bert-base-uncased-finetuned-rte-run_8_best

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8601
  • Accuracy: 0.7256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.387670620549943e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 20 0.6376 0.6426
No log 2.0 40 0.6699 0.6968
No log 3.0 60 0.6570 0.7148
No log 4.0 80 0.8601 0.7256
No log 5.0 100 0.9858 0.7004
No log 6.0 120 1.1769 0.6823
No log 7.0 140 1.2463 0.6895
No log 8.0 160 1.5285 0.7004
No log 9.0 180 1.4726 0.7004
No log 10.0 200 1.5863 0.6859
No log 11.0 220 1.5913 0.6823
No log 12.0 240 1.6612 0.6968
No log 13.0 260 1.6851 0.7040
No log 14.0 280 1.7215 0.7040
No log 15.0 300 1.7309 0.7076

Framework versions

  • Transformers 4.50.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for fguzelant/bert-base-uncased-finetuned-rte-run_8_best

Finetuned
(6180)
this model