Dataset Viewer
Auto-converted to Parquet
score
float32
1.04
1.25
Swahili
stringlengths
1
500
Zulu
stringclasses
0 values
1.249604
Je, unajua watoto wote wanapaswa kutii nani? - Ndiyo, baba na mama.
null
1.249384
Yote ni juu yako, Yesu au la.
null
1.248955
□ Ningependa kujifunza Biblia nyumbani kwangu bila malipo.
null
1.248932
Naye aliyeshuka ndiye yeye aliyepaa juu sana kupita mbingu zote, ili avijaze vitu vyote.
null
1.248931
Ndiyo, kila 30s auto upya tena
null
1.24892
Matawi yote ya magharibi yanapaswa kuisikiliza sauti Yangu:
null
1.247896
'Je, Yesu angefurahia kutazama filamu hii au kusikiliza muziki huu?
null
1.247895
Kwa nini tusikilize mashauri yao?'
null
1.247711
Lakini je, wao ni matajiri kumwelekea Mungu? - La, wao ni kama yule tajiri ambaye alimsahau Mungu.
null
1.247427
Kwa sababu tunapenda kile ambacho Google inafanya.
null
1.246061
Na Mwenyezi Mungu humkusudia kumpa rehema yake ampendaye.
null
1.246
3 Wanaume na wanawake waliomwogopa Mungu walijua mambo waliyopaswa kufanya.
null
1.245742
Wamelikataa neno la Yehova, nao wana hekima gani?"
null
1.245126
Nililia kwa muda mrefu sana." - Tamara.
null
1.243276
Nilizungumza mengi kuhusu Hitler.
null
1.243262
Zaidi ya yote, alipaswa kumuonyesha mama yangu heshima!"
null
1.242996
Kwa kweli, waume wote ambao hawakuweza kuandamana na wake zao wanakubaliana kwa dhati na maneno hayo!
null
1.242879
Sababu gani Mungu hakupigania Wayahudi kama vile alifanya wakati wa zamani?
null
1.242772
Hutaogopa hofu ya usiku,
null
1.242719
Machi 2013 _ Jinsi ya Kuwa Baba Mzuri
null
1.242559
Lakini kwa sababu hukuniamini, hutaweza kuzungumza mpaka mtoto huyo azaliwe.'
null
1.242392
Unafikiri kijana huyo alikuwa nani? - Ndiyo, huenda alikuwa Marko!
null
1.242115
Mambo haya yamekuwako katika siku zenu, Au katika siku za baba zenu?
null
1.24168
2, kampuni yetu inaweza kuzalisha Max.
null
1.241553
Abeli anazungumza nawe leo.
null
1.241482
Mungu mwenye upendo hawezi kuumba mahali kama hapo.'
null
1.241453
Ibilisi pia alizusha suala lingine.
null
1.241148
Nilijifunza mengi ... kuhusu utamaduni wa Uingereza.
null
1.24113
na vitu vyote vinavyoonekana na visivyoonekana.
null
1.241071
Sasa Amekuja miongoni mwenu kufanya kazi; je, huu si wokovu zaidi?
null
1.240805
Kumbuka, ni wiki yangu ya tatu kazini. 🙂
null
1.240596
Hiki ndicho kizazi cha wamtafutao,
null
1.240577
Ni nini kilitokea huko Houston wiki iliyopita?
null
1.24042
Nilikuwa na maswali mengi kuhusu Mungu na maisha.
null
1.240389
Ninaweza kuitunza mtoto wa usiku wote!
null
1.240047
No one here speaks Greek Hakuna mtu hapa anaongea kigiriki
null
1.239578
Tena tutaiga imani ya Yosefu na mufano wa Yehova, Baba yake mwenye kusamehe.
null
1.239526
hatujui chochote kuhusu maisha na kifo
null
1.239441
4 Watu wengi leo wako kama Daudi.
null
1.23882
Mahali Ambapo Utumishi wa Wakati Wote Umeniongoza
null
1.238667
Yeye aliyeungwa na Bwana ni ROHO MOJA.
null
1.238165
"Mimi tu kuamini katika sayansi!"
null
1.23811
15 Bila shaka, hakujawahi kuwa na ndoa kamilifu.
null
1.237962
Nilijifunza mengi ... kuhusu utamaduni wa Uingereza.
null
1.237848
Naye aliyeshuka ndiye yeye aliyepaa juu sana kupita mbingu zote, ili avijaze vitu vyote."
null
1.237747
Hakuna mwanamume, mwanamke, au mtoto duniani anayeweza kumwona Mungu.
null
1.237439
Huna sababu ya kuogopa." - Mt.
null
1.237079
Ni nani hasa aliyemsaidia na kumtegemeza Marko?
null
1.237067
Solomon Mkubwa Nimewasamehe Wote,
null
1.236963
Usiache kunifuatilia, Google!
null
1.236814
Watiwa-mafuta wameonyeshaje kwamba wao ndio "watu kwa ajili ya jina [la Yehova]" leo?
null
1.236622
Los Angeles: Hatukuweza kusahau Los Angeles.
null
1.236566
Asanteni kwa kutuandalia video hiyo ya watoto." - Nicole, mwenye umri wa miaka 8.
null
1.23656
Mungu anatazama watu Wake kwa furaha; wanaweza kujua sauti Yake.
null
1.236258
Sasa unajua ni miji gani ya Uhispania ambayo unapaswa kutembelea.
null
1.236236
Mnajua kuwa zote hizi ni baraka Zangu, sivyo?
null
1.236206
"Nikamwita mwanangu atoke Misri" (1)
null
1.236181
Basi, twaona kwamba hawakuingia huko kwa sababu hawakuamini.
null
1.235998
Sasa haki imejibu, angalau nchini Canada.
null
1.235898
Hawakuruhusiwa kurudi katika familia ya Mungu ya malaika waadilifu.
null
1.235736
Kwa kweli nimepata suluhisho lako katika dakika 10 za kwanza!
null
1.235389
Umesahau angalau mmoja wao, sivyo?
null
1.235259
Japani ni nyumba yangu ya pili.
null
1.235031
Ninataka kumjua atakapokuwa mkamilifu."
null
1.23493
Itakuwa siku ya hukumu kwa watu wote.
null
1.234879
Habari juu ya Haruni na kifo cha watoto wake inaweza kutufundisha nini?
null
1.23477
Je, mitume hao waaminifu waliendelea kufanya hivyo mpaka mwisho wa maisha yao duniani?
null
1.234689
"Nilizungumza na Alchemy kila siku.
null
1.234624
Kwa kweli, inaweza hata kwenda moja kwa moja juu ya Youtube!
null
1.234618
Labda utapata marafiki wapya hapa, kwa nini?
null
1.234488
Mimi na Sandra tuna furaha zaidi kuliko awali!"
null
1.234454
3 Wanaume na wanawake waliomwogopa Mungu walijua mambo waliyopaswa kufanya.
null
1.234349
Unajua inamaanisha nini kuwa mwanafunzi wa Yesu? - Inamaanisha mambo mengi.
null
1.233787
Wateja wetu wanahitaji majibu... sasa.
null
1.233442
Lakini aliyejiunga na Bwana huwa roho moja naye.
null
1.233358
Ukionyesha imani kama ya Noa, wewe pia unaweza kujiokoa pamoja na wapendwa wako.
null
1.233293
Wana wa Noa walituwekeaje mfano mzuri sana?
null
1.23323
Wala usiangalie bahari kwa sababu inajua kila kitu
null
1.233074
2 Ni kwa njia gani Mungu "alitupenda sisi kwanza"?
null
1.233045
Nilijua alichotaka." - DYLAN.
null
1.233001
Agosti 2013 _ Unaweza Kuishi Muda Mrefu Kadiri Gani?
null
1.232888
"Binti yangu mwenye umri wa miaka 11 hapendi kutazama habari.
null
1.232772
Walifanya maendeleo baada ya muda mfupi na kuwekwa rasmi kuwa watumishi wa huduma."
null
1.232652
Hata hivyo, kama Paulo alivyowakumbusha, Mungu ndiye chanzo cha mvua na majira yenye kuzaa.
null
1.232646
Hatukuleta wokovu duniani,
null
1.232455
Mungu anataka waabudu wake vijana kwa wazee wafanye nini?
null
1.232198
Bonus itakuwa tu kukusaidia wakati mwingine.
null
1.231989
Anasali kwa Mungu wake mara tatu kila siku.'
null
1.231918
Naye amekuwa akifanya hivyo! - 2 Tim.
null
1.231863
Kama ilivyo na kisa cha Danieli, wapinzani wa siku hizi wa watu wa Mungu wamefanya nini?
null
1.231859
Ningehitaji nini?' - 1 Pet.
null
1.231736
Lakini yeye aliyeungwa na Bwana ni roho moja naye. "
null
1.231602
Martha, unaamini jambo hili?'
null
1.231594
Nilisema hivi: "Katie, nitafanya yote niwezayo.
null
1.231319
Mwanangu na binti yangu walikataa kujaribu moja.
null
1.231296
Je, mitume hao waaminifu waliendelea kufanya hivyo mpaka mwisho wa maisha yao duniani?
null
1.231133
Mama mmoja nchini Japani alifanya hivyo.
null
1.231065
Kwa siku nne alizokuwa amekufa 'hakujua lolote kamwe.'
null
1.230954
Kulingana na andiko hilo, je, Mungu anaona watu wake wanapoteseka?
null
1.230705
Tuna ujuzi sahihi wa Neno lake na tunaelewa vizuri ukweli kumhusu na kuhusu makusudi yake.
null
End of preview. Expand in Data Studio

Swahili-Zulu_Sentence-Pairs Dataset

This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks.

This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: OPUS - NLLB-v1

Metadata

  • File Name: Swahili-Zulu_Sentence-Pairs
  • Number of Rows: 1366197
  • Number of Columns: 3
  • Columns: score, Swahili, Zulu

Dataset Description

The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns:

  1. score: The similarity score between the two sentences (range from 0 to 1).
  2. Swahili: The first sentence in the pair (language 1).
  3. Zulu: The second sentence in the pair (language 2).

This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning.

References

Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications:

[1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017

[2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018.

[3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018

[4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018.

[5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018.

[6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018.

[7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019.

[8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB

[9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761.

[10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages

Downloads last month
21

Collection including michsethowusu/swahili-zulu_sentence-pairs