SentenceTransformer
This model was finetuned with Unsloth.
based on Alibaba-NLP/gte-modernbert-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the technical dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-modernbert-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'PeftModelForFeatureExtraction'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'adult learning',
'The course was designed using adult learning best practices.',
'Solar developers calculate AEP, or annual energy production.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7228, 0.1468],
# [0.7228, 1.0000, 0.1683],
# [0.1468, 0.1683, 1.0000]])
Training Details
Training Dataset
technical
- Dataset: technical at 05eeb90
- Size: 106,628 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 4.93 tokens
- max: 12 tokens
- min: 9 tokens
- mean: 13.75 tokens
- max: 25 tokens
- Samples:
anchor positive .308The .308 Winchester is a popular rifle cartridge used for hunting and target shooting..308Many precision rifles are chambered in .308 for its excellent long-range accuracy..308The sniper selected a .308 caliber round for the mission. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 333learning_rate: 3e-05num_train_epochs: 5lr_scheduler_type: constant_with_warmupwarmup_steps: 100fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 333per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: constant_with_warmuplr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 100log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.1558 | 50 | 3.4086 |
| 0.3115 | 100 | 3.3329 |
| 0.4673 | 150 | 3.2148 |
| 0.6231 | 200 | 2.9797 |
| 0.7788 | 250 | 2.7541 |
| 0.9346 | 300 | 2.5277 |
| 1.0903 | 350 | 2.3069 |
| 1.2461 | 400 | 2.1593 |
| 1.4019 | 450 | 2.0781 |
| 1.5576 | 500 | 1.9385 |
| 1.7134 | 550 | 1.9052 |
| 1.8692 | 600 | 1.8768 |
| 2.0249 | 650 | 1.8272 |
| 2.1807 | 700 | 1.7906 |
| 2.3364 | 750 | 1.7607 |
| 2.4922 | 800 | 1.7375 |
| 2.6480 | 850 | 1.6952 |
| 2.8037 | 900 | 1.6664 |
| 2.9595 | 950 | 1.6216 |
| 3.1153 | 1000 | 1.5601 |
| 3.2710 | 1050 | 1.571 |
| 3.4268 | 1100 | 1.5735 |
| 3.5826 | 1150 | 1.5455 |
| 3.7383 | 1200 | 1.5577 |
| 3.8941 | 1250 | 1.5426 |
| 4.0498 | 1300 | 1.5276 |
| 4.2056 | 1350 | 1.5178 |
| 4.3614 | 1400 | 1.4611 |
| 4.5171 | 1450 | 1.4822 |
| 4.6729 | 1500 | 1.4987 |
| 4.8287 | 1550 | 1.4507 |
| 4.9844 | 1600 | 1.4501 |
Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.0+cu126
- Accelerate: 1.12.0
- Datasets: 4.3.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Model tree for electroglyph/notebook_test
Base model
answerdotai/ModernBERT-base
Finetuned
Alibaba-NLP/gte-modernbert-base