Transformers documentation
Ernie 4.5 VL MoE
This model was released on 2025-06-30 and added to Hugging Face Transformers on TBD.
Ernie 4.5 VL MoE
Overview
The Ernie 4.5 VL MoE model was released in the Ernie 4.5 Model Family release by baidu. This family of models contains multiple different architectures and model sizes. The Vision-Language series in specific is composed of a novel multimodal heterogeneous structure, sharing paremeters across modalities and dedicating parameters to specific modalities. This becomes especially apparent in the Mixture of Expert (MoE) which is composed of
- Dedicated Text Experts
- Dedicated Vision Experts
- Shared Experts
This architecture has the advantage to enhance multimodal understanding without compromising, and even improving, performance on text-related tasks. An more detailed breakdown is given in the Technical Report.

Other models from the family can be found at Ernie 4.5 and at Ernie 4.5 MoE.
Usage
The example below demonstrates how to generate text based on an image with Pipeline or the AutoModel class.
from transformers import pipeline
pipe = pipeline(
task="image-text-to-text",
model="baidu/ERNIE-4.5-VL-28B-A3B-PT",
device_map="auto",
revision="refs/pr/10",
)
message = [
{
"role": "user",
"content": [
{"type": "text", "text": "What kind of dog is this?"},
{
"type": "image",
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
},
],
}
]
print(pipe(text=message, max_new_tokens=20, return_full_text=False))Using Ernie 4.5 VL MoE with video input is similar to using it with image input. The model can process video data and generate text based on the content of the video.
from transformers import AutoModelForImageTextToText, AutoProcessor
model = AutoModelForImageTextToText.from_pretrained(
"baidu/ERNIE-4.5-VL-28B-A3B-PT",
dtype="auto",
device_map="auto", # Use tp_plan="auto" instead to enable Tensor Parallelism!
revision="refs/pr/10",
)
processor = AutoProcessor.from_pretrained("baidu/ERNIE-4.5-VL-28B-A3B-PT", revision="refs/pr/10")
message = [
{
"role": "user",
"content": [
{"type": "text", "text": "Please describe what you can see during this video."},
{
"type": "video",
"url": "https://huggingface.co/datasets/raushan-testing-hf/videos-test/resolve/main/tiny_video.mp4",
},
],
}
]
inputs = processor.apply_chat_template(
message,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)Ernie4_5_VL_MoeConfig
class transformers.Ernie4_5_VL_MoeConfig
< source >( text_config = None vision_config = None image_start_token_id = 101304 image_end_token_id = 101305 image_token_id = 100295 video_start_token_id = 101306 video_end_token_id = 101307 video_token_id = 103367 **kwargs )
Parameters
- text_config (
Union[PreTrainedConfig, dict], optional, defaults toErnie4_5_VL_MoeTextConfig) — The config object or dictionary of the text backbone. - vision_config (
Union[PreTrainedConfig, dict], optional, defaults toErnie4_5_VL_MoeVisionConfig) — The config object or dictionary of the vision backbone. - image_start_token_id (
int, optional, defaults to 101304) — The image token index to encode the start of image. - image_end_token_id (
int, optional, defaults to 101305) — The image token index to encode the end of image. - image_token_id (
int, optional, defaults to 100295) — The image token index to encode the image prompt. - video_start_token_id (
int, optional, defaults to 101306) — The video token index to encode the start of video. - video_end_token_id (
int, optional, defaults to 101307) — The video token index to encode the end of video. - video_token_id (
int, optional, defaults to 103367) — The video token index to encode the video prompt.
This is the configuration class to store the configuration of a Ernie4_5_VL_MoeModel. It is used to instantiate a Ernie4.5-VL MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of Ernie 4.5 VL 28B A3B baidu/ERNIE-4.5-VL-28B-A3B-PT.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
>>> from transformers import Ernie4_5_VL_MoeForConditionalGeneration, Ernie4_5_VL_MoeConfig
>>> # Initializing a Ernie4_5_VL_Moe style configuration
>>> configuration = Ernie4_5_VL_MoeConfig()
>>> # Initializing a model from the Ernie 4.5 VL 28B A3B configuration
>>> model = Ernie4_5_VL_MoeForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.configErnie4_5_VL_MoeTextConfig
class transformers.Ernie4_5_VL_MoeTextConfig
< source >( vocab_size = 103424 hidden_size = 2560 intermediate_size = 12288 num_hidden_layers = 28 num_attention_heads = 20 num_key_value_heads = 4 hidden_act = 'silu' max_position_embeddings = 131072 initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True use_bias = False tie_word_embeddings = True rope_parameters = None mlp_layer_types = None moe_intermediate_size = None moe_k = 6 moe_num_experts = 64 moe_num_shared_experts = 2 moe_norm_min = 1e-12 output_router_logits = False router_aux_loss_coef = 0.001 **kwargs )
Parameters
- vocab_size (
int, optional, defaults to 103424) — Vocabulary size of the Ernie 4.5 VL model. Defines the number of different tokens that can be represented by theinputs_idspassed when calling Ernie4_5_VL_MoeTextModel - hidden_size (
int, optional, defaults to 2560) — Dimension of the hidden representations. - intermediate_size (
int, optional, defaults to 12288) — Dimension of the MLP representations. - num_hidden_layers (
int, optional, defaults to 28) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int, optional, defaults to 20) — Number of attention heads for each attention layer in the Transformer encoder. - num_key_value_heads (
int, optional, defaults to 4) — This is the number of key_value heads that should be used to implement Grouped Query Attention. Ifnum_key_value_heads=num_attention_heads, the model will use Multi Head Attention (MHA), ifnum_key_value_heads=1the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out this paper. If it is not specified, will default to4. - hidden_act (
strorfunction, optional, defaults to"silu") — The non-linear activation function (function or string) in the decoder. - max_position_embeddings (
int, optional, defaults to 131072) — The maximum sequence length that this model might ever be used with. - initializer_range (
float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - rms_norm_eps (
float, optional, defaults to 1e-05) — The epsilon used by the rms normalization layers. - use_cache (
bool, optional, defaults toTrue) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True. - use_bias (
bool, optional, defaults toFalse) — Whether to use a bias in any of the projections including mlp and attention for example. - tie_word_embeddings (
bool, optional, defaults toTrue) — Whether the model’s input and output word embeddings should be tied. - rope_parameters (
RopeParameters, optional) — Dictionary containing the configuration parameters for the RoPE embeddings. The dictionaty should contain a value forrope_thetaand optionally parameters used for scaling in case you want to use RoPE with longermax_position_embeddings. - mlp_layer_types (
list, optional) — MLP (Moe vs Dense) pattern for each layer. - moe_intermediate_size (
list[int], optional, defaults to[1536, 512]) — Intermediate size of the routed experts; differs between text (first) and image (second) experts. - moe_k (
int, optional, defaults to 6) — Number of selected experts. - moe_num_experts (
int, optional, defaults to 64) — Number of routed experts. - moe_num_shared_experts (
int, optional, defaults to 2) — The number of experts that are shared for all MoE forwards. - moe_norm_min (
float, optional, defaults to 1e-12) — Minimum division value during routing normalization. - output_router_logits (
bool, optional, defaults toFalse) — Whether or not the router logits should be returned by the model. Enabling this will also allow the model to output the auxiliary loss, including load balancing loss and router z-loss. - router_aux_loss_coef (
float, optional, defaults to 0.001) — The aux loss factor for the total loss.
This is the configuration class to store the configuration of a Ernie4_5_VL_MoeTextModel. It is used to instantiate a the text model portion of the complete Ernie4.5-VL Moe model according to the specified arguments, defining the model architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Ernie4_5_VL_MoeVisionConfig
class transformers.Ernie4_5_VL_MoeVisionConfig
< source >( depth = 32 hidden_size = 1280 hidden_act = 'quick_gelu' intermediate_size = 5120 num_heads = 16 in_channels = 3 patch_size = 14 spatial_merge_size = 2 temporal_merge_size = 2 rms_norm_eps = 1e-06 initializer_range = 0.02 **kwargs )
Parameters
- depth (
int, optional, defaults to 32) — Number of layers (depth) in the model. - hidden_size (
int, optional, defaults to 1280) — Dimensionality of the encoder layers and the pooler layer. - hidden_act (
strorfunction, optional, defaults to"quick_gelu") — The non-linear activation function (function or string) in the encoder and pooler. - intermediate_size (
int, optional, defaults to 5120) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. - num_heads (
int, optional, defaults to 16) — Number of attention heads for each attention layer in the Transformer encoder. - in_channels (
int, optional, defaults to 3) — The number of input channels. - patch_size (
int, optional, defaults to 14) — The size (resolution) of each patch. - spatial_merge_size (
int, optional, defaults to 2) — The size used for merging spatial dimensions. - temporal_merge_size (
int, optional, defaults to 2) — The size used for merge along the temporal dimension. - rms_norm_eps (
float, optional, defaults to 1e-06) — The epsilon used by the rms normalization layers. - initializer_range (
float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
This is the configuration class to store the configuration of the Ernie4_5_VL_MoeVisionTransformerPretrainedModel. It is used to instantiate the vision models portion of the complete Ernie4.5-VL Moe model according to the specified arguments, defining the model architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Ernie4_5_VL_MoeImageProcessor
class transformers.Ernie4_5_VL_MoeImageProcessor
< source >( do_resize: bool = True size: typing.Optional[dict[str, int]] = None resample: Resampling = <Resampling.BICUBIC: 3> do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None do_convert_rgb: bool = True patch_size: int = 14 temporal_patch_size: typing.Optional[int] = None merge_size: int = 2 **kwargs )
Parameters
- do_resize (
bool, optional, defaults toTrue) — Whether to resize the image’s (height, width) dimensions. - size (
dict[str, int], optional, defaults to{"shortest_edge" -- 56 * 56, "longest_edge": 28 * 28 * 6177}): Size of the image after resizing.shortest_edgeandlongest_edgekeys must be present. - resample (
PILImageResampling, optional, defaults toResampling.BICUBIC) — Resampling filter to use when resizing the image. - do_rescale (
bool, optional, defaults toTrue) — Whether to rescale the image by the specified scalerescale_factor. - rescale_factor (
intorfloat, optional, defaults to1/255) — Scale factor to use if rescaling the image. - do_normalize (
bool, optional, defaults toTrue) — Whether to normalize the image. - image_mean (
floatorlist[float], optional, defaults to[0.48145466, 0.4578275, 0.40821073]) — Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. - image_std (
floatorlist[float], optional, defaults to[0.26862954, 0.26130258, 0.27577711]) — Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. - do_convert_rgb (
bool, optional, defaults toTrue) — Whether to convert the image to RGB. - patch_size (
int, optional, defaults to 14) — The spatial patch size of the vision encoder. - temporal_patch_size (
int, optional) — The temporal patch size of the vision encoder. Unused in the image processor, only used for videos. - merge_size (
int, optional, defaults to 2) — The merge size of the vision encoder to llm encoder.
Constructs a Ernie 4.5 VL image processor that dynamically resizes images based on the original images.
preprocess
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] do_resize: typing.Optional[bool] = None size: typing.Optional[dict[str, int]] = None resample: typing.Optional[PIL.Image.Resampling] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None patch_size: typing.Optional[int] = None temporal_patch_size: typing.Optional[int] = None merge_size: typing.Optional[int] = None do_convert_rgb: typing.Optional[bool] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None )
Parameters
- images (
ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False. - do_resize (
bool, optional, defaults toself.do_resize) — Whether to resize the image. - size (
Dict[str, int], optional, defaults toself.size) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. - resample (
int, optional, defaults toself.resample) — Resampling filter to use if resizing the image. This can be one of the enumPILImageResampling. Only has an effect ifdo_resizeis set toTrue. - do_rescale (
bool, optional, defaults toself.do_rescale) — Whether to rescale the image. - rescale_factor (
float, optional, defaults toself.rescale_factor) — Rescale factor to rescale the image by ifdo_rescaleis set toTrue. - do_normalize (
bool, optional, defaults toself.do_normalize) — Whether to normalize the image. - image_mean (
floatorList[float], optional, defaults toself.image_mean) — Image mean to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - image_std (
floatorList[float], optional, defaults toself.image_std) — Image standard deviation to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - patch_size (
int, optional, defaults toself.patch_size) — The spatial patch size of the vision encoder. - temporal_patch_size (
int, optional, defaults toself.temporal_patch_size) — The temporal patch size of the vision encoder. - merge_size (
int, optional, defaults toself.merge_size) — The merge size of the vision encoder to llm encoder. - do_convert_rgb (
bool, optional, defaults toself.do_convert_rgb) — Whether to convert the image to RGB. - return_tensors (
strorTensorType, optional) — The type of tensors to return. Can be one of:- Unset: Return a list of
np.ndarray. TensorType.PYTORCHor'pt': Return a batch of typetorch.Tensor.TensorType.NUMPYor'np': Return a batch of typenp.ndarray.
- Unset: Return a list of
- data_format (
ChannelDimensionorstr, optional, defaults toChannelDimension.FIRST) — The channel dimension format for the output image. Can be one of:"channels_first"orChannelDimension.FIRST: image in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: image in (height, width, num_channels) format.- Unset: Use the channel dimension format of the input image.
- input_data_format (
ChannelDimensionorstr, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"orChannelDimension.FIRST: image in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: image in (height, width, num_channels) format."none"orChannelDimension.NONE: image in (height, width) format.
Ernie4_5_VL_MoeImageProcessorFast
class transformers.Ernie4_5_VL_MoeImageProcessorFast
< source >( **kwargs: typing_extensions.Unpack[transformers.models.ernie4_5_vl_moe.image_processing_ernie4_5_vl_moe.Ernie4_5_VL_MoeImageProcessorKwargs] )
Constructs a fast Ernie4 5 Vl Moe image processor.
preprocess
< source >( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] **kwargs: typing_extensions.Unpack[transformers.models.ernie4_5_vl_moe.image_processing_ernie4_5_vl_moe.Ernie4_5_VL_MoeImageProcessorKwargs] ) → <class 'transformers.image_processing_base.BatchFeature'>
Parameters
- images (
Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, list, list, list]) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False. - do_convert_rgb (
bool, optional) — Whether to convert the image to RGB. - do_resize (
bool, optional) — Whether to resize the image. - size (
Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — Describes the maximum input dimensions to the model. - crop_size (
Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — Size of the output image after applyingcenter_crop. - resample (
Annotated[Union[PILImageResampling, int, NoneType], None]) — Resampling filter to use if resizing the image. This can be one of the enumPILImageResampling. Only has an effect ifdo_resizeis set toTrue. - do_rescale (
bool, optional) — Whether to rescale the image. - rescale_factor (
float, optional) — Rescale factor to rescale the image by ifdo_rescaleis set toTrue. - do_normalize (
bool, optional) — Whether to normalize the image. - image_mean (
Union[float, list[float], tuple[float, ...], NoneType]) — Image mean to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - image_std (
Union[float, list[float], tuple[float, ...], NoneType]) — Image standard deviation to use for normalization. Only has an effect ifdo_normalizeis set toTrue. - do_pad (
bool, optional) — Whether to pad the image. Padding is done either to the largest size in the batch or to a fixed square size per image. The exact padding strategy depends on the model. - pad_size (
Annotated[Union[int, list[int], tuple[int, ...], dict[str, int], NoneType], None]) — The size in{"height": int, "width" int}to pad the images to. Must be larger than any image size provided for preprocessing. Ifpad_sizeis not provided, images will be padded to the largest height and width in the batch. Applied only whendo_pad=True. - do_center_crop (
bool, optional) — Whether to center crop the image. - data_format (
Union[~image_utils.ChannelDimension, str, NoneType]) — OnlyChannelDimension.FIRSTis supported. Added for compatibility with slow processors. - input_data_format (
Union[~image_utils.ChannelDimension, str, NoneType]) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"orChannelDimension.FIRST: image in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: image in (height, width, num_channels) format."none"orChannelDimension.NONE: image in (height, width) format.
- device (
Annotated[Union[str, torch.device, NoneType], None]) — The device to process the images on. If unset, the device is inferred from the input images. - return_tensors (
Annotated[Union[str, ~utils.generic.TensorType, NoneType], None]) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors. - disable_grouping (
bool, optional) — Whether to disable grouping of images by size to process them individually and not in batches. If None, will be set to True if the images are on CPU, and False otherwise. This choice is based on empirical observations, as detailed here: https://github.com/huggingface/transformers/pull/38157 - image_seq_length (
int, optional) — The number of image tokens to be used for each image in the input. Added for backward compatibility but this should be set as a processor attribute in future models. - patch_size (
int, optional, defaults to 14) — The spatial patch size of the vision encoder. - temporal_patch_size (
int, optional) — The temporal patch size of the vision encoder. Unused in the image processor, only used for videos. - merge_size (
int, optional, defaults to 2) — The merge size of the vision encoder to llm encoder.
Returns
<class 'transformers.image_processing_base.BatchFeature'>
- data (
dict) — Dictionary of lists/arrays/tensors returned by the call method (‘pixel_values’, etc.). - tensor_type (
Union[None, str, TensorType], optional) — You can give a tensor_type here to convert the lists of integers in PyTorch/Numpy Tensors at initialization.
Ernie4_5_VL_MoeVideoProcessor
class transformers.Ernie4_5_VL_MoeVideoProcessor
< source >( **kwargs: typing_extensions.Unpack[transformers.models.ernie4_5_vl_moe.video_processing_ernie4_5_vl_moe.Ernie4_5_VL_MoeVideoProcessorInitKwargs] )
Parameters
- do_resize (
bool, optional, defaults toself.do_resize) — Whether to resize the video’s (height, width) dimensions to the specifiedsize. Can be overridden by thedo_resizeparameter in thepreprocessmethod. - size (
dict, optional, defaults toself.size) — Size of the output video after resizing. Can be overridden by thesizeparameter in thepreprocessmethod. - size_divisor (
int, optional, defaults toself.size_divisor) — The size by which to make sure both the height and width can be divided. - default_to_square (
bool, optional, defaults toself.default_to_square) — Whether to default to a square video when resizing, if size is an int. - resample (
PILImageResampling, optional, defaults toself.resample) — Resampling filter to use if resizing the video. Only has an effect ifdo_resizeis set toTrue. Can be overridden by theresampleparameter in thepreprocessmethod. - do_center_crop (
bool, optional, defaults toself.do_center_crop) — Whether to center crop the video to the specifiedcrop_size. Can be overridden bydo_center_cropin thepreprocessmethod. - crop_size (
dict[str, int]optional, defaults toself.crop_size) — Size of the output video after applyingcenter_crop. Can be overridden bycrop_sizein thepreprocessmethod. - do_rescale (
bool, optional, defaults toself.do_rescale) — Whether to rescale the video by the specified scalerescale_factor. Can be overridden by thedo_rescaleparameter in thepreprocessmethod. - rescale_factor (
intorfloat, optional, defaults toself.rescale_factor) — Scale factor to use if rescaling the video. Only has an effect ifdo_rescaleis set toTrue. Can be overridden by therescale_factorparameter in thepreprocessmethod. - do_normalize (
bool, optional, defaults toself.do_normalize) — Whether to normalize the video. Can be overridden by thedo_normalizeparameter in thepreprocessmethod. Can be overridden by thedo_normalizeparameter in thepreprocessmethod. - image_mean (
floatorlist[float], optional, defaults toself.image_mean) — Mean to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by theimage_meanparameter in thepreprocessmethod. Can be overridden by theimage_meanparameter in thepreprocessmethod. - image_std (
floatorlist[float], optional, defaults toself.image_std) — Standard deviation to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by theimage_stdparameter in thepreprocessmethod. Can be overridden by theimage_stdparameter in thepreprocessmethod. - do_convert_rgb (
bool, optional, defaults toself.image_std) — Whether to convert the video to RGB. - video_metadata (
VideoMetadata, optional) — Metadata of the video containing information about total duration, fps and total number of frames. - do_sample_frames (
int, optional, defaults toself.do_sample_frames) — Whether to sample frames from the video before processing or to process the whole video. - num_frames (
int, optional, defaults toself.num_frames) — Maximum number of frames to sample whendo_sample_frames=True. - fps (
intorfloat, optional, defaults toself.fps) — Target frames to sample per second whendo_sample_frames=True. - return_tensors (
strorTensorType, optional) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors. - data_format (
ChannelDimensionorstr, optional, defaults toChannelDimension.FIRST) — The channel dimension format for the output video. Can be one of:"channels_first"orChannelDimension.FIRST: video in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: video in (height, width, num_channels) format.- Unset: Use the channel dimension format of the input video.
- input_data_format (
ChannelDimensionorstr, optional) — The channel dimension format for the input video. If unset, the channel dimension format is inferred from the input video. Can be one of:"channels_first"orChannelDimension.FIRST: video in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: video in (height, width, num_channels) format."none"orChannelDimension.NONE: video in (height, width) format.
- device (
torch.device, optional) — The device to process the videos on. If unset, the device is inferred from the input videos. - return_metadata (
bool, optional) — Whether to return video metadata or not. - patch_size (
int, optional, defaults to 14) — The spacial patch size of the vision encoder. - temporal_patch_size (
int, optional, defaults to 2) — The temporal patch size of the vision encoder. - merge_size (
int, optional, defaults to 2) — The merge size of the vision encoder to llm encoder. - min_frames (
int, optional, defaults to 16) — The minimum number of frames that can be sampled. - max_frames (
int, optional, defaults to 180) — The maximum number of frames that can be sampled. - draw_on_frames (
bool, optional, defaults toTrue) — Whether to draw timestamps on each frame or not. This does not work withtorch.compilebut resembles the performance of the original model. - font (
str, optional, defaults to “Roboto-Regular.ttf”) — The associated font name for drawing on frames. Defaults to “Roboto-Regular.ttf” and is expected to be saved along the processor as separate file.
Constructs a fast Ernie 4.5 VL image processor that dynamically resizes videos based on the original videos.
preprocess
< source >( videos: typing.Union[list['PIL.Image.Image'], numpy.ndarray, ForwardRef('torch.Tensor'), list[numpy.ndarray], list['torch.Tensor'], list[list['PIL.Image.Image']], list[list[numpy.ndarray]], list[list['torch.Tensor']], transformers.video_utils.URL, list[transformers.video_utils.URL], list[list[transformers.video_utils.URL]], transformers.video_utils.Path, list[transformers.video_utils.Path], list[list[transformers.video_utils.Path]]] **kwargs: typing_extensions.Unpack[transformers.processing_utils.VideosKwargs] )
Parameters
- do_resize (
bool, optional, defaults toself.do_resize) — Whether to resize the video’s (height, width) dimensions to the specifiedsize. Can be overridden by thedo_resizeparameter in thepreprocessmethod. - size (
dict, optional, defaults toself.size) — Size of the output video after resizing. Can be overridden by thesizeparameter in thepreprocessmethod. - size_divisor (
int, optional, defaults toself.size_divisor) — The size by which to make sure both the height and width can be divided. - default_to_square (
bool, optional, defaults toself.default_to_square) — Whether to default to a square video when resizing, if size is an int. - resample (
PILImageResampling, optional, defaults toself.resample) — Resampling filter to use if resizing the video. Only has an effect ifdo_resizeis set toTrue. Can be overridden by theresampleparameter in thepreprocessmethod. - do_center_crop (
bool, optional, defaults toself.do_center_crop) — Whether to center crop the video to the specifiedcrop_size. Can be overridden bydo_center_cropin thepreprocessmethod. - crop_size (
dict[str, int]optional, defaults toself.crop_size) — Size of the output video after applyingcenter_crop. Can be overridden bycrop_sizein thepreprocessmethod. - do_rescale (
bool, optional, defaults toself.do_rescale) — Whether to rescale the video by the specified scalerescale_factor. Can be overridden by thedo_rescaleparameter in thepreprocessmethod. - rescale_factor (
intorfloat, optional, defaults toself.rescale_factor) — Scale factor to use if rescaling the video. Only has an effect ifdo_rescaleis set toTrue. Can be overridden by therescale_factorparameter in thepreprocessmethod. - do_normalize (
bool, optional, defaults toself.do_normalize) — Whether to normalize the video. Can be overridden by thedo_normalizeparameter in thepreprocessmethod. Can be overridden by thedo_normalizeparameter in thepreprocessmethod. - image_mean (
floatorlist[float], optional, defaults toself.image_mean) — Mean to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by theimage_meanparameter in thepreprocessmethod. Can be overridden by theimage_meanparameter in thepreprocessmethod. - image_std (
floatorlist[float], optional, defaults toself.image_std) — Standard deviation to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by theimage_stdparameter in thepreprocessmethod. Can be overridden by theimage_stdparameter in thepreprocessmethod. - do_convert_rgb (
bool, optional, defaults toself.image_std) — Whether to convert the video to RGB. - video_metadata (
VideoMetadata, optional) — Metadata of the video containing information about total duration, fps and total number of frames. - do_sample_frames (
int, optional, defaults toself.do_sample_frames) — Whether to sample frames from the video before processing or to process the whole video. - num_frames (
int, optional, defaults toself.num_frames) — Maximum number of frames to sample whendo_sample_frames=True. - fps (
intorfloat, optional, defaults toself.fps) — Target frames to sample per second whendo_sample_frames=True. - return_tensors (
strorTensorType, optional) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors. - data_format (
ChannelDimensionorstr, optional, defaults toChannelDimension.FIRST) — The channel dimension format for the output video. Can be one of:"channels_first"orChannelDimension.FIRST: video in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: video in (height, width, num_channels) format.- Unset: Use the channel dimension format of the input video.
- input_data_format (
ChannelDimensionorstr, optional) — The channel dimension format for the input video. If unset, the channel dimension format is inferred from the input video. Can be one of:"channels_first"orChannelDimension.FIRST: video in (num_channels, height, width) format."channels_last"orChannelDimension.LAST: video in (height, width, num_channels) format."none"orChannelDimension.NONE: video in (height, width) format.
- device (
torch.device, optional) — The device to process the videos on. If unset, the device is inferred from the input videos. - return_metadata (
bool, optional) — Whether to return video metadata or not.
Ernie4_5_VL_MoeProcessor
class transformers.Ernie4_5_VL_MoeProcessor
< source >( image_processor = None tokenizer = None video_processor = None chat_template = None **kwargs )
Parameters
- image_processor (Ernie4_5_VL_MoeImageProcessor, optional) — The image processor is a required input.
- tokenizer (LlamaTokenizerFast, optional) — The tokenizer is a required input.
- video_processor (Ernie4_5_VL_MoeVideoProcessor, optional) — The video processor is a required input.
- chat_template (
str, optional) — A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
Constructs a Ernie 4.5 VL processor which wraps a Ernie 4.5 VL image processor and a Llama tokenizer into a single processor.
Ernie4_5_VL_MoeProcessor offers all the functionalities of Ernie4_5_VL_MoeImageProcessor and LlamaTokenizerFast. See the
__call__() and decode() for more information.
We additionally save a copy of the font to the save_directory (if we found a file there)
Ernie4_5_VL_MoeTextModel
class transformers.Ernie4_5_VL_MoeTextModel
< source >( config: Ernie4_5_VL_MoeTextConfig )
Parameters
- config (Ernie4_5_VL_MoeTextConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Ernie4 5 Vl Moe Text Model outputting raw hidden-states without any specific head on to.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None moe_mm_token_type_ids: typing.Optional[torch.IntTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] ) → transformers.modeling_outputs.MoeModelOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - moe_mm_token_type_ids (
torch.IntTensorof shape(batch_size, sequence_length), optional) — The same asmm_token_type_idswhile additionally considering start/end image/video tokens as respective vision tokens. - past_key_values (
~cache_utils.Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
Returns
transformers.modeling_outputs.MoeModelOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MoeModelOutputWithPast or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (Ernie4_5_VL_MoeConfig) and inputs.
-
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model. -
past_key_values (
Cache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a Cache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=Truein the cross-attention blocks) that can be used (seepast_key_valuesinput) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
router_logits (
tuple(torch.FloatTensor), optional, returned whenoutput_router_probs=Trueandconfig.add_router_probs=Trueis passed or whenconfig.output_router_probs=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, sequence_length, num_experts).Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary loss for Mixture of Experts models.
The Ernie4_5_VL_MoeTextModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Ernie4_5_VL_MoeVisionTransformerPretrainedModel
class transformers.Ernie4_5_VL_MoeVisionTransformerPretrainedModel
< source >( config )
Parameters
- config (Ernie4_5_VL_MoeVisionTransformerPretrainedModel) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Ernie4 5 Vl Moe Model outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( hidden_states: Tensor grid_thw: Tensor **kwargs )
Parameters
- hidden_states (
torch.Tensor) — input to the layer of shape(batch, seq_len, embed_dim) grid_thw (torch.LongTensorof shape(num_images, 3)`): The temporal, height and width dimensions of feature shape for each image. Each row contains [t, h, w] values.
The Ernie4_5_VL_MoeVisionTransformerPretrainedModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Ernie4_5_VL_MoeVariableResolutionResamplerModel
class transformers.Ernie4_5_VL_MoeVariableResolutionResamplerModel
< source >( config: Ernie4_5_VL_MoeConfig )
Ernie4_5_VL_MoeModel
class transformers.Ernie4_5_VL_MoeModel
< source >( config: Ernie4_5_VL_MoeConfig )
Parameters
- config (Ernie4_5_VL_MoeConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Ernie4 5 Vl Moe Model outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None mm_token_type_ids: typing.Optional[torch.IntTensor] = None moe_mm_token_type_ids: typing.Optional[torch.IntTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None pixel_values: typing.Optional[torch.Tensor] = None pixel_values_videos: typing.Optional[torch.FloatTensor] = None image_grid_thw: typing.Optional[torch.LongTensor] = None video_grid_thw: typing.Optional[torch.LongTensor] = None rope_deltas: typing.Optional[torch.LongTensor] = None cache_position: typing.Optional[torch.LongTensor] = None **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.modeling_outputs.MoeModelOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - mm_token_type_ids (
torch.IntTensorof shape(batch_size, sequence_length), optional) — Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2). - moe_mm_token_type_ids (
torch.IntTensorof shape(batch_size, sequence_length), optional) — The same asmm_token_type_idswhile additionally considering start/end image/video tokens as respective vision tokens. - past_key_values (
~cache_utils.Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - pixel_values (
torch.Tensorof shape(batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained usingimage_processor_class. Seeimage_processor_class.__call__for details (processor_classusesimage_processor_classfor processing images). - pixel_values_videos (
torch.FloatTensorof shape(batch_size, num_frames, num_channels, frame_size, frame_size), optional) — The tensors corresponding to the input video. Pixel values for videos can be obtained usingvideo_processor_class. Seevideo_processor_class.__call__for details (processor_classusesvideo_processor_classfor processing videos). - image_grid_thw (
torch.LongTensorof shape(num_images, 3), optional) — The temporal, height and width of feature shape of each image in LLM. - video_grid_thw (
torch.LongTensorof shape(num_videos, 3), optional) — The temporal, height and width of feature shape of each video in LLM. - rope_deltas (
torch.LongTensorof shape(batch_size, ), optional) — The rope index difference between sequence length and multimodal rope. - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
Returns
transformers.modeling_outputs.MoeModelOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MoeModelOutputWithPast or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (None) and inputs.
-
last_hidden_state (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model. -
past_key_values (
Cache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a Cache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=Truein the cross-attention blocks) that can be used (seepast_key_valuesinput) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
router_logits (
tuple(torch.FloatTensor), optional, returned whenoutput_router_probs=Trueandconfig.add_router_probs=Trueis passed or whenconfig.output_router_probs=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, sequence_length, num_experts).Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary loss for Mixture of Experts models.
The Ernie4_5_VL_MoeModel forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Ernie4_5_VL_MoeForConditionalGeneration
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None mm_token_type_ids: typing.Optional[torch.IntTensor] = None moe_mm_token_type_ids: typing.Optional[torch.IntTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None pixel_values: typing.Optional[torch.Tensor] = None pixel_values_videos: typing.Optional[torch.FloatTensor] = None image_grid_thw: typing.Optional[torch.LongTensor] = None video_grid_thw: typing.Optional[torch.LongTensor] = None rope_deltas: typing.Optional[torch.LongTensor] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **kwargs: typing_extensions.Unpack[transformers.utils.generic.TransformersKwargs] ) → transformers.modeling_outputs.MoeCausalLMOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensorof shape(batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- position_ids (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]. - mm_token_type_ids (
torch.IntTensorof shape(batch_size, sequence_length), optional) — Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2). - moe_mm_token_type_ids (
torch.IntTensorof shape(batch_size, sequence_length), optional) — The same asmm_token_type_idswhile additionally considering start/end image/video tokens as respective vision tokens. - past_key_values (
~cache_utils.Cache, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_valuesreturned by the model at a previous stage of decoding, whenuse_cache=Trueorconfig.use_cache=True.Only Cache instance is allowed as input, see our kv cache guide. If no
past_key_valuesare passed, DynamicCache will be initialized by default.The model will output the same cache format that is fed as input.
If
past_key_valuesare used, the user is expected to input only unprocessedinput_ids(those that don’t have their past key value states given to this model) of shape(batch_size, unprocessed_length)instead of allinput_idsof shape(batch_size, sequence_length). - inputs_embeds (
torch.FloatTensorof shape(batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passinginput_idsyou can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_idsindices into associated vectors than the model’s internal embedding lookup matrix. - labels (
torch.LongTensorof shape(batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]or -100 (seeinput_idsdocstring). Tokens with indices set to-100are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]. - use_cache (
bool, optional) — If set toTrue,past_key_valueskey value states are returned and can be used to speed up decoding (seepast_key_values). - output_router_logits (
bool, optional) — Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. - pixel_values (
torch.Tensorof shape(batch_size, num_channels, image_size, image_size), optional) — The tensors corresponding to the input images. Pixel values can be obtained usingimage_processor_class. Seeimage_processor_class.__call__for details (processor_classusesimage_processor_classfor processing images). - pixel_values_videos (
torch.FloatTensorof shape(batch_size, num_frames, num_channels, frame_size, frame_size), optional) — The tensors corresponding to the input video. Pixel values for videos can be obtained usingvideo_processor_class. Seevideo_processor_class.__call__for details (processor_classusesvideo_processor_classfor processing videos). - image_grid_thw (
torch.LongTensorof shape(num_images, 3), optional) — The temporal, height and width of feature shape of each image in LLM. - video_grid_thw (
torch.LongTensorof shape(num_videos, 3), optional) — The temporal, height and width of feature shape of each video in LLM. - rope_deltas (
torch.LongTensorof shape(batch_size, ), optional) — The rope index difference between sequence length and multimodal rope. - cache_position (
torch.LongTensorof shape(sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - logits_to_keep (
Union[int, torch.Tensor], optional, defaults to0) — If anint, compute logits for the lastlogits_to_keeptokens. If0, calculate logits for allinput_ids(special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If atorch.Tensor, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns
transformers.modeling_outputs.MoeCausalLMOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MoeCausalLMOutputWithPast or a tuple of
torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various
elements depending on the configuration (None) and inputs.
-
loss (
torch.FloatTensorof shape(1,), optional, returned whenlabelsis provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensorof shape(batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
aux_loss (
torch.FloatTensor, optional, returned whenlabelsis provided) — aux_loss for the sparse modules. -
router_logits (
tuple(torch.FloatTensor), optional, returned whenoutput_router_probs=Trueandconfig.add_router_probs=Trueis passed or whenconfig.output_router_probs=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, sequence_length, num_experts).Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary loss for Mixture of Experts models.
-
past_key_values (
Cache, optional, returned whenuse_cache=Trueis passed or whenconfig.use_cache=True) — It is a Cache instance. For more details, see our kv cache guide.Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_valuesinput) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor), optional, returned whenoutput_hidden_states=Trueis passed or whenconfig.output_hidden_states=True) — Tuple oftorch.FloatTensor(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size).Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor), optional, returned whenoutput_attentions=Trueis passed or whenconfig.output_attentions=True) — Tuple oftorch.FloatTensor(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length).Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The Ernie4_5_VL_MoeForConditionalGeneration forward method, overrides the __call__ special method.
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.