |
| No log | 6.0 | 120 | 1.1769 | 0.6823 |
| No log | 7.0 | 140 | 1.2463 | 0.6895 |
| No log | 8.0 | 160 | 1.5285 | 0.7004 |
| No log | 9.0 | 180 | 1.4726 | 0.7004 |
| No log | 10.0 | 200 | 1.5863 | 0.6859 |
| No log | 11.0 | 220 | 1.5913 | 0.6823 |
| No log | 12.0 | 240 | 1.6612 | 0.6968 |
| No log | 13.0 | 260 | 1.6851 | 0.7040 |
| No log | 14.0 | 280 | 1.7215 | 0.7040 |
| No log | 15.0 | 300 | 1.7309 | 0.7076 |
Framework versions
- Transformers 4.50.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for fguzelant/bert-base-uncased-finetuned-rte-run_8_best
Base model
google-bert/bert-base-uncased