Dataset Viewer
Search is not available for this dataset
obs_0
float32 -1.95
1.88
| obs_1
float32 -2.57
2.62
| obs_2
float32 -2
2.08
| obs_3
float32 -1.93
1.95
| obs_4
float32 -1.5
1.5
| obs_5
float32 -1.5
1.5
| action_0
float32 -1
1
| action_1
float32 -1
1
| next_obs_0
float32 -1.95
1.88
| next_obs_1
float32 -2.57
2.62
| next_obs_2
float32 -2
2.08
| next_obs_3
float32 -1.93
1.95
| next_obs_4
float32 -1.5
1.5
| next_obs_5
float32 -1.5
1.5
| reward
float32 -1.71
9.18
| done
float32 0
0
| truncated
float32 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.034022
| 0.212798
| -0.085793
| -0.082574
| -0.682031
| 0.875175
| -1
| 1
| 0.016864
| 0.196283
| -0.379337
| 0.212769
| -0.682031
| 0.875175
| 0.716719
| 0
| 0
|
0.016864
| 0.196283
| -0.379337
| 0.212769
| -0.682031
| 0.875175
| -1
| 1
| -0.059004
| 0.238837
| -0.637228
| 0.47306
| -0.682031
| 0.875175
| 0.893674
| 0
| 0
|
-0.059004
| 0.238837
| -0.637228
| 0.47306
| -0.682031
| 0.875175
| -1
| 0.687366
| -0.186449
| 0.333449
| -0.860191
| 0.605202
| -0.682031
| 0.875175
| 1.276749
| 0
| 0
|
-0.186449
| 0.333449
| -0.860191
| 0.605202
| -0.682031
| 0.875175
| 0.509188
| -0.104921
| -0.358488
| 0.454489
| -0.600284
| 0.473835
| -0.682031
| 0.875175
| 1.940359
| 0
| 0
|
-0.358488
| 0.454489
| -0.600284
| 0.473835
| -0.682031
| 0.875175
| 1
| -0.594663
| -0.478544
| 0.549256
| -0.209879
| 0.208168
| -0.682031
| 0.875175
| 2.635067
| 0
| 0
|
-0.478544
| 0.549256
| -0.209879
| 0.208168
| -0.682031
| 0.875175
| 1
| -0.314603
| -0.52052
| 0.59089
| 0.145365
| 0.057198
| -0.682031
| 0.875175
| 2.986314
| 0
| 0
|
-0.52052
| 0.59089
| 0.145365
| 0.057198
| -0.682031
| 0.875175
| -0.18306
| 0.419365
| -0.491447
| 0.60233
| 0.113745
| 0.1502
| -0.682031
| 0.875175
| 2.869377
| 0
| 0
|
-0.491447
| 0.60233
| 0.113745
| 0.1502
| -0.682031
| 0.875175
| -1
| 0.873094
| -0.468698
| 0.63237
| -0.157643
| 0.37074
| -0.682031
| 0.875175
| 2.874227
| 0
| 0
|
-0.468698
| 0.63237
| -0.157643
| 0.37074
| -0.682031
| 0.875175
| -1
| 0.603719
| -0.500227
| 0.706518
| -0.398806
| 0.481222
| -0.682031
| 0.875175
| 3.373564
| 0
| 0
|
-0.500227
| 0.706518
| -0.398806
| 0.481222
| -0.682031
| 0.875175
| -0.624473
| -0.105466
| -0.579988
| 0.802762
| -0.500855
| 0.356867
| -0.682031
| 0.875175
| 4.684882
| 0
| 0
|
-0.579988
| 0.802762
| -0.500855
| 0.356867
| -0.682031
| 0.875175
| 0.927771
| -0.552653
| -0.680159
| 0.874135
| -0.128926
| 0.098777
| -0.682031
| 0.875175
| 8.939816
| 0
| 0
|
-0.680159
| 0.874135
| -0.128926
| 0.098777
| -0.682031
| 0.875175
| 1
| -0.309462
| -0.705944
| 0.893891
| 0.230028
| -0.05569
| -0.682031
| 0.875175
| 6.934263
| 0
| 0
|
-0.705944
| 0.893891
| 0.230028
| -0.05569
| -0.682031
| 0.875175
| 0.167786
| 0.387278
| -0.659939
| 0.882753
| 0.305849
| 0.024276
| -0.682031
| 0.875175
| 7.480256
| 0
| 0
|
-0.659939
| 0.882753
| 0.305849
| 0.024276
| -0.682031
| 0.875175
| -1
| 0.839814
| -0.598769
| 0.887608
| 0.026405
| 0.238003
| -0.682031
| 0.875175
| 6.169565
| 0
| 0
|
-0.598769
| 0.887608
| 0.026405
| 0.238003
| -0.682031
| 0.875175
| -1
| 0.604278
| -0.593488
| 0.935209
| -0.224484
| 0.353823
| -0.682031
| 0.875175
| 4.976041
| 0
| 0
|
-0.593488
| 0.935209
| -0.224484
| 0.353823
| -0.682031
| 0.875175
| -1
| -0.082295
| -0.638385
| 1.005973
| -0.449929
| 0.242571
| -0.682031
| 0.875175
| 4.885771
| 0
| 0
|
-0.638385
| 1.005973
| -0.449929
| 0.242571
| -0.682031
| 0.875175
| 0.296644
| -0.538724
| -0.728371
| 1.054487
| -0.269584
| -0.009456
| -0.682031
| 0.875175
| 4.540719
| 0
| 0
|
-0.728371
| 1.054487
| -0.269584
| -0.009456
| -0.682031
| 0.875175
| 1
| -0.327021
| -0.782287
| 1.052596
| 0.101829
| -0.174336
| -0.682031
| 0.875175
| 3.879346
| 0
| 0
|
-0.782287
| 1.052596
| 0.101829
| -0.174336
| -0.682031
| 0.875175
| 1
| 0.359804
| -0.761921
| 1.017729
| 0.439053
| -0.106124
| -0.682031
| 0.875175
| 4.289402
| 0
| 0
|
-0.761921
| 1.017729
| 0.439053
| -0.106124
| -0.682031
| 0.875175
| -0.724654
| 0.856032
| -0.674111
| 0.996504
| 0.233119
| 0.12079
| -0.682031
| 0.875175
| 6.051877
| 0
| 0
|
-0.674111
| 0.996504
| 0.233119
| 0.12079
| -0.682031
| 0.875175
| -1
| 0.675783
| -0.627487
| 1.020662
| -0.033804
| 0.269844
| -0.682031
| 0.875175
| 4.601602
| 0
| 0
|
-0.627487
| 1.020662
| -0.033804
| 0.269844
| -0.682031
| 0.875175
| -1
| -0.026247
| -0.634248
| 1.074631
| -0.274794
| 0.185654
| -0.682031
| 0.875175
| 4.414302
| 0
| 0
|
-0.634248
| 1.074631
| -0.274794
| 0.185654
| -0.682031
| 0.875175
| -0.653995
| -0.56222
| -0.689207
| 1.111762
| -0.39472
| -0.064526
| -0.682031
| 0.875175
| 5.464307
| 0
| 0
|
-0.689207
| 1.111762
| -0.39472
| -0.064526
| -0.682031
| 0.875175
| 0.799586
| -0.418999
| -0.768151
| 1.098856
| -0.076044
| -0.259107
| -0.682031
| 0.875175
| 3.795959
| 0
| 0
|
-0.768151
| 1.098856
| -0.076044
| -0.259107
| -0.682031
| 0.875175
| 1
| 0.271872
| -0.78336
| 1.047035
| 0.272378
| -0.219176
| -0.682031
| 0.875175
| 3.89979
| 0
| 0
|
-0.78336
| 1.047035
| 0.272378
| -0.219176
| -0.682031
| 0.875175
| 0.272042
| 0.873148
| -0.728884
| 1.0032
| 0.375709
| 0.013649
| -0.682031
| 0.875175
| 4.847615
| 0
| 0
|
-0.728884
| 1.0032
| 0.375709
| 0.013649
| -0.682031
| 0.875175
| -1
| 0.806202
| -0.653742
| 1.005929
| 0.095417
| 0.21474
| -0.682031
| 0.875175
| 5.223334
| 0
| 0
|
-0.653742
| 1.005929
| 0.095417
| 0.21474
| -0.682031
| 0.875175
| -1
| 0.12246
| -0.634659
| 1.048877
| -0.157358
| 0.184804
| -0.682031
| 0.875175
| 4.55263
| 0
| 0
|
-0.634659
| 1.048877
| -0.157358
| 0.184804
| -0.682031
| 0.875175
| -1
| -0.539719
| -0.66613
| 1.085838
| -0.391013
| -0.052839
| -0.682031
| 0.875175
| 5.1646
| 0
| 0
|
-0.66613
| 1.085838
| -0.391013
| -0.052839
| -0.682031
| 0.875175
| 0.130275
| -0.54546
| -0.744333
| 1.07527
| -0.274402
| -0.284646
| -0.682031
| 0.875175
| 4.187099
| 0
| 0
|
-0.744333
| 1.07527
| -0.274402
| -0.284646
| -0.682031
| 0.875175
| 1
| 0.110221
| -0.799213
| 1.018341
| 0.087443
| -0.297682
| -0.682031
| 0.875175
| 3.938368
| 0
| 0
|
-0.799213
| 1.018341
| 0.087443
| -0.297682
| -0.682031
| 0.875175
| 1
| 0.829193
| -0.781725
| 0.958805
| 0.420876
| -0.07833
| -0.682031
| 0.875175
| 4.578474
| 0
| 0
|
-0.781725
| 0.958805
| 0.420876
| -0.07833
| -0.682031
| 0.875175
| -0.513976
| 0.943123
| -0.697549
| 0.943139
| 0.280325
| 0.173722
| -0.682031
| 0.875175
| 6.219873
| 0
| 0
|
-0.697549
| 0.943139
| 0.280325
| 0.173722
| -0.682031
| 0.875175
| -1
| 0.335656
| -0.641484
| 0.977883
| 0.011613
| 0.220057
| -0.682031
| 0.875175
| 5.167813
| 0
| 0
|
-0.641484
| 0.977883
| 0.011613
| 0.220057
| -0.682031
| 0.875175
| -1
| -0.446641
| -0.639162
| 1.021894
| -0.235297
| 0.01698
| -0.682031
| 0.875175
| 4.793232
| 0
| 0
|
-0.639162
| 1.021894
| -0.235297
| 0.01698
| -0.682031
| 0.875175
| -0.803163
| -0.668438
| -0.686221
| 1.02529
| -0.410739
| -0.247981
| -0.682031
| 0.875175
| 6.087068
| 0
| 0
|
-0.686221
| 1.02529
| -0.410739
| -0.247981
| -0.682031
| 0.875175
| 0.643066
| -0.123658
| -0.768369
| 0.975694
| -0.146924
| -0.336405
| -0.682031
| 0.875175
| 4.542459
| 0
| 0
|
-0.768369
| 0.975694
| -0.146924
| -0.336405
| -0.682031
| 0.875175
| 1
| 0.684815
| -0.797754
| 0.908413
| 0.201622
| -0.16432
| -0.682031
| 0.875175
| 5.214706
| 0
| 0
|
-0.797754
| 0.908413
| 0.201622
| -0.16432
| -0.682031
| 0.875175
| 0.747109
| 1
| -0.757429
| 0.875549
| 0.45313
| 0.104599
| -0.682031
| 0.875175
| 7.028862
| 0
| 0
|
-0.757429
| 0.875549
| 0.45313
| 0.104599
| -0.682031
| 0.875175
| -1
| 0.595219
| -0.666803
| 0.896469
| 0.168872
| 0.242751
| -0.682031
| 0.875175
| 7.144144
| 0
| 0
|
-0.666803
| 0.896469
| 0.168872
| 0.242751
| -0.682031
| 0.875175
| -1
| -0.20054
| -0.633029
| 0.945019
| -0.090326
| 0.120729
| -0.682031
| 0.875175
| 5.357861
| 0
| 0
|
-0.633029
| 0.945019
| -0.090326
| 0.120729
| -0.682031
| 0.875175
| -1
| -0.676433
| -0.651094
| 0.969165
| -0.334049
| -0.145934
| -0.682031
| 0.875175
| 5.459184
| 0
| 0
|
-0.651094
| 0.969165
| -0.334049
| -0.145934
| -0.682031
| 0.875175
| -0.21284
| -0.383355
| -0.717904
| 0.939978
| -0.331588
| -0.314416
| -0.682031
| 0.875175
| 5.674777
| 0
| 0
|
-0.717904
| 0.939978
| -0.331588
| -0.314416
| -0.682031
| 0.875175
| 1
| 0.404655
| -0.784222
| 0.877095
| 0.029879
| -0.233087
| -0.682031
| 0.875175
| 6.617106
| 0
| 0
|
-0.784222
| 0.877095
| 0.029879
| -0.233087
| -0.682031
| 0.875175
| 1
| 0.976503
| -0.778246
| 0.830478
| 0.367076
| 0.028938
| -0.682031
| 0.875175
| 5.14823
| 0
| 0
|
-0.778246
| 0.830478
| 0.367076
| 0.028938
| -0.682031
| 0.875175
| -0.190476
| 0.824715
| -0.704831
| 0.836265
| 0.329464
| 0.239936
| -0.682031
| 0.875175
| 6.435113
| 0
| 0
|
-0.704831
| 0.836265
| 0.329464
| 0.239936
| -0.682031
| 0.875175
| -1
| 0.08124
| -0.638938
| 0.884252
| 0.057623
| 0.210745
| -0.682031
| 0.875175
| 6.894963
| 0
| 0
|
-0.638938
| 0.884252
| 0.057623
| 0.210745
| -0.682031
| 0.875175
| -1
| -0.589947
| -0.627413
| 0.926401
| -0.195315
| -0.028943
| -0.682031
| 0.875175
| 5.532446
| 0
| 0
|
-0.627413
| 0.926401
| -0.195315
| -0.028943
| -0.682031
| 0.875175
| -1
| -0.579854
| -0.666476
| 0.920613
| -0.437223
| -0.258001
| -0.682031
| 0.875175
| 6.55943
| 0
| 0
|
-0.666476
| 0.920613
| -0.437223
| -0.258001
| -0.682031
| 0.875175
| 0.40214
| 0.099398
| -0.753921
| 0.869013
| -0.246852
| -0.275184
| -0.682031
| 0.086685
| 2.73516
| 0
| 0
|
-0.753921
| 0.869013
| -0.246852
| -0.275184
| -0.682031
| 0.086685
| 1
| -1
| -0.803291
| 0.813976
| 0.109426
| -0.612882
| -0.682031
| 0.086685
| 2.335346
| 0
| 0
|
-0.803291
| 0.813976
| 0.109426
| -0.612882
| -0.682031
| 0.086685
| 1
| -0.486752
| -0.781406
| 0.691399
| 0.424568
| -0.754125
| -0.682031
| 0.086685
| 2.69957
| 0
| 0
|
-0.781406
| 0.691399
| 0.424568
| -0.754125
| -0.682031
| 0.086685
| -0.541497
| 0.55679
| -0.696493
| 0.540574
| 0.243073
| -0.553059
| -0.682031
| 0.086685
| 4.478765
| 0
| 0
|
-0.696493
| 0.540574
| 0.243073
| -0.553059
| -0.682031
| 0.086685
| -1
| 1
| -0.647878
| 0.429963
| -0.059824
| -0.234645
| -0.682031
| 0.086685
| 4.160593
| 0
| 0
|
-0.647878
| 0.429963
| -0.059824
| -0.234645
| -0.682031
| 0.086685
| -1
| 0.656367
| -0.659843
| 0.383034
| -0.32991
| -0.051512
| -0.682031
| 0.086685
| 4.619184
| 0
| 0
|
-0.659843
| 0.383034
| -0.32991
| -0.051512
| -0.682031
| 0.086685
| -0.265117
| -0.220662
| -0.725825
| 0.372731
| -0.351058
| -0.155304
| -0.682031
| 0.086685
| 4.139838
| 0
| 0
|
-0.725825
| 0.372731
| -0.351058
| -0.155304
| -0.682031
| 0.086685
| 1
| -0.76921
| -0.796036
| 0.34167
| 0.007302
| -0.417111
| -0.682031
| 0.086685
| 3.41551
| 0
| 0
|
-0.796036
| 0.34167
| 0.007302
| -0.417111
| -0.682031
| 0.086685
| 1
| -0.469744
| -0.794576
| 0.258248
| 0.328708
| -0.55396
| -0.682031
| 0.086685
| 3.805427
| 0
| 0
|
-0.794576
| 0.258248
| 0.328708
| -0.55396
| -0.682031
| 0.086685
| 0.061755
| 0.369785
| -0.728834
| 0.147456
| 0.335728
| -0.411781
| -0.682031
| 0.086685
| 5.516459
| 0
| 0
|
-0.728834
| 0.147456
| 0.335728
| -0.411781
| -0.682031
| 0.086685
| -1
| 0.915565
| -0.661689
| 0.0651
| 0.024501
| -0.111215
| -0.682031
| 0.086685
| 6.950296
| 0
| 0
|
-0.661689
| 0.0651
| 0.024501
| -0.111215
| -0.682031
| 0.086685
| -1
| 0.642354
| -0.656789
| 0.042857
| -0.254138
| 0.07553
| -0.682031
| 0.086685
| 6.267472
| 0
| 0
|
-0.656789
| 0.042857
| -0.254138
| 0.07553
| -0.682031
| 0.086685
| -0.658089
| -0.166648
| -0.707616
| 0.057963
| -0.401084
| -0.005522
| -0.682031
| 0.086685
| 6.587175
| 0
| 0
|
-0.707616
| 0.057963
| -0.401084
| -0.005522
| -0.682031
| 0.086685
| 0.966628
| -0.713078
| -0.787833
| 0.056859
| -0.049766
| -0.251518
| -0.682031
| 0.086685
| 5.379103
| 0
| 0
|
-0.787833
| 0.056859
| -0.049766
| -0.251518
| -0.682031
| 0.086685
| 1
| -0.477358
| -0.797786
| 0.006555
| 0.276805
| -0.394626
| -0.682031
| 0.086685
| 4.479921
| 0
| 0
|
-0.797786
| 0.006555
| 0.276805
| -0.394626
| -0.682031
| 0.086685
| 0.397883
| 0.307838
| -0.742425
| -0.07237
| 0.390283
| -0.27585
| -0.682031
| 0.086685
| 4.431174
| 0
| 0
|
-0.742425
| -0.07237
| 0.390283
| -0.27585
| -0.682031
| 0.086685
| -1
| 0.858434
| -0.664369
| -0.12754
| 0.076276
| 0.007406
| -0.682031
| 0.086685
| 5.082791
| 0
| 0
|
-0.664369
| -0.12754
| 0.076276
| 0.007406
| -0.682031
| 0.086685
| -1
| 0.641243
| -0.649114
| -0.126059
| -0.205506
| 0.194051
| -0.682031
| 0.086685
| 4.650208
| 0
| 0
|
-0.649114
| -0.126059
| -0.205506
| 0.194051
| -0.682031
| 0.086685
| -0.912527
| -0.127545
| -0.690215
| -0.087249
| -0.431618
| 0.124104
| -0.682031
| 0.086685
| 5.700417
| 0
| 0
|
-0.690215
| -0.087249
| -0.431618
| 0.124104
| -0.682031
| 0.086685
| 0.680434
| -0.68624
| -0.776538
| -0.062428
| -0.16213
| -0.119276
| -0.682031
| 0.086685
| 4.096641
| 0
| 0
|
-0.776538
| -0.062428
| -0.16213
| -0.119276
| -0.682031
| 0.086685
| 1
| -0.502053
| -0.808964
| -0.086283
| 0.175882
| -0.279868
| -0.682031
| 0.086685
| 3.686706
| 0
| 0
|
-0.808964
| -0.086283
| 0.175882
| -0.279868
| -0.682031
| 0.086685
| 1
| 0.250532
| -0.773788
| -0.142257
| 0.48125
| -0.188012
| -0.682031
| 0.086685
| 3.716705
| 0
| 0
|
-0.773788
| -0.142257
| 0.48125
| -0.188012
| -0.682031
| 0.086685
| -0.78596
| 0.826964
| -0.677538
| -0.179859
| 0.227547
| 0.084583
| -0.682031
| 0.086685
| 5.519471
| 0
| 0
|
-0.677538
| -0.179859
| 0.227547
| 0.084583
| -0.682031
| 0.086685
| -1
| 0.667636
| -0.632029
| -0.162943
| -0.063769
| 0.280852
| -0.682031
| 0.086685
| 4.161876
| 0
| 0
|
-0.632029
| -0.162943
| -0.063769
| 0.280852
| -0.682031
| 0.086685
| -1
| -0.088521
| -0.644782
| -0.106772
| -0.325411
| 0.223154
| -0.682031
| 0.086685
| 4.644629
| 0
| 0
|
-0.644782
| -0.106772
| -0.325411
| 0.223154
| -0.682031
| 0.086685
| -0.200943
| -0.697692
| -0.709864
| -0.062141
| -0.327079
| -0.025647
| -0.682031
| 0.086685
| 5.11451
| 0
| 0
|
-0.709864
| -0.062141
| -0.327079
| -0.025647
| -0.682031
| 0.086685
| 1
| -0.578344
| -0.77528
| -0.067271
| 0.025214
| -0.221893
| -0.682031
| 0.086685
| 4.078772
| 0
| 0
|
-0.77528
| -0.067271
| 0.025214
| -0.221893
| -0.682031
| 0.086685
| 1
| 0.157988
| -0.770238
| -0.111649
| 0.343987
| -0.168551
| -0.682031
| 0.086685
| 3.889296
| 0
| 0
|
-0.770238
| -0.111649
| 0.343987
| -0.168551
| -0.682031
| 0.086685
| -0.034743
| 0.812636
| -0.70144
| -0.14536
| 0.327879
| 0.091544
| -0.682031
| 0.086685
| 4.945087
| 0
| 0
|
-0.70144
| -0.14536
| 0.327879
| 0.091544
| -0.682031
| 0.086685
| -1
| 0.750706
| -0.635864
| -0.127051
| 0.030461
| 0.314333
| -0.682031
| 0.086685
| 4.376722
| 0
| 0
|
-0.635864
| -0.127051
| 0.030461
| 0.314333
| -0.682031
| 0.086685
| -1
| 0.02196
| -0.629772
| -0.064184
| -0.236509
| 0.289358
| -0.682031
| 0.086685
| 4.60362
| 0
| 0
|
-0.629772
| -0.064184
| -0.236509
| 0.289358
| -0.682031
| 0.086685
| -0.719487
| -0.679298
| -0.677074
| -0.006312
| -0.397953
| 0.042932
| -0.682031
| 0.086685
| 6.475621
| 0
| 0
|
-0.677074
| -0.006312
| -0.397953
| 0.042932
| -0.682031
| 0.086685
| 0.826329
| -0.681686
| -0.756664
| 0.002274
| -0.089544
| -0.194216
| -0.682031
| 0.086685
| 4.829527
| 0
| 0
|
-0.756664
| 0.002274
| -0.089544
| -0.194216
| -0.682031
| 0.086685
| 1
| 0.015784
| -0.774573
| -0.036569
| 0.240163
| -0.192749
| -0.682031
| 0.086685
| 4.292979
| 0
| 0
|
-0.774573
| -0.036569
| 0.240163
| -0.192749
| -0.682031
| 0.086685
| 0.56889
| 0.765503
| -0.726541
| -0.075119
| 0.414159
| 0.047899
| -0.682031
| 0.086685
| 4.670782
| 0
| 0
|
-0.726541
| -0.075119
| 0.414159
| 0.047899
| -0.682031
| 0.086685
| -1
| 0.846253
| -0.643709
| -0.065539
| 0.110501
| 0.302983
| -0.682031
| 0.086685
| 4.848643
| 0
| 0
|
-0.643709
| -0.065539
| 0.110501
| 0.302983
| -0.682031
| 0.086685
| -1
| 0.175818
| -0.621609
| -0.004943
| -0.161782
| 0.325658
| -0.682031
| 0.086685
| 4.939688
| 0
| 0
|
-0.621609
| -0.004943
| -0.161782
| 0.325658
| -0.682031
| 0.086685
| -1
| -0.622911
| -0.653965
| 0.060189
| -0.411048
| 0.094026
| -0.682031
| 0.086685
| 6.578994
| 0
| 0
|
-0.653965
| 0.060189
| -0.411048
| 0.094026
| -0.682031
| 0.086685
| 0.360746
| -0.781873
| -0.736175
| 0.078994
| -0.238817
| -0.179987
| -0.682031
| 0.086685
| 6.781355
| 0
| 0
|
-0.736175
| 0.078994
| -0.238817
| -0.179987
| -0.682031
| 0.086685
| 1
| -0.154227
| -0.783938
| 0.042997
| 0.104116
| -0.239292
| -0.682031
| 0.086685
| 5.114655
| 0
| 0
|
-0.783938
| 0.042997
| 0.104116
| -0.239292
| -0.682031
| 0.086685
| 1
| 0.682516
| -0.763115
| -0.004862
| 0.418432
| -0.028628
| -0.682031
| 0.086685
| 4.683216
| 0
| 0
|
-0.763115
| -0.004862
| 0.418432
| -0.028628
| -0.682031
| 0.086685
| -0.424495
| 0.937903
| -0.679428
| -0.010587
| 0.286892
| 0.256703
| -0.682031
| 0.086685
| 6.606228
| 0
| 0
|
-0.679428
| -0.010587
| 0.286892
| 0.256703
| -0.682031
| 0.086685
| -1
| 0.366652
| -0.62205
| 0.040753
| 0.001174
| 0.344473
| -0.682031
| 0.086685
| 5.54316
| 0
| 0
|
-0.62205
| 0.040753
| 0.001174
| 0.344473
| -0.682031
| 0.086685
| -1
| -0.510927
| -0.621815
| 0.109648
| -0.259444
| 0.149613
| -0.682031
| 0.086685
| 6.068548
| 0
| 0
|
-0.621815
| 0.109648
| -0.259444
| 0.149613
| -0.682031
| 0.086685
| -0.581174
| -0.867714
| -0.673704
| 0.13957
| -0.379991
| -0.149871
| -0.682031
| 0.086685
| 6.765821
| 0
| 0
|
-0.673704
| 0.13957
| -0.379991
| -0.149871
| -0.682031
| 0.086685
| 0.95364
| -0.370791
| -0.749702
| 0.109596
| -0.039755
| -0.283375
| -0.682031
| 0.086685
| 5.969203
| 0
| 0
|
-0.749702
| 0.109596
| -0.039755
| -0.283375
| -0.682031
| 0.086685
| 1
| 0.518018
| -0.757653
| 0.052921
| 0.284271
| -0.126268
| -0.682031
| 0.086685
| 5.586767
| 0
| 0
|
-0.757653
| 0.052921
| 0.284271
| -0.126268
| -0.682031
| 0.086685
| 0.268259
| 0.987286
| -0.700799
| 0.027668
| 0.368321
| 0.17412
| -0.682031
| 0.086685
| 6.221892
| 0
| 0
|
-0.700799
| 0.027668
| 0.368321
| 0.17412
| -0.682031
| 0.086685
| -1
| 0.59101
| -0.627135
| 0.062492
| 0.074405
| 0.337104
| -0.682031
| 0.086685
| 6.110707
| 0
| 0
|
-0.627135
| 0.062492
| 0.074405
| 0.337104
| -0.682031
| 0.086685
| -1
| -0.307532
| -0.612254
| 0.129913
| -0.191728
| 0.20581
| -0.682031
| 0.086685
| 5.461691
| 0
| 0
|
-0.612254
| 0.129913
| -0.191728
| 0.20581
| -0.682031
| 0.086685
| -0.98532
| -0.878054
| -0.6506
| 0.171075
| -0.436665
| -0.099182
| -0.682031
| 0.086685
| 5.544035
| 0
| 1
|
End of preview. Expand
in Data Studio
Dataset Card for NeoRL‑2: Near Real‑World Benchmarks for Offline Reinforcement Learning
Dataset Summary
NeoRL-2 is a collection of seven near–real-world offline-RL datasets plus their evaluation simulators. This repo we provide the offline-RL dataset, while the simulators are in https://github.com/polixir/NeoRL2.
Each task injects one or more realistic challenges—delays, exogenous disturbances, global safety constraints, traditional rule-based data, and/or severe data scarcity—into a lightweight control environment.
Dataset Details
| Challenge | Brief description | Appears in |
|---|---|---|
| Delay | Long & variable observation-to-effect latency | Pipeline, Simglucose |
| External factors | State variables the agent cannot influence (e.g. wind, ground-friction) | RocketRecovery, RandomFrictionHopper, Simglucose |
| Global safety constraints | Hard limits that must never be violated | SafetyHalfCheetah |
| Rule-based behaviour policy | Trajectories from a PID or other deterministic controller | DMSD |
| Severely limited data | Tiny datasets reflecting expensive experimentation | Fusion, RocketRecovery, SafetyHalfCheetah |
- Curated by: Polixir Technologies
- Paper: Gao et al. “NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios”, arXiv:2503.19267 (2025)
- Repository (the environments for the datasets are in here): https://github.com/polixir/NeoRL2
- Task: offline / batch reinforcement learning
Uses
Direct Use
- Benchmarking offline-RL algorithms under near-deployment conditions
- Studying robustness to delays, safety limits, exogenous disturbances and data scarcity
- Developing data-efficient model-based or model-free methods able to outperform conservative behaviour policies
Loading example
from datasets import load_dataset
dmsd = load_dataset("polixir/neorl2", "DMSD", split="train")
state, action, reward, next_state, done = dmsd[0].values()
Out-of-Scope Use
- Online RL with unlimited interaction
- Safety-critical decision-making without extensive validation on the real system
Dataset Structure
Each Parquet row contains
| Key | Type | Description |
|---|---|---|
observations |
float32[] | Raw observation vector (dim varies per task) |
actions |
float32[] | Continuous action taken by the behaviour policy |
rewards |
float32 | Scalar reward |
next_observations |
float32[] | Observation at the next timestep |
terminals |
bool | True if episode ended (termination or safety) |
Typical dataset sizes are ≈100 k transitions; Fusion, RocketRecovery and SafetyHalfCheetah are smaller by design.
Baseline Benchmark
Normalised return (0 – 100)
| Task | Data | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
|---|---|---|---|---|---|---|---|---|---|---|
| Pipeline | 69.25 | 68.6 ± 13.4 | 81.1 ± 8.3 | 72.9 ± 4.6 | 49.7 ± 7.4 | 81.9 ± 7.5 | −26.3 ± 92.7 | 55.5 ± 4.3 | 24.1 ± 74.4 | 65.5 ± 4.1 |
| Simglucose | 73.9 | 75.1 ± 0.7 | 11.0 ± 3.4 | 8.1 ± 0.3 | 29.6 ± 5.7 | 74.2 ± 0.4 | 34.6 ± 28.1 | 23.2 ± 2.5 | 10.8 ± 0.9 | 9.3 ± 0.2 |
| RocketRecovery | 75.3 | 72.8 ± 2.5 | 74.3 ± 1.4 | 65.7 ± 9.8 | 76.5 ± 0.8 | 79.7 ± 0.9 | −27.7 ± 105.6 | 74.7 ± 0.7 | −44.2 ± 263.0 | 43.7 ± 17.5 |
| RandomFrictionHopper | 28.7 | 28.0 ± 0.3 | 33.0 ± 1.2 | 34.7 ± 1.3 | 31.7 ± 1.3 | 29.5 ± 0.7 | 32.5 ± 5.8 | 34.1 ± 4.7 | 29.6 ± 7.2 | 35.1 ± 0.5 |
| DMSD | 56.6 | 65.1 ± 1.6 | 70.2 ± 1.1 | 78.7 ± 2.3 | 77.8 ± 1.2 | 60.0 ± 0.8 | 68.2 ± 0.7 | 68.3 ± 0.4 | 76.2 ± 1.9 | 64.4 ± 0.8 |
| Fusion | 48.8 | 55.2 ± 0.3 | 55.9 ± 1.9 | 58.0 ± 0.7 | 49.7 ± 1.1 | 54.6 ± 0.8 | −11.6 ± 22.2 | 55.5 ± 0.3 | 59.6 ± 5.0 | 5.0 ± 7.1 |
| SafetyHalfCheetah | 73.6 | 70.2 ± 0.4 | 71.2 ± 0.6 | 53.1 ± 11.1 | 54.7 ± 4.3 | 68.6 ± 0.4 | 23.7 ± 24.3 | 57.8 ± 13.3 | −422.4 ± 307.5 | 8.7 ± 3.9 |
How often do algorithms beat the behaviour policy?
| Margin | BC | CQL | EDAC | MCQ | TD3BC | MOPO | COMBO | RAMBO | MOBILE |
|---|---|---|---|---|---|---|---|---|---|
| ≥ 0 | 3 | 4 | 4 | 4 | 6 | 2 | 3 | 3 | 2 |
| ≥ +3 | 2 | 4 | 4 | 2 | 4 | 2 | 3 | 2 | 2 |
| ≥ +5 | 2 | 3 | 3 | 1 | 2 | 1 | 3 | 2 | 2 |
| ≥ +10 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 0 |
Key conclusions
- No baseline “solves” any task (score ≥ 95). Best result is TD3BC’s 81.9 on Pipeline.
- TD3BC is the most reliable algorithm, surpassing the data in 6 / 7 tasks and still leading at stricter margins.
- Model-based methods (MOPO, RAMBO, and MOBILE) are brittle, with large variance and occasional catastrophic divergence.
- DMSD is easiest: many algorithms exceed the behaviour policy by 20 + points thanks to simple PID data.
- SafetyHalfCheetah is hardest: every method trails the data due to strict safety penalties and limited samples.
- In general, model-free approaches show smaller error bars than model-based ones, underlining the challenge of learning accurate dynamics under delay, disturbance and scarcity.
Citation
@misc{gao2025neorl2,
title = {NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios},
author = {Songyi Gao and Zuolin Tu and Rong-Jun Qin and Yi-Hao Sun and Xiong-Hui Chen and Yang Yu},
year = {2025},
eprint = {2503.19267},
archivePrefix = {arXiv},
primaryClass = {cs.LG}
}
Contact
Questions or bug reports? Please open an issue on the NeoRL-2 GitHub repo.
- Downloads last month
- 68