Dataset Viewer
Auto-converted to Parquet Duplicate
repo
stringclasses
44 values
path
stringlengths
6
100
size
int64
146
125k
copies
int64
0
0
license
stringclasses
1 value
content
stringlengths
146
125k
token_count
int64
51
32.1k
hash
stringlengths
64
64
line_mean
float64
12.5
80.7
line_max
int64
30
924
alpha_frac
float64
0.36
0.8
ratio
float64
1.55
5.96
autogenerated
bool
1 class
config_or_test
bool
2 classes
has_no_keywords
bool
2 classes
has_few_assignments
bool
1 class
crestalnetwork/intentkit
skills/allora/__init__.py
2,059
0
MIT License
"""Allora skill module.""" import logging from typing import NotRequired, TypedDict from abstracts.skill import SkillStoreABC from skills.allora.base import AlloraBaseTool from skills.allora.price import AlloraGetPrice from skills.base import SkillConfig, SkillState # Cache skills at the system level, because they are stateless _cache: dict[str, AlloraBaseTool] = {} logger = logging.getLogger(__name__) class SkillStates(TypedDict): get_price_prediction: SkillState class Config(SkillConfig): """Configuration for Allora skills.""" states: SkillStates api_key: NotRequired[str] async def get_skills( config: "Config", is_private: bool, store: SkillStoreABC, **_, ) -> list[AlloraBaseTool]: """Get all Allora skills. Args: config: The configuration for Allora skills. is_private: Whether to include private skills. store: The skill store for persisting data. Returns: A list of Allora skills. """ available_skills = [] # Include skills based on their state for skill_name, state in config["states"].items(): if state == "disabled": continue elif state == "public" or (state == "private" and is_private): available_skills.append(skill_name) # Get each skill using the cached getter result = [] for name in available_skills: skill = get_allora_skill(name, store) if skill: result.append(skill) return result def get_allora_skill( name: str, store: SkillStoreABC, ) -> AlloraBaseTool: """Get an Allora skill by name. Args: name: The name of the skill to get store: The skill store for persisting data Returns: The requested Allora skill """ if name == "get_price_prediction": if name not in _cache: _cache[name] = AlloraGetPrice( skill_store=store, ) return _cache[name] else: logger.warning(f"Unknown Allora skill: {name}") return None
547
c8f767634a1da118872662344f775f97a5819481ad9691ae3885297785e36aca
23.807229
70
0.641088
3.764168
false
true
false
false
pydantic/pydantic-ai
tests/models/test_cohere.py
12,440
0
MIT License
from __future__ import annotations as _annotations import json from collections.abc import Sequence from dataclasses import dataclass from datetime import timezone from typing import Any, Union, cast import pytest from inline_snapshot import snapshot from pydantic_ai import Agent, ModelHTTPError, ModelRetry from pydantic_ai.messages import ( ImageUrl, ModelRequest, ModelResponse, RetryPromptPart, SystemPromptPart, TextPart, ToolCallPart, ToolReturnPart, UserPromptPart, ) from pydantic_ai.usage import Usage from ..conftest import IsNow, raise_if_exception, try_import with try_import() as imports_successful: import cohere from cohere import ( AssistantMessageResponse, AsyncClientV2, ChatResponse, TextAssistantMessageResponseContentItem, ToolCallV2, ToolCallV2Function, ) from cohere.core.api_error import ApiError from pydantic_ai.models.cohere import CohereModel from pydantic_ai.providers.cohere import CohereProvider # note: we use Union here for compatibility with Python 3.9 MockChatResponse = Union[ChatResponse, Exception] pytestmark = [ pytest.mark.skipif(not imports_successful(), reason='cohere not installed'), pytest.mark.anyio, ] def test_init(): m = CohereModel('command-r7b-12-2024', provider=CohereProvider(api_key='foobar')) assert m.model_name == 'command-r7b-12-2024' assert m.system == 'cohere' assert m.base_url == 'https://api.cohere.com' @dataclass class MockAsyncClientV2: completions: MockChatResponse | Sequence[MockChatResponse] | None = None index = 0 @classmethod def create_mock(cls, completions: MockChatResponse | Sequence[MockChatResponse]) -> AsyncClientV2: return cast(AsyncClientV2, cls(completions=completions)) async def chat( # pragma: no cover self, *_args: Any, **_kwargs: Any ) -> ChatResponse: assert self.completions is not None if isinstance(self.completions, Sequence): raise_if_exception(self.completions[self.index]) response = cast(ChatResponse, self.completions[self.index]) else: raise_if_exception(self.completions) response = cast(ChatResponse, self.completions) self.index += 1 return response def completion_message(message: AssistantMessageResponse, *, usage: cohere.Usage | None = None) -> ChatResponse: return ChatResponse( id='123', finish_reason='COMPLETE', message=message, usage=usage, ) async def test_request_simple_success(allow_model_requests: None): c = completion_message( AssistantMessageResponse( content=[ TextAssistantMessageResponseContentItem(text='world'), ], ) ) mock_client = MockAsyncClientV2.create_mock(c) m = CohereModel('command-r7b-12-2024', provider=CohereProvider(cohere_client=mock_client)) agent = Agent(m) result = await agent.run('hello') assert result.data == 'world' assert result.usage() == snapshot(Usage(requests=1)) # reset the index so we get the same response again mock_client.index = 0 # type: ignore result = await agent.run('hello', message_history=result.new_messages()) assert result.data == 'world' assert result.usage() == snapshot(Usage(requests=1)) assert result.all_messages() == snapshot( [ ModelRequest(parts=[UserPromptPart(content='hello', timestamp=IsNow(tz=timezone.utc))]), ModelResponse( parts=[TextPart(content='world')], model_name='command-r7b-12-2024', timestamp=IsNow(tz=timezone.utc) ), ModelRequest(parts=[UserPromptPart(content='hello', timestamp=IsNow(tz=timezone.utc))]), ModelResponse( parts=[TextPart(content='world')], model_name='command-r7b-12-2024', timestamp=IsNow(tz=timezone.utc) ), ] ) async def test_request_simple_usage(allow_model_requests: None): c = completion_message( AssistantMessageResponse( content=[TextAssistantMessageResponseContentItem(text='world')], role='assistant', ), usage=cohere.Usage( tokens=cohere.UsageTokens(input_tokens=1, output_tokens=1), billed_units=cohere.UsageBilledUnits(input_tokens=1, output_tokens=1), ), ) mock_client = MockAsyncClientV2.create_mock(c) m = CohereModel('command-r7b-12-2024', provider=CohereProvider(cohere_client=mock_client)) agent = Agent(m) result = await agent.run('Hello') assert result.data == 'world' assert result.usage() == snapshot( Usage( requests=1, request_tokens=1, response_tokens=1, total_tokens=2, details={ 'input_tokens': 1, 'output_tokens': 1, }, ) ) async def test_request_structured_response(allow_model_requests: None): c = completion_message( AssistantMessageResponse( content=None, role='assistant', tool_calls=[ ToolCallV2( id='123', function=ToolCallV2Function(arguments='{"response": [1, 2, 123]}', name='final_result'), type='function', ) ], ) ) mock_client = MockAsyncClientV2.create_mock(c) m = CohereModel('command-r7b-12-2024', provider=CohereProvider(cohere_client=mock_client)) agent = Agent(m, result_type=list[int]) result = await agent.run('Hello') assert result.data == [1, 2, 123] assert result.all_messages() == snapshot( [ ModelRequest(parts=[UserPromptPart(content='Hello', timestamp=IsNow(tz=timezone.utc))]), ModelResponse( parts=[ ToolCallPart( tool_name='final_result', args='{"response": [1, 2, 123]}', tool_call_id='123', ) ], model_name='command-r7b-12-2024', timestamp=IsNow(tz=timezone.utc), ), ModelRequest( parts=[ ToolReturnPart( tool_name='final_result', content='Final result processed.', tool_call_id='123', timestamp=IsNow(tz=timezone.utc), ) ] ), ] ) async def test_request_tool_call(allow_model_requests: None): responses = [ completion_message( AssistantMessageResponse( content=None, role='assistant', tool_calls=[ ToolCallV2( id='1', function=ToolCallV2Function(arguments='{"loc_name": "San Fransisco"}', name='get_location'), type='function', ) ], ), usage=cohere.Usage(), ), completion_message( AssistantMessageResponse( content=None, role='assistant', tool_calls=[ ToolCallV2( id='2', function=ToolCallV2Function(arguments='{"loc_name": "London"}', name='get_location'), type='function', ) ], ), usage=cohere.Usage( tokens=cohere.UsageTokens(input_tokens=5, output_tokens=3), billed_units=cohere.UsageBilledUnits(input_tokens=4, output_tokens=2), ), ), completion_message( AssistantMessageResponse( content=[TextAssistantMessageResponseContentItem(text='final response')], role='assistant', ) ), ] mock_client = MockAsyncClientV2.create_mock(responses) m = CohereModel('command-r7b-12-2024', provider=CohereProvider(cohere_client=mock_client)) agent = Agent(m, system_prompt='this is the system prompt') @agent.tool_plain async def get_location(loc_name: str) -> str: if loc_name == 'London': return json.dumps({'lat': 51, 'lng': 0}) else: raise ModelRetry('Wrong location, please try again') result = await agent.run('Hello') assert result.data == 'final response' assert result.all_messages() == snapshot( [ ModelRequest( parts=[ SystemPromptPart(content='this is the system prompt', timestamp=IsNow(tz=timezone.utc)), UserPromptPart(content='Hello', timestamp=IsNow(tz=timezone.utc)), ] ), ModelResponse( parts=[ ToolCallPart( tool_name='get_location', args='{"loc_name": "San Fransisco"}', tool_call_id='1', ) ], model_name='command-r7b-12-2024', timestamp=IsNow(tz=timezone.utc), ), ModelRequest( parts=[ RetryPromptPart( content='Wrong location, please try again', tool_name='get_location', tool_call_id='1', timestamp=IsNow(tz=timezone.utc), ) ] ), ModelResponse( parts=[ ToolCallPart( tool_name='get_location', args='{"loc_name": "London"}', tool_call_id='2', ) ], model_name='command-r7b-12-2024', timestamp=IsNow(tz=timezone.utc), ), ModelRequest( parts=[ ToolReturnPart( tool_name='get_location', content='{"lat": 51, "lng": 0}', tool_call_id='2', timestamp=IsNow(tz=timezone.utc), ) ] ), ModelResponse( parts=[TextPart(content='final response')], model_name='command-r7b-12-2024', timestamp=IsNow(tz=timezone.utc), ), ] ) assert result.usage() == snapshot( Usage( requests=3, request_tokens=5, response_tokens=3, total_tokens=8, details={'input_tokens': 4, 'output_tokens': 2}, ) ) async def test_multimodal(allow_model_requests: None): c = completion_message(AssistantMessageResponse(content=[TextAssistantMessageResponseContentItem(text='world')])) mock_client = MockAsyncClientV2.create_mock(c) m = CohereModel('command-r7b-12-2024', provider=CohereProvider(cohere_client=mock_client)) agent = Agent(m) with pytest.raises(RuntimeError, match='Cohere does not yet support multi-modal inputs.'): await agent.run( [ 'hello', ImageUrl( url='https://t3.ftcdn.net/jpg/00/85/79/92/360_F_85799278_0BBGV9OAdQDTLnKwAPBCcg1J7QtiieJY.jpg' ), ] ) def test_model_status_error(allow_model_requests: None) -> None: mock_client = MockAsyncClientV2.create_mock( ApiError( status_code=500, body={'error': 'test error'}, ) ) m = CohereModel('command-r', provider=CohereProvider(cohere_client=mock_client)) agent = Agent(m) with pytest.raises(ModelHTTPError) as exc_info: agent.run_sync('hello') assert str(exc_info.value) == snapshot("status_code: 500, model_name: command-r, body: {'error': 'test error'}") @pytest.mark.vcr() async def test_request_simple_success_with_vcr(allow_model_requests: None, co_api_key: str): m = CohereModel('command-r7b-12-2024', provider=CohereProvider(api_key=co_api_key)) agent = Agent(m) result = await agent.run('hello') assert result.data == snapshot('Hello! How can I assist you today?')
2,992
12d11bb6596db25ba3dcaeb857c4eeccd5026878e60f7a7ebd783c844c83de16
33.269972
117
0.552814
4.157754
false
false
false
false
HKUDS/LightRAG
examples/get_all_edges_nx.py
1,253
0
MIT License
import networkx as nx G = nx.read_graphml("./dickensTestEmbedcall/graph_chunk_entity_relation.graphml") def get_all_edges_and_nodes(G): # Get all edges and their properties edges_with_properties = [] for u, v, data in G.edges(data=True): edges_with_properties.append( { "start": u, "end": v, "label": data.get( "label", "" ), # Assuming 'label' is used for edge type "properties": data, "start_node_properties": G.nodes[u], "end_node_properties": G.nodes[v], } ) return edges_with_properties # Example usage if __name__ == "__main__": # Assume G is your NetworkX graph loaded from Neo4j all_edges = get_all_edges_and_nodes(G) # Print all edges and node properties for edge in all_edges: print(f"Edge Label: {edge['label']}") print(f"Edge Properties: {edge['properties']}") print(f"Start Node: {edge['start']}") print(f"Start Node Properties: {edge['start_node_properties']}") print(f"End Node: {edge['end']}") print(f"End Node Properties: {edge['end_node_properties']}") print("---")
337
5e1df27c5f96f08f2ceec7e1dedd734bb25c5cd1f01b37011304b4b500b7314a
30.325
81
0.548284
3.718101
false
false
false
false
meta-llama/llama-stack
llama_stack/models/llama/llama3_1/prompts.py
12,244
0
MIT License
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # top-level folder for each specific model found within the models/ directory at # the top-level of this source tree. import textwrap from typing import List from llama_stack.models.llama.datatypes import ( BuiltinTool, RawMessage, StopReason, ToolCall, ToolPromptFormat, ) from llama_stack.models.llama.prompt_format import ( # llama3_1_e2e_tool_call_dialog, TextCompletionContent, UseCase, llama3_1_builtin_tool_call_dialog, llama3_1_custom_tool_call_dialog, ) def wolfram_alpha_response(): return textwrap.dedent( """ { "queryresult": { "success": true, "inputstring": "100th decimal of pi", "pods": [ { "title": "Input interpretation", "subpods": [ { "title": "", "plaintext": "100th digit | \u03c0" } ] }, { "title": "Nearby digits", "subpods": [ { "title": "", "plaintext": "...86208998628034825342117067982148086513282306647093..." } ] }, { "title": "Result", "primary": true, "subpods": [ { "title": "", "plaintext": "7" } ] } ] } } """ ) def usecases() -> List[UseCase | str]: return [ textwrap.dedent( """ # Llama 3.1 - Prompt Formats ## Tokens Here is a list of special tokens that are supported by Llama 3.1: - `<|begin_of_text|>`: Specifies the start of the prompt - `<|end_of_text|>`: Model will cease to generate more tokens. This token is generated only by the base models. - `<|finetune_right_pad_id|>`: This token is used for padding text sequences to the same length in a batch. - `<|start_header_id|>` and `<|end_header_id|>`: These tokens enclose the role for a particular message. The possible roles are: [system, user, assistant and tool] - `<|eom_id|>`: End of message. A message represents a possible stopping point for execution where the model can inform the executor that a tool call needs to be made. This is used for multi-step interactions between the model and any available tools. This token is emitted by the model when the Environment: ipython instruction is used in the system prompt, or if the model calls for a built-in tool. - `<|eot_id|>`: End of turn. Represents when the model has determined that it has finished interacting with the user message that initiated its response. This is used in two scenarios: - at the end of a direct interaction between the model and the user - at the end of multiple interactions between the model and any available tools This token signals to the executor that the model has finished generating a response. - `<|python_tag|>`: Is a special tag used in the model's response to signify a tool call. """ ), textwrap.dedent( """ There are 4 different roles that are supported by Llama 3.1 - `system`: Sets the context in which to interact with the AI model. It typically includes rules, guidelines, or necessary information that helps the model respond effectively. - `user`: Represents the human interacting with the model. It includes the inputs, commands, and questions to the model. - `tool`: A new role introduced in Llama 3.1. This role is used to mark messages with the output of a tool call when sent back to the model from the executor. (The actual token used by the model for this role is "ipython".) - `assistant`: Represents the response generated by the AI model based on the context provided in the `system`, `tool` and `user` prompts. """ ), UseCase( title="Llama 3.1 Base Model", description="Text completion for Llama 3.1 base model uses this format.", dialogs=[TextCompletionContent(content="Color of sky is blue but sometimes can also be")], notes="Note start special tag", ), "## Llama 3.1 Instruct Model", UseCase( title="User and assistant conversation", description="Here is a regular multi-turn user assistant conversation and how its formatted.", dialogs=[ [ RawMessage(role="system", content="You are a helpful assistant"), RawMessage( role="user", content="Answer who are you in the form of jeopardy?", ), ] ], notes="", ), "## Tool Calling Formats", textwrap.dedent( """ The three built-in tools (brave_search, wolfram_alpha, and code interpreter) can be turned on using the system prompt: - Brave Search: Tool call to perform web searches. - Wolfram Alpha: Tool call to perform complex mathematical calculations. - Code Interpreter: Enables the model to output python code. """ ), UseCase( title="Builtin Tool Calling", description=textwrap.dedent( """ Here is an example of a conversation using brave search """ ), dialogs=[llama3_1_builtin_tool_call_dialog()], notes=textwrap.dedent( """ - Just including Environment: ipython turns on code interpreter; therefore, you don't need to specify code interpretation on the Tools: line. The model can generate python code which is interpreted by the executor, with the result provided back to the model. - The message body of the assistant response starts with a special tag <|python_tag|> - As alluded to above, in such an environment, the model can generate <|eom_id|> instead of just the standard <|eot_id|> . The latter indicates the turn is finished, while the former indicates continued multi-step reasoning. That is, the model is expecting a continuation message with the output of the tool call. - The model tool call response is of the form `tool.call(query="...")` wher tool is `brave_search` or `wolfram_alpha` """ ), ), UseCase( title="Builtin Code Interpreter", description="Here is an actual example of model responding with code", dialogs=[ [ RawMessage(role="system", content="Environment: ipython"), RawMessage( role="user", content="Write code to check if number is prime, use that to see if the number 7 is prime", ), ], ], notes=textwrap.dedent( """ - Model starts with <|python_tag|> and continues writing python code that it needs to be executed - No explicit mention of code_interpreter in system prompt. `Environment: ipython` implicitly enables it. """ ), ), UseCase( title="Built-in tools full interaction", description="Here is a full interaction with the built-in tools including the tool response and the final assistant response.", dialogs=[ [ RawMessage( role="system", content="Environment: ipython\nTools: brave_search, wolfram_alpha\n", ), RawMessage(role="user", content="What is the 100th decimal of pi?"), RawMessage( role="assistant", content="", stop_reason=StopReason.end_of_message, tool_calls=[ ToolCall( call_id="tool_call_id", tool_name=BuiltinTool.wolfram_alpha, arguments={"query": "100th decimal of pi"}, ) ], ), RawMessage( role="tool", content=wolfram_alpha_response(), ), ], ], notes=textwrap.dedent( """ - Note the `<|python_tag|>` in the assistant response. - Role is `tool` for the wolfram alpha response that is passed back to the model. - Final message from assistant has <|eot_id|> tag. """ ), ), "## Zero shot tool calling", UseCase( title="JSON based tool calling", description=textwrap.dedent( """ Llama models can now output custom tool calls from a single message to allow easier tool calling. The following prompts provide an example of how custom tools can be called from the output of the model. It's important to note that the model itself does not execute the calls; it provides structured output to facilitate calling by an executor. """ ), dialogs=[llama3_1_custom_tool_call_dialog()], notes=textwrap.dedent( """ - JSON format for providing tools needs name, description and parameters - Model responds with `<|python_tag|>` and `<|eom_id|>` as `Environment: ipython` was in the system prompt - Instructions for tools added as a user message - Only single tool calls are supported as of now """ ), ), # FIXME: This is not working yet as expected # UseCase( # title="E2E tool call example", # description=textwrap.dedent( # """ # Here is an example showing the whole multi-step turn by taking custom tool outputs and passing back to the model. # """ # ), # dialogs=[ # llama3_1_e2e_tool_call_dialog( # tool_prompt_format=ToolPromptFormat.function_tag # ) # ], # notes="", # ), "## Example of a user defined tool calling", UseCase( title="`<function>` based tool calling", description=textwrap.dedent( """ Here is an example of how you could also write custom instructions for model to do zero shot tool calling. In this example, we define a custom tool calling format using the `<function>` tag. """ ), dialogs=[llama3_1_custom_tool_call_dialog(ToolPromptFormat.function_tag)], notes=textwrap.dedent( """ - In this case, model does NOT respond with `<|python_tag|>` and ends with `<|eot_id|>` - Instructions for tools added as a user message """ ), ), ]
2,524
7e69e6e476cd1ff344a20cf4195b03f5316a1ee747b7cca8277c7eef362a3c64
46.457364
413
0.527932
4.85103
false
false
false
false
crestalnetwork/intentkit
app/services/twitter/oauth2_callback.py
4,968
0
MIT License
"""Twitter OAuth2 callback handler.""" from datetime import datetime, timezone from typing import Optional from urllib.parse import parse_qs, urlencode, urlparse import tweepy from fastapi import APIRouter, HTTPException from starlette.responses import JSONResponse, RedirectResponse from app.config.config import config from app.services.twitter.oauth2 import oauth2_user_handler from models.agent import Agent, AgentData router = APIRouter(prefix="/callback/auth", tags=["Callback"]) def is_valid_url(url: str) -> bool: """Check if a URL is valid. Args: url: URL to validate Returns: bool: True if URL is valid, False otherwise """ try: result = urlparse(url) return all([result.scheme, result.netloc]) except (ValueError, AttributeError, TypeError): return False @router.get("/twitter") async def twitter_oauth_callback( state: str, code: Optional[str] = None, error: Optional[str] = None, ): """Handle Twitter OAuth2 callback. This endpoint is called by Twitter after the user authorizes the application. It exchanges the authorization code for access and refresh tokens, then stores them in the database. **Query Parameters:** * `state` - URL-encoded state containing agent_id and redirect_uri * `code` - Authorization code from Twitter * `error` - Error message from Twitter (optional) **Returns:** * JSONResponse or RedirectResponse depending on redirect_uri """ if not state: raise HTTPException(status_code=400, detail="Missing state parameter") try: # Parse state parameter state_params = parse_qs(state) agent_id = state_params.get("agent_id", [""])[0] redirect_uri = state_params.get("redirect_uri", [""])[0] if error: raise HTTPException(status_code=400, detail=error) if not code: raise HTTPException(status_code=400, detail="Missing code parameter") if not agent_id: raise HTTPException( status_code=400, detail="Missing agent_id in state parameter" ) agent = await Agent.get(agent_id) if not agent: raise HTTPException(status_code=404, detail=f"Agent {agent_id} not found") agent_data = await AgentData.get(agent_id) if not agent_data: agent_data = AgentData(id=agent_id) # Exchange code for tokens authorization_response = ( f"{config.twitter_oauth2_redirect_uri}?state={state}&code={code}" ) token = oauth2_user_handler.get_token(authorization_response) # Store tokens in database agent_data.twitter_access_token = token["access_token"] agent_data.twitter_refresh_token = token["refresh_token"] agent_data.twitter_access_token_expires_at = datetime.fromtimestamp( token["expires_at"], tz=timezone.utc ) # Get user info client = tweepy.Client(bearer_token=token["access_token"], return_type=dict) me = client.get_me(user_auth=False) username = None if me and "data" in me: agent_data.twitter_id = me.get("data").get("id") username = me.get("data").get("username") agent_data.twitter_username = username agent_data.twitter_name = me.get("data").get("name") # Commit changes await agent_data.save() # Handle response based on redirect_uri if redirect_uri and is_valid_url(redirect_uri): params = {"twitter_auth": "success", "username": username} redirect_url = f"{redirect_uri}{'&' if '?' in redirect_uri else '?'}{urlencode(params)}" return RedirectResponse(url=redirect_url) else: return JSONResponse( content={ "message": "Authentication successful, you can close this window", "username": username, }, status_code=200, ) except HTTPException as http_exc: # Handle error response if redirect_uri and is_valid_url(redirect_uri): params = {"twitter_auth": "failed", "error": str(http_exc.detail)} redirect_url = f"{redirect_uri}{'&' if '?' in redirect_uri else '?'}{urlencode(params)}" return RedirectResponse(url=redirect_url) # Re-raise HTTP exceptions to preserve their status codes raise http_exc except Exception as e: # Handle error response for unexpected errors if redirect_uri and is_valid_url(redirect_uri): params = {"twitter_auth": "failed", "error": str(e)} redirect_url = f"{redirect_uri}{'&' if '?' in redirect_uri else '?'}{urlencode(params)}" return RedirectResponse(url=redirect_url) # For unexpected errors, use 500 status code raise HTTPException(status_code=500, detail=str(e))
1,184
f3097720036c5038918e113b07983f57e6afac2e25e38a2e6457797fbae03ac6
35.262774
100
0.625403
4.195946
false
false
false
false
virattt/ai-hedge-fund
src/data/models.py
3,736
0
MIT License
from pydantic import BaseModel class Price(BaseModel): open: float close: float high: float low: float volume: int time: str class PriceResponse(BaseModel): ticker: str prices: list[Price] class FinancialMetrics(BaseModel): ticker: str report_period: str period: str currency: str market_cap: float | None enterprise_value: float | None price_to_earnings_ratio: float | None price_to_book_ratio: float | None price_to_sales_ratio: float | None enterprise_value_to_ebitda_ratio: float | None enterprise_value_to_revenue_ratio: float | None free_cash_flow_yield: float | None peg_ratio: float | None gross_margin: float | None operating_margin: float | None net_margin: float | None return_on_equity: float | None return_on_assets: float | None return_on_invested_capital: float | None asset_turnover: float | None inventory_turnover: float | None receivables_turnover: float | None days_sales_outstanding: float | None operating_cycle: float | None working_capital_turnover: float | None current_ratio: float | None quick_ratio: float | None cash_ratio: float | None operating_cash_flow_ratio: float | None debt_to_equity: float | None debt_to_assets: float | None interest_coverage: float | None revenue_growth: float | None earnings_growth: float | None book_value_growth: float | None earnings_per_share_growth: float | None free_cash_flow_growth: float | None operating_income_growth: float | None ebitda_growth: float | None payout_ratio: float | None earnings_per_share: float | None book_value_per_share: float | None free_cash_flow_per_share: float | None class FinancialMetricsResponse(BaseModel): financial_metrics: list[FinancialMetrics] class LineItem(BaseModel): ticker: str report_period: str period: str currency: str # Allow additional fields dynamically model_config = {"extra": "allow"} class LineItemResponse(BaseModel): search_results: list[LineItem] class InsiderTrade(BaseModel): ticker: str issuer: str | None name: str | None title: str | None is_board_director: bool | None transaction_date: str | None transaction_shares: float | None transaction_price_per_share: float | None transaction_value: float | None shares_owned_before_transaction: float | None shares_owned_after_transaction: float | None security_title: str | None filing_date: str class InsiderTradeResponse(BaseModel): insider_trades: list[InsiderTrade] class CompanyNews(BaseModel): ticker: str title: str author: str source: str date: str url: str sentiment: str | None = None class CompanyNewsResponse(BaseModel): news: list[CompanyNews] class Position(BaseModel): cash: float = 0.0 shares: int = 0 ticker: str class Portfolio(BaseModel): positions: dict[str, Position] # ticker -> Position mapping total_cash: float = 0.0 class AnalystSignal(BaseModel): signal: str | None = None confidence: float | None = None reasoning: dict | str | None = None max_position_size: float | None = None # For risk management signals class TickerAnalysis(BaseModel): ticker: str analyst_signals: dict[str, AnalystSignal] # agent_name -> signal mapping class AgentStateData(BaseModel): tickers: list[str] portfolio: Portfolio start_date: str end_date: str ticker_analyses: dict[str, TickerAnalysis] # ticker -> analysis mapping class AgentStateMetadata(BaseModel): show_reasoning: bool = False model_config = {"extra": "allow"}
1,023
d0955b70c6fd1fe552c85c4b576a1d4c6e26e16ccf67d3288ec98fcf52439cf0
24.073826
77
0.680675
3.652004
false
false
false
false
meta-llama/llama-stack
llama_stack/apis/common/deployment_types.py
753
0
MIT License
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from enum import Enum from typing import Any, Dict, Optional from pydantic import BaseModel from llama_stack.apis.common.content_types import URL from llama_stack.schema_utils import json_schema_type @json_schema_type class RestAPIMethod(Enum): GET = "GET" POST = "POST" PUT = "PUT" DELETE = "DELETE" @json_schema_type class RestAPIExecutionConfig(BaseModel): url: URL method: RestAPIMethod params: Optional[Dict[str, Any]] = None headers: Optional[Dict[str, Any]] = None body: Optional[Dict[str, Any]] = None
216
f074cd9f2c3f20aeda5fd5ceba097b16cdd8e67741a7e2a350279a6d2bb7792a
24.1
79
0.722444
3.486111
false
false
false
false
meta-llama/llama-stack
llama_stack/models/llama/llama4/ffn.py
2,196
0
MIT License
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # top-level folder for each specific model found within the models/ directory at # the top-level of this source tree. from typing import Any, Dict, List from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region from torch import nn from torch.nn import functional as F class FeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, do_reduce: bool = True, ): super().__init__() self.do_reduce = do_reduce self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x) self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x) self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x) self._register_load_state_dict_pre_hook(self.load_hook) def load_hook( self, state_dict: Dict[str, Any], prefix: str, local_metadata: Dict[str, Any], strict: bool, missing_keys: List[str], unexpected_keys: List[str], error_msgs: List[str], ) -> None: if prefix + "mlp.fc1_weight" in state_dict: w1, w3 = state_dict.pop(prefix + "mlp.fc1_weight").chunk(2, dim=0) state_dict[prefix + "w1.weight"] = w1 state_dict[prefix + "w3.weight"] = w3 state_dict[prefix + "w2.weight"] = state_dict.pop(prefix + "mlp.fc2_weight") def forward(self, x): x = F.silu(F.linear(x, self.w1.weight)) * F.linear(x, self.w3.weight) out = F.linear(x, self.w2.weight) if self.do_reduce: return reduce_from_model_parallel_region(out) return out
642
9149f23fe08c0db08c6b5b29f4926d13cab37ba4c8f79a2942186afe8f43e39d
36.862069
113
0.651639
3.420561
false
false
false
false
MadcowD/ell
examples/future/limbo.py
1,455
0
MIT License
from typing import List import ell from ell.types.message import Message ell.init(verbose=True, store='./logdir', autocommit=True) @ell.tool() def order_t_shirt(size : str, color : str, address : str): # ....\ pass @ell.tool() def get_order_arrival_date(order_id: str): """Gets the arrival date of a t-shirt order""" # ... @ell.complex(model="gpt-4o", temperature=0.1, tools=[order_t_shirt, get_order_arrival_date]) def limbo_chat_bot(message_history: List[Message]) -> List[Message]: return [ ell.system("You are a chatbot mimicing the popstar limbo. She is an alien cat girl from outerspace that writes in all lwoer case kawaii! You interact with all her fans and can help them do various things and are always game to hangout and just chat.."), ] + message_history if __name__ == "__main__": message_history = [] while True: user_message = input("You: ") message_history.append(ell.user(user_message)) response = limbo_chat_bot(message_history) print(response) # print("Limbo: ", response[-1].content) message_history.append(response) if response.tool_calls: tool_results = response.call_tools_and_collect_as_message() print("Tool results: ", tool_results) message_history.append(tool_results) response = limbo_chat_bot(message_history) message_history.append(response)
421
bc5531025ccf18b168f4a8ba117b0dfe3f0dad44e073b04b60137883626cf182
28.693878
262
0.646048
3.456057
false
false
false
false
crestalnetwork/intentkit
app/admin/api.py
29,057
0
MIT License
import asyncio import importlib import json import logging from typing import TypedDict from aiogram import Bot from aiogram.exceptions import TelegramConflictError, TelegramUnauthorizedError from aiogram.utils.token import TokenValidationError from cdp import Wallet from cdp.cdp import Cdp from fastapi import ( APIRouter, Body, Depends, File, HTTPException, Path, Response, UploadFile, ) from fastapi.responses import PlainTextResponse from pydantic import BaseModel, Field, ValidationError from sqlalchemy import select from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.ext.asyncio import AsyncSession from sqlalchemy.orm.exc import NoResultFound from yaml import safe_load from app.config.config import config from app.core.engine import clean_agent_memory from clients.twitter import unlink_twitter from models.agent import ( Agent, AgentCreate, AgentData, AgentDataTable, AgentResponse, AgentTable, AgentUpdate, ) from models.db import get_db from skills import __all__ as skill_categories from utils.middleware import create_jwt_middleware from utils.slack_alert import send_slack_message admin_router_readonly = APIRouter() admin_router = APIRouter() # Create JWT middleware with admin config verify_jwt = create_jwt_middleware(config.admin_auth_enabled, config.admin_jwt_secret) logger = logging.getLogger(__name__) async def _process_agent( agent: AgentCreate, subject: str | None = None, slack_message: str | None = None ) -> tuple[Agent, AgentData]: """Shared function to process agent creation or update. Args: agent: Agent configuration to process subject: Optional subject from JWT token slack_message: Optional custom message for Slack notification Returns: tuple[Agent, AgentData]: Tuple of (processed agent, agent data) """ logger.info(f"Processing agent: {agent}") if subject: agent.owner = subject # Get the latest agent from create_or_update latest_agent, is_new = await agent.create_or_update() # Process common post-creation/update steps agent_data = await _process_agent_post_actions(latest_agent, is_new, slack_message) return latest_agent, agent_data async def _process_agent_post_actions( agent: Agent, is_new: bool = True, slack_message: str | None = None ) -> AgentData: """Process common actions after agent creation or update. Args: agent: The agent that was created or updated is_new: Whether the agent is newly created slack_message: Optional custom message for Slack notification Returns: AgentData: The processed agent data """ has_wallet = False agent_data = None if not is_new: # Get agent data agent_data = await AgentData.get(agent.id) if agent_data and agent_data.cdp_wallet_data: has_wallet = True wallet_data = json.loads(agent_data.cdp_wallet_data) # Check if twitter need unlink, it will change agent data, so must update agent data if agent.twitter_entrypoint_enabled: pass elif ( agent.skills and agent.skills.get("twitter") and agent.skills["twitter"].get("enabled") ): pass else: if agent_data and agent_data.twitter_username: agent_data = await unlink_twitter(agent.id) # Run clean_agent_memory in background asyncio.create_task(clean_agent_memory(agent.id, clean_agent=True)) if not has_wallet: # create the wallet Cdp.configure( api_key_name=config.cdp_api_key_name, private_key=config.cdp_api_key_private_key.replace("\\n", "\n"), ) network_id = agent.network_id or agent.cdp_network_id wallet = Wallet.create(network_id=network_id) wallet_data = wallet.export_data().to_dict() wallet_data["default_address_id"] = wallet.default_address.address_id if not agent_data: agent_data = AgentData(id=agent.id, cdp_wallet_data=json.dumps(wallet_data)) else: agent_data.cdp_wallet_data = json.dumps(wallet_data) await agent_data.save() logger.info( "Wallet created for agent %s: %s", agent.id, wallet_data["default_address_id"], ) # Send Slack notification slack_message = slack_message or ("Agent Created" if is_new else "Agent Updated") try: _send_agent_notification(agent, agent_data, wallet_data, slack_message) except Exception as e: logger.error("Failed to send Slack notification: %s", e) return agent_data async def _process_telegram_config( agent: AgentUpdate, agent_data: AgentData ) -> AgentData: """Process telegram configuration for an agent. Args: agent: The agent with telegram configuration agent_data: The agent data to update Returns: AgentData: The updated agent data """ changes = agent.model_dump(exclude_unset=True) if not changes.get("telegram_entrypoint_enabled"): return agent_data if not changes.get("telegram_config") or not changes.get("telegram_config").get( "token" ): return agent_data tg_bot_token = changes.get("telegram_config").get("token") try: bot = Bot(token=tg_bot_token) bot_info = await bot.get_me() agent_data.telegram_id = str(bot_info.id) agent_data.telegram_username = bot_info.username agent_data.telegram_name = bot_info.first_name if bot_info.last_name: agent_data.telegram_name = f"{bot_info.first_name} {bot_info.last_name}" await agent_data.save() try: await bot.close() except Exception: pass return agent_data except ( TelegramUnauthorizedError, TelegramConflictError, TokenValidationError, ) as req_err: raise HTTPException( status_code=400, detail=f"Unauthorized err getting telegram bot username with token {tg_bot_token}: {req_err}", ) except Exception as e: raise Exception( f"Error getting telegram bot username with token {tg_bot_token}: {e}" ) async def _validate_telegram_config(token: str) -> None: """Validate telegram configuration for an agent. Args: token: The telegram bot token """ try: bot = Bot(token=token) await bot.get_me() await bot.close() except ( TelegramUnauthorizedError, TelegramConflictError, TokenValidationError, ) as req_err: raise HTTPException( status_code=400, detail=f"Unauthorized err getting telegram bot username with token {token}: {req_err}", ) except Exception as e: raise Exception(f"Error getting telegram bot username with token {token}: {e}") def _send_agent_notification( agent: Agent, agent_data: AgentData, wallet_data: dict, message: str ) -> None: """Send a notification about agent creation or update. Args: agent: The agent that was created or updated agent_data: The agent data to update wallet_data: The agent's wallet data message: The notification message """ # Format autonomous configurations - show only enabled ones with their id, name, and schedule autonomous_formatted = "" if agent.autonomous: enabled_autonomous = [auto for auto in agent.autonomous if auto.enabled] if enabled_autonomous: autonomous_items = [] for auto in enabled_autonomous: schedule = ( f"cron: {auto.cron}" if auto.cron else f"minutes: {auto.minutes}" ) autonomous_items.append( f"• {auto.id}: {auto.name or 'Unnamed'} ({schedule})" ) autonomous_formatted = "\n".join(autonomous_items) else: autonomous_formatted = "No enabled autonomous configurations" else: autonomous_formatted = "None" # Format skills - find categories with enabled: true and list skills in public/private states skills_formatted = "" if agent.skills: enabled_categories = [] for category, skill_config in agent.skills.items(): if skill_config and skill_config.get("enabled") is True: skills_list = [] states = skill_config.get("states", {}) public_skills = [ skill for skill, state in states.items() if state == "public" ] private_skills = [ skill for skill, state in states.items() if state == "private" ] if public_skills: skills_list.append(f" Public: {', '.join(public_skills)}") if private_skills: skills_list.append(f" Private: {', '.join(private_skills)}") if skills_list: enabled_categories.append( f"• {category}:\n{chr(10).join(skills_list)}" ) if enabled_categories: skills_formatted = "\n".join(enabled_categories) else: skills_formatted = "No enabled skills" else: skills_formatted = "None" send_slack_message( message, attachments=[ { "color": "good", "fields": [ {"title": "ENV", "short": True, "value": config.env}, {"title": "Number", "short": True, "value": agent.number}, {"title": "ID", "short": True, "value": agent.id}, {"title": "Name", "short": True, "value": agent.name}, {"title": "Model", "short": True, "value": agent.model}, { "title": "GOAT Enabled", "short": True, "value": str(agent.goat_enabled), }, { "title": "Twitter Username", "short": True, "value": agent_data.twitter_username, }, { "title": "Telegram Enabled", "short": True, "value": str(agent.telegram_entrypoint_enabled), }, { "title": "Telegram Username", "short": True, "value": agent_data.telegram_username, }, { "title": "Wallet Provider", "short": True, "value": agent.wallet_provider, }, { "title": "Network", "short": True, "value": agent.network_id or agent.cdp_network_id or "Default", }, { "title": "Wallet Address", "value": wallet_data.get("default_address_id"), }, { "title": "Autonomous", "value": autonomous_formatted, }, { "title": "Skills", "value": skills_formatted, }, ], } ], ) @admin_router.post( "/agents", tags=["Agent"], status_code=201, operation_id="post_agent_deprecated", deprecated=True, ) async def create_or_update_agent( agent: AgentCreate = Body(AgentCreate, description="Agent configuration"), subject: str = Depends(verify_jwt), ) -> Response: """Create or update an agent. THIS ENDPOINT IS DEPRECATED. Please use POST /agents/v2 for creating new agents. This endpoint: 1. Validates agent ID format 2. Creates or updates agent configuration 3. Reinitializes agent if already in cache 4. Masks sensitive data in response **Request Body:** * `agent` - Agent configuration **Returns:** * `AgentResponse` - Updated agent configuration with additional processed data **Raises:** * `HTTPException`: - 400: Invalid agent ID format - 500: Database error """ latest_agent, agent_data = await _process_agent(agent, subject) agent_response = AgentResponse.from_agent(latest_agent, agent_data) # Return Response with ETag header return Response( content=agent_response.model_dump_json(), media_type="application/json", headers={"ETag": agent_response.etag()}, ) @admin_router_readonly.post( "/agent/validate", tags=["Agent"], status_code=204, operation_id="validate_agent", ) async def validate_agent( input: AgentUpdate = Body(AgentUpdate, description="Agent configuration"), ) -> Response: """Validate agent configuration. **Request Body:** * `agent` - Agent configuration **Returns:** * `204 No Content` - Agent configuration is valid **Raises:** * `HTTPException`: - 400: Invalid agent configuration - 500: Server error """ input.validate_autonomous_schedule() changes = input.model_dump(exclude_unset=True) if ( changes.get("telegram_entrypoint_enabled") and changes.get("telegram_config") and changes.get("telegram_config").get("token") ): await _validate_telegram_config(changes.get("telegram_config").get("token")) return Response(status_code=204) @admin_router.post( "/agents/v2", tags=["Agent"], status_code=201, operation_id="create_agent", response_model=AgentResponse, ) async def create_agent( input: AgentUpdate = Body(AgentUpdate, description="Agent configuration"), subject: str = Depends(verify_jwt), ) -> Response: """Create a new agent. This endpoint: 1. Validates agent ID format 2. Creates a new agent configuration (returns 400 error if agent ID already exists) 3. Masks sensitive data in response **Request Body:** * `agent` - Agent configuration **Returns:** * `AgentResponse` - Created agent configuration with additional processed data **Raises:** * `HTTPException`: - 400: Invalid agent ID format or agent ID already exists - 500: Database error """ agent = AgentCreate.model_validate(input) if subject: agent.owner = subject # Create new agent await agent.check_upstream_id() latest_agent = await agent.create() # Process common post-creation actions agent_data = await _process_agent_post_actions(latest_agent, True, "Agent Created") agent_data = await _process_telegram_config(input, agent_data) agent_response = AgentResponse.from_agent(latest_agent, agent_data) # Return Response with ETag header return Response( content=agent_response.model_dump_json(), media_type="application/json", headers={"ETag": agent_response.etag()}, ) @admin_router.patch( "/agents/{agent_id}", tags=["Agent"], status_code=200, operation_id="update_agent" ) async def update_agent( agent_id: str = Path(..., description="ID of the agent to update"), agent: AgentUpdate = Body(AgentUpdate, description="Agent update configuration"), subject: str = Depends(verify_jwt), ) -> Response: """Update an existing agent. This endpoint: 1. Validates agent ID format 2. Updates the agent configuration if it exists 3. Reinitializes agent if already in cache 4. Masks sensitive data in response **Path Parameters:** * `agent_id` - ID of the agent to update **Request Body:** * `agent` - Agent update configuration **Returns:** * `AgentResponse` - Updated agent configuration with additional processed data **Raises:** * `HTTPException`: - 400: Invalid agent ID format - 404: Agent not found - 403: Permission denied (if owner mismatch) - 500: Database error """ if subject: agent.owner = subject # Update agent latest_agent = await agent.update(agent_id) # Process common post-update actions agent_data = await _process_agent_post_actions(latest_agent, False, "Agent Updated") agent_data = await _process_telegram_config(agent, agent_data) agent_response = AgentResponse.from_agent(latest_agent, agent_data) # Return Response with ETag header return Response( content=agent_response.model_dump_json(), media_type="application/json", headers={"ETag": agent_response.etag()}, ) @admin_router_readonly.get( "/agents", tags=["Agent"], dependencies=[Depends(verify_jwt)], operation_id="get_agents", ) async def get_agents(db: AsyncSession = Depends(get_db)) -> list[AgentResponse]: """Get all agents with their quota information. **Returns:** * `list[AgentResponse]` - List of agents with their quota information and additional processed data """ # Query all agents first agents = (await db.scalars(select(AgentTable))).all() # Batch get agent data agent_ids = [agent.id for agent in agents] agent_data_list = await db.scalars( select(AgentDataTable).where(AgentDataTable.id.in_(agent_ids)) ) agent_data_map = {data.id: data for data in agent_data_list} # Convert to AgentResponse objects return [ AgentResponse.from_agent( Agent.model_validate(agent), AgentData.model_validate(agent_data_map.get(agent.id)) if agent.id in agent_data_map else None, ) for agent in agents ] @admin_router_readonly.get( "/agents/{agent_id}", tags=["Agent"], dependencies=[Depends(verify_jwt)], operation_id="get_agent", ) async def get_agent( agent_id: str = Path(..., description="ID of the agent to retrieve"), ) -> Response: """Get a single agent by ID. **Path Parameters:** * `agent_id` - ID of the agent to retrieve **Returns:** * `AgentResponse` - Agent configuration with additional processed data **Raises:** * `HTTPException`: - 404: Agent not found """ agent = await Agent.get(agent_id) if not agent: raise HTTPException(status_code=404, detail="Agent not found") # Get agent data agent_data = await AgentData.get(agent_id) agent_response = AgentResponse.from_agent(agent, agent_data) # Return Response with ETag header return Response( content=agent_response.model_dump_json(), media_type="application/json", headers={"ETag": agent_response.etag()}, ) class MemCleanRequest(BaseModel): """Request model for agent memory cleanup endpoint. Attributes: agent_id (str): Agent ID to clean chat_id (str): Chat ID to clean clean_skills_memory (bool): To clean the skills data. clean_agent_memory (bool): To clean the agent memory. """ agent_id: str clean_agent_memory: bool clean_skills_memory: bool chat_id: str | None = Field("") @admin_router.post( "/agent/clean-memory", tags=["Agent"], status_code=204, dependencies=[Depends(verify_jwt)], operation_id="clean_agent_memory", ) @admin_router.post( "/agents/clean-memory", tags=["Agent"], status_code=201, dependencies=[Depends(verify_jwt)], operation_id="clean_agent_memory_deprecated", deprecated=True, ) async def clean_memory( request: MemCleanRequest = Body( MemCleanRequest, description="Agent memory cleanup request" ), ): """Clear an agent memory. **Request Body:** * `request` - The execution request containing agent ID, message, and thread ID **Returns:** * `str` - Formatted response lines from agent memory cleanup **Raises:** * `HTTPException`: - 400: If input parameters are invalid (empty agent_id, thread_id, or message text) - 404: If agent not found - 500: For other server-side errors """ # Validate input parameters if not request.agent_id or not request.agent_id.strip(): raise HTTPException(status_code=400, detail="Agent ID cannot be empty") try: agent = await Agent.get(request.agent_id) if not agent: raise HTTPException( status_code=404, detail=f"Agent with id {request.agent_id} not found", ) await clean_agent_memory( request.agent_id, request.chat_id, clean_agent=request.clean_agent_memory, clean_skill=request.clean_skills_memory, ) except NoResultFound: raise HTTPException( status_code=404, detail=f"Agent {request.agent_id} not found" ) except SQLAlchemyError as e: raise HTTPException(status_code=500, detail=f"Database error: {str(e)}") except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) except Exception as e: raise HTTPException(status_code=500, detail=f"Server error: {str(e)}") @admin_router_readonly.get( "/agents/{agent_id}/export", tags=["Agent"], operation_id="export_agent", dependencies=[Depends(verify_jwt)], ) async def export_agent( agent_id: str = Path(..., description="ID of the agent to export"), ) -> str: """Export agent configuration as YAML. **Path Parameters:** * `agent_id` - ID of the agent to export **Returns:** * `str` - YAML configuration of the agent **Raises:** * `HTTPException`: - 404: Agent not found """ agent = await Agent.get(agent_id) if not agent: raise HTTPException(status_code=404, detail="Agent not found") # Ensure agent.skills is initialized if agent.skills is None: agent.skills = {} # Process all skill categories for category in skill_categories: try: # Dynamically import the skill module skill_module = importlib.import_module(f"skills.{category}") # Check if the module has a Config class and get_skills function if hasattr(skill_module, "Config") and hasattr(skill_module, "get_skills"): # Get or create the config for this category category_config = agent.skills.get(category, {}) # Ensure 'enabled' field exists (required by SkillConfig) if "enabled" not in category_config: category_config["enabled"] = False # Ensure states dict exists if "states" not in category_config: category_config["states"] = {} # Get all available skill states from the module available_skills = [] if hasattr(skill_module, "SkillStates") and hasattr( skill_module.SkillStates, "__annotations__" ): available_skills = list( skill_module.SkillStates.__annotations__.keys() ) # Add missing skills with disabled state for skill_name in available_skills: if skill_name not in category_config["states"]: category_config["states"][skill_name] = "disabled" # Get all required fields from Config class and its base classes config_class = skill_module.Config # Get all base classes of Config all_bases = [config_class] for base in config_class.__mro__[1:]: if base is TypedDict or base is dict or base is object: continue all_bases.append(base) # Collect all required fields from Config and its base classes for base in all_bases: if hasattr(base, "__annotations__"): for field_name, field_type in base.__annotations__.items(): # Skip fields already set or marked as NotRequired if field_name in category_config or "NotRequired" in str( field_type ): continue # Add default value based on type if field_name != "states": # states already handled above if "str" in str(field_type): category_config[field_name] = "" elif "bool" in str(field_type): category_config[field_name] = False elif "int" in str(field_type): category_config[field_name] = 0 elif "float" in str(field_type): category_config[field_name] = 0.0 elif "list" in str(field_type) or "List" in str( field_type ): category_config[field_name] = [] elif "dict" in str(field_type) or "Dict" in str( field_type ): category_config[field_name] = {} # Update the agent's skills config agent.skills[category] = category_config except (ImportError, AttributeError): # Skip if module import fails or doesn't have required components pass yaml_content = agent.to_yaml() return Response( content=yaml_content, media_type="application/x-yaml", headers={"Content-Disposition": f'attachment; filename="{agent_id}.yaml"'}, ) @admin_router.put( "/agents/{agent_id}/import", tags=["Agent"], operation_id="import_agent", response_class=PlainTextResponse, ) async def import_agent( agent_id: str = Path(...), file: UploadFile = File( ..., description="YAML file containing agent configuration" ), subject: str = Depends(verify_jwt), ) -> str: """Import agent configuration from YAML file. Only updates existing agents, will not create new ones. **Path Parameters:** * `agent_id` - ID of the agent to update **Request Body:** * `file` - YAML file containing agent configuration **Returns:** * `str` - Success message **Raises:** * `HTTPException`: - 400: Invalid YAML or agent configuration - 404: Agent not found - 500: Server error """ # First check if agent exists existing_agent = await Agent.get(agent_id) if not existing_agent: raise HTTPException(status_code=404, detail="Agent not found") # Read and parse YAML content = await file.read() try: yaml_data = safe_load(content) except Exception as e: raise HTTPException(status_code=400, detail=f"Invalid YAML format: {e}") # Create Agent instance from YAML try: agent = AgentUpdate.model_validate(yaml_data) except ValidationError as e: raise HTTPException(status_code=400, detail=f"Invalid agent configuration: {e}") # Get the latest agent from create_or_update latest_agent = await agent.update(agent_id) # Process common post-creation/update steps agent_data = await _process_agent_post_actions( latest_agent, False, "Agent Updated via YAML Import" ) await _process_telegram_config(agent, agent_data) return "Agent import successful" @admin_router.put( "/agents/{agent_id}/twitter/unlink", tags=["Agent"], operation_id="unlink_twitter", dependencies=[Depends(verify_jwt)], response_class=Response, ) async def unlink_twitter_endpoint( agent_id: str = Path(..., description="ID of the agent to unlink from Twitter"), ) -> Response: """Unlink Twitter from an agent. **Path Parameters:** * `agent_id` - ID of the agent to unlink from Twitter **Raises:** * `HTTPException`: - 404: Agent not found """ # Check if agent exists agent = await Agent.get(agent_id) if not agent: raise HTTPException(status_code=404, detail="Agent not found") # Call the unlink_twitter function from clients.twitter agent_data = await unlink_twitter(agent_id) agent_response = AgentResponse.from_agent(agent, agent_data) return Response( content=agent_response.model_dump_json(), media_type="application/json", headers={"ETag": agent_response.etag()}, )
6,813
b7c0c7b4f2116e0390c1f2f1d072ec17465497bfec0a45bc2869078d91f3a458
31.86991
106
0.588808
4.264935
false
true
false
false
fudan-generative-vision/hallo2
basicsr/data/__init__.py
4,254
0
MIT License
import importlib import numpy as np import random import torch import torch.utils.data from copy import deepcopy from functools import partial from os import path as osp from basicsr.data.prefetch_dataloader import PrefetchDataLoader from basicsr.utils import get_root_logger, scandir from basicsr.utils.dist_util import get_dist_info from basicsr.utils.registry import DATASET_REGISTRY __all__ = ['build_dataset', 'build_dataloader'] # automatically scan and import dataset modules for registry # scan all the files under the data folder with '_dataset' in file names data_folder = osp.dirname(osp.abspath(__file__)) dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')] # import all the dataset modules _dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames] def build_dataset(dataset_opt): """Build dataset from options. Args: dataset_opt (dict): Configuration for dataset. It must constain: name (str): Dataset name. type (str): Dataset type. """ dataset_opt = deepcopy(dataset_opt) dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt) logger = get_root_logger() logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} ' 'is built.') return dataset def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None): """Build dataloader. Args: dataset (torch.utils.data.Dataset): Dataset. dataset_opt (dict): Dataset options. It contains the following keys: phase (str): 'train' or 'val'. num_worker_per_gpu (int): Number of workers for each GPU. batch_size_per_gpu (int): Training batch size for each GPU. num_gpu (int): Number of GPUs. Used only in the train phase. Default: 1. dist (bool): Whether in distributed training. Used only in the train phase. Default: False. sampler (torch.utils.data.sampler): Data sampler. Default: None. seed (int | None): Seed. Default: None """ phase = dataset_opt['phase'] rank, _ = get_dist_info() if phase == 'train': if dist: # distributed training batch_size = dataset_opt['batch_size_per_gpu'] num_workers = dataset_opt['num_worker_per_gpu'] else: # non-distributed training multiplier = 1 if num_gpu == 0 else num_gpu batch_size = dataset_opt['batch_size_per_gpu'] * multiplier num_workers = dataset_opt['num_worker_per_gpu'] * multiplier dataloader_args = dict( dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, sampler=sampler, drop_last=True) if sampler is None: dataloader_args['shuffle'] = True dataloader_args['worker_init_fn'] = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None elif phase in ['val', 'test']: # validation dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) else: raise ValueError(f'Wrong dataset phase: {phase}. ' "Supported ones are 'train', 'val' and 'test'.") dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False) prefetch_mode = dataset_opt.get('prefetch_mode') if prefetch_mode == 'cpu': # CPUPrefetcher num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1) logger = get_root_logger() logger.info(f'Use {prefetch_mode} prefetch dataloader: ' f'num_prefetch_queue = {num_prefetch_queue}') return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args) else: # prefetch_mode=None: Normal dataloader # prefetch_mode='cuda': dataloader for CUDAPrefetcher return torch.utils.data.DataLoader(**dataloader_args) def worker_init_fn(worker_id, num_workers, rank, seed): # Set the worker seed to num_workers * rank + worker_id + seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)
1,161
3214fde7389be3f63e073e38f206d7448efe6d9b49bab3fd55f2eb1dac16216a
41.54
113
0.657029
3.664083
false
false
false
false
meta-llama/llama-stack
llama_stack/providers/remote/inference/nvidia/openai_utils.py
7,685
0
MIT License
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import warnings from typing import Any, AsyncGenerator, Dict, List, Optional from openai import AsyncStream from openai.types.chat.chat_completion import ( Choice as OpenAIChoice, ) from openai.types.completion import Completion as OpenAICompletion from openai.types.completion_choice import Logprobs as OpenAICompletionLogprobs from llama_stack.apis.inference import ( ChatCompletionRequest, CompletionRequest, CompletionResponse, CompletionResponseStreamChunk, GreedySamplingStrategy, JsonSchemaResponseFormat, TokenLogProbs, TopKSamplingStrategy, TopPSamplingStrategy, ) from llama_stack.providers.utils.inference.openai_compat import ( _convert_openai_finish_reason, convert_message_to_openai_dict_new, convert_tooldef_to_openai_tool, ) async def convert_chat_completion_request( request: ChatCompletionRequest, n: int = 1, ) -> dict: """ Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary. """ # model -> model # messages -> messages # sampling_params TODO(mattf): review strategy # strategy=greedy -> nvext.top_k = -1, temperature = temperature # strategy=top_p -> nvext.top_k = -1, top_p = top_p # strategy=top_k -> nvext.top_k = top_k # temperature -> temperature # top_p -> top_p # top_k -> nvext.top_k # max_tokens -> max_tokens # repetition_penalty -> nvext.repetition_penalty # response_format -> GrammarResponseFormat TODO(mf) # response_format -> JsonSchemaResponseFormat: response_format = "json_object" & nvext["guided_json"] = json_schema # tools -> tools # tool_choice ("auto", "required") -> tool_choice # tool_prompt_format -> TBD # stream -> stream # logprobs -> logprobs if request.response_format and not isinstance(request.response_format, JsonSchemaResponseFormat): raise ValueError( f"Unsupported response format: {request.response_format}. Only JsonSchemaResponseFormat is supported." ) nvext = {} payload: Dict[str, Any] = dict( model=request.model, messages=[await convert_message_to_openai_dict_new(message) for message in request.messages], stream=request.stream, n=n, extra_body=dict(nvext=nvext), extra_headers={ b"User-Agent": b"llama-stack: nvidia-inference-adapter", }, ) if request.response_format: # server bug - setting guided_json changes the behavior of response_format resulting in an error # payload.update(response_format="json_object") nvext.update(guided_json=request.response_format.json_schema) if request.tools: payload.update(tools=[convert_tooldef_to_openai_tool(tool) for tool in request.tools]) if request.tool_config.tool_choice: payload.update( tool_choice=request.tool_config.tool_choice.value ) # we cannot include tool_choice w/o tools, server will complain if request.logprobs: payload.update(logprobs=True) payload.update(top_logprobs=request.logprobs.top_k) if request.sampling_params: nvext.update(repetition_penalty=request.sampling_params.repetition_penalty) if request.sampling_params.max_tokens: payload.update(max_tokens=request.sampling_params.max_tokens) strategy = request.sampling_params.strategy if isinstance(strategy, TopPSamplingStrategy): nvext.update(top_k=-1) payload.update(top_p=strategy.top_p) payload.update(temperature=strategy.temperature) elif isinstance(strategy, TopKSamplingStrategy): if strategy.top_k != -1 and strategy.top_k < 1: warnings.warn("top_k must be -1 or >= 1", stacklevel=2) nvext.update(top_k=strategy.top_k) elif isinstance(strategy, GreedySamplingStrategy): nvext.update(top_k=-1) else: raise ValueError(f"Unsupported sampling strategy: {strategy}") return payload def convert_completion_request( request: CompletionRequest, n: int = 1, ) -> dict: """ Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary. """ # model -> model # prompt -> prompt # sampling_params TODO(mattf): review strategy # strategy=greedy -> nvext.top_k = -1, temperature = temperature # strategy=top_p -> nvext.top_k = -1, top_p = top_p # strategy=top_k -> nvext.top_k = top_k # temperature -> temperature # top_p -> top_p # top_k -> nvext.top_k # max_tokens -> max_tokens # repetition_penalty -> nvext.repetition_penalty # response_format -> nvext.guided_json # stream -> stream # logprobs.top_k -> logprobs nvext = {} payload: Dict[str, Any] = dict( model=request.model, prompt=request.content, stream=request.stream, extra_body=dict(nvext=nvext), extra_headers={ b"User-Agent": b"llama-stack: nvidia-inference-adapter", }, n=n, ) if request.response_format: # this is not openai compliant, it is a nim extension nvext.update(guided_json=request.response_format.json_schema) if request.logprobs: payload.update(logprobs=request.logprobs.top_k) if request.sampling_params: nvext.update(repetition_penalty=request.sampling_params.repetition_penalty) if request.sampling_params.max_tokens: payload.update(max_tokens=request.sampling_params.max_tokens) if request.sampling_params.strategy == "top_p": nvext.update(top_k=-1) payload.update(top_p=request.sampling_params.top_p) elif request.sampling_params.strategy == "top_k": if request.sampling_params.top_k != -1 and request.sampling_params.top_k < 1: warnings.warn("top_k must be -1 or >= 1", stacklevel=2) nvext.update(top_k=request.sampling_params.top_k) elif request.sampling_params.strategy == "greedy": nvext.update(top_k=-1) payload.update(temperature=request.sampling_params.temperature) return payload def _convert_openai_completion_logprobs( logprobs: Optional[OpenAICompletionLogprobs], ) -> Optional[List[TokenLogProbs]]: """ Convert an OpenAI CompletionLogprobs into a list of TokenLogProbs. """ if not logprobs: return None return [TokenLogProbs(logprobs_by_token=logprobs) for logprobs in logprobs.top_logprobs] def convert_openai_completion_choice( choice: OpenAIChoice, ) -> CompletionResponse: """ Convert an OpenAI Completion Choice into a CompletionResponse. """ return CompletionResponse( content=choice.text, stop_reason=_convert_openai_finish_reason(choice.finish_reason), logprobs=_convert_openai_completion_logprobs(choice.logprobs), ) async def convert_openai_completion_stream( stream: AsyncStream[OpenAICompletion], ) -> AsyncGenerator[CompletionResponse, None]: """ Convert a stream of OpenAI Completions into a stream of ChatCompletionResponseStreamChunks. """ async for chunk in stream: choice = chunk.choices[0] yield CompletionResponseStreamChunk( delta=choice.text, stop_reason=_convert_openai_finish_reason(choice.finish_reason), logprobs=_convert_openai_completion_logprobs(choice.logprobs), )
2,104
f82873fb13c906f185bfab605e378ce0141d4c304d83760fab397b7ef7f0d0ea
34.578704
119
0.668705
3.652567
false
false
false
false
trycua/cua
libs/agent/agent/providers/anthropic/types.py
421
0
MIT License
from enum import StrEnum class LLMProvider(StrEnum): """Enum for supported API providers.""" ANTHROPIC = "anthropic" BEDROCK = "bedrock" VERTEX = "vertex" PROVIDER_TO_DEFAULT_MODEL_NAME: dict[LLMProvider, str] = { LLMProvider.ANTHROPIC: "claude-3-7-sonnet-20250219", LLMProvider.BEDROCK: "anthropic.claude-3-7-sonnet-20250219-v2:0", LLMProvider.VERTEX: "claude-3-5-sonnet-v2@20241022", }
161
9f0fefaa638a906a2dee096912b6fa6069b5ff916d47297342eb3b0f1cabe484
25.3125
69
0.700713
2.614907
false
false
false
false
meta-llama/llama-stack
llama_stack/providers/utils/telemetry/sqlite_trace_store.py
6,946
0
MIT License
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import json from datetime import datetime from typing import Dict, List, Optional, Protocol import aiosqlite from llama_stack.apis.telemetry import QueryCondition, Span, SpanWithStatus, Trace class TraceStore(Protocol): async def query_traces( self, attribute_filters: Optional[List[QueryCondition]] = None, limit: Optional[int] = 100, offset: Optional[int] = 0, order_by: Optional[List[str]] = None, ) -> List[Trace]: ... async def get_span_tree( self, span_id: str, attributes_to_return: Optional[List[str]] = None, max_depth: Optional[int] = None, ) -> Dict[str, SpanWithStatus]: ... class SQLiteTraceStore(TraceStore): def __init__(self, conn_string: str): self.conn_string = conn_string async def query_traces( self, attribute_filters: Optional[List[QueryCondition]] = None, limit: Optional[int] = 100, offset: Optional[int] = 0, order_by: Optional[List[str]] = None, ) -> List[Trace]: def build_where_clause() -> tuple[str, list]: if not attribute_filters: return "", [] ops_map = {"eq": "=", "ne": "!=", "gt": ">", "lt": "<"} conditions = [ f"json_extract(s.attributes, '$.{condition.key}') {ops_map[condition.op.value]} ?" for condition in attribute_filters ] params = [condition.value for condition in attribute_filters] where_clause = " WHERE " + " AND ".join(conditions) return where_clause, params def build_order_clause() -> str: if not order_by: return "" order_clauses = [] for field in order_by: desc = field.startswith("-") clean_field = field[1:] if desc else field order_clauses.append(f"t.{clean_field} {'DESC' if desc else 'ASC'}") return " ORDER BY " + ", ".join(order_clauses) # Build the main query base_query = """ WITH matching_traces AS ( SELECT DISTINCT t.trace_id FROM traces t JOIN spans s ON t.trace_id = s.trace_id {where_clause} ), filtered_traces AS ( SELECT t.trace_id, t.root_span_id, t.start_time, t.end_time FROM matching_traces mt JOIN traces t ON mt.trace_id = t.trace_id LEFT JOIN spans s ON t.trace_id = s.trace_id {order_clause} ) SELECT DISTINCT trace_id, root_span_id, start_time, end_time FROM filtered_traces LIMIT {limit} OFFSET {offset} """ where_clause, params = build_where_clause() query = base_query.format( where_clause=where_clause, order_clause=build_order_clause(), limit=limit, offset=offset, ) # Execute query and return results async with aiosqlite.connect(self.conn_string) as conn: conn.row_factory = aiosqlite.Row async with conn.execute(query, params) as cursor: rows = await cursor.fetchall() return [ Trace( trace_id=row["trace_id"], root_span_id=row["root_span_id"], start_time=datetime.fromisoformat(row["start_time"]), end_time=datetime.fromisoformat(row["end_time"]), ) for row in rows ] async def get_span_tree( self, span_id: str, attributes_to_return: Optional[List[str]] = None, max_depth: Optional[int] = None, ) -> Dict[str, SpanWithStatus]: # Build the attributes selection attributes_select = "s.attributes" if attributes_to_return: json_object = ", ".join(f"'{key}', json_extract(s.attributes, '$.{key}')" for key in attributes_to_return) attributes_select = f"json_object({json_object})" # SQLite CTE query with filtered attributes query = f""" WITH RECURSIVE span_tree AS ( SELECT s.*, 1 as depth, {attributes_select} as filtered_attributes FROM spans s WHERE s.span_id = ? UNION ALL SELECT s.*, st.depth + 1, {attributes_select} as filtered_attributes FROM spans s JOIN span_tree st ON s.parent_span_id = st.span_id WHERE (? IS NULL OR st.depth < ?) ) SELECT * FROM span_tree ORDER BY depth, start_time """ spans_by_id = {} async with aiosqlite.connect(self.conn_string) as conn: conn.row_factory = aiosqlite.Row async with conn.execute(query, (span_id, max_depth, max_depth)) as cursor: rows = await cursor.fetchall() if not rows: raise ValueError(f"Span {span_id} not found") for row in rows: span = SpanWithStatus( span_id=row["span_id"], trace_id=row["trace_id"], parent_span_id=row["parent_span_id"], name=row["name"], start_time=datetime.fromisoformat(row["start_time"]), end_time=datetime.fromisoformat(row["end_time"]), attributes=json.loads(row["filtered_attributes"]), status=row["status"].lower(), ) spans_by_id[span.span_id] = span return spans_by_id async def get_trace(self, trace_id: str) -> Trace: query = "SELECT * FROM traces WHERE trace_id = ?" async with aiosqlite.connect(self.conn_string) as conn: conn.row_factory = aiosqlite.Row async with conn.execute(query, (trace_id,)) as cursor: row = await cursor.fetchone() if row is None: raise ValueError(f"Trace {trace_id} not found") return Trace(**row) async def get_span(self, trace_id: str, span_id: str) -> Span: query = "SELECT * FROM spans WHERE trace_id = ? AND span_id = ?" async with aiosqlite.connect(self.conn_string) as conn: conn.row_factory = aiosqlite.Row async with conn.execute(query, (trace_id, span_id)) as cursor: row = await cursor.fetchone() if row is None: raise ValueError(f"Span {span_id} not found") return Span(**row)
1,672
3ad99d3123bf995e22334dc4d1869ca72bdd343bb4bebfd340936dfbbb38071f
36.344086
118
0.530089
4.154306
false
false
false
false
autoscrape-labs/pydoll
pydoll/browser/page.py
25,924
0
MIT License
import asyncio import json import logging from contextlib import asynccontextmanager from functools import partial from pathlib import Path from typing import List, Optional, Tuple, Union import aiofiles from pydoll.commands import ( DomCommands, FetchCommands, NetworkCommands, PageCommands, RuntimeCommands, StorageCommands, ) from pydoll.connection.connection import ConnectionHandler from pydoll.constants import By from pydoll.element import WebElement from pydoll.events import PageEvents from pydoll.exceptions import InvalidFileExtension from pydoll.mixins.find_elements import FindElementsMixin from pydoll.utils import decode_image_to_bytes logger = logging.getLogger(__name__) class Page(FindElementsMixin): # noqa: PLR0904 def __init__(self, connection_port: int, page_id: str): """ Initializes the Page instance. Args: connection_port (int): The port number for the connection to the browser. page_id (str): The ID of the page, obtained via the DevTools Protocol. """ self._connection_handler = ConnectionHandler(connection_port, page_id) self._page_events_enabled = False self._network_events_enabled = False self._fetch_events_enabled = False self._dom_events_enabled = False self._intercept_file_chooser_dialog_enabled = False self._cloudflare_captcha_callback_id = None @property def page_events_enabled(self) -> bool: """ Returns whether page events are enabled or not. Returns: bool: True if page events are enabled, False otherwise. """ return self._page_events_enabled @property def network_events_enabled(self) -> bool: """ Returns whether network events are enabled or not. Returns: bool: True if network events are enabled, False otherwise. """ return self._network_events_enabled @property def fetch_events_enabled(self) -> bool: """ Returns whether fetch events are enabled or not. Returns: bool: True if fetch events are enabled, False otherwise. """ return self._fetch_events_enabled @property def dom_events_enabled(self) -> bool: """ Returns whether DOM events are enabled or not. Returns: bool: True if DOM events are enabled, False otherwise. """ return self._dom_events_enabled @property def intercept_file_chooser_dialog_enabled(self) -> bool: """ Returns whether file chooser dialogs are being intercepted or not. Returns: bool: True if file chooser dialogs are being intercepted, False otherwise. """ return self._intercept_file_chooser_dialog_enabled @property async def current_url(self) -> str: """ Retrieves the current URL of the page. Returns: str: The current URL of the page. """ response = await self._execute_command(DomCommands.get_current_url()) return response['result']['result']['value'] @property async def page_source(self) -> str: """ Retrieves the source code of the page. Returns: str: The source code of the page. """ response = await self._execute_command( RuntimeCommands.evaluate_script( 'document.documentElement.outerHTML' ) ) return response['result']['result']['value'] async def close(self): """ Closes the page. This method closes the current page in the browser. Returns: None """ await self._execute_command(PageCommands.close()) async def get_cookies(self) -> list[dict]: """ Retrieves the cookies of the page. Returns: list[dict]: A list of dictionaries containing cookie data from the current page. """ response = await self._execute_command( NetworkCommands.get_all_cookies() ) return response['result']['cookies'] async def set_cookies(self, cookies: list[dict]): """ Sets cookies for the page. Args: cookies (list[dict]): A list of dictionaries containing cookie data to set for the current page. """ await self._execute_command(StorageCommands.set_cookies(cookies)) await self._execute_command(NetworkCommands.set_cookies(cookies)) async def delete_all_cookies(self): """ Deletes all cookies from the browser. This clears both storage cookies and browser cookies associated with the current page. Returns: None """ await self._execute_command(StorageCommands.clear_cookies()) await self._execute_command(NetworkCommands.clear_browser_cookies()) async def has_dialog(self) -> bool: """ Checks if a dialog is present on the page. Returns: bool: True if a dialog is present, False otherwise. """ if self._connection_handler.dialog: return True return False async def get_dialog_message(self) -> str: """ Retrieves the message of the dialog on the page. Returns: str: The message of the dialog. """ if not await self.has_dialog(): raise LookupError('No dialog present on the page') return self._connection_handler.dialog['params']['message'] async def accept_dialog(self): """ Accepts the dialog on the page. Raises: LookupError: If no dialog is present on the page. """ if not await self.has_dialog(): raise LookupError('No dialog present on the page') await self._execute_command(PageCommands.handle_dialog(True)) async def go_to(self, url: str, timeout=300): """ Navigates to a URL in the page. Args: url (str): The URL to navigate to. timeout (int): Maximum time in seconds to wait for page to load. Defaults to 300 seconds. Raises: TimeoutError: If the page fails to load within the specified timeout. """ if await self._refresh_if_url_not_changed(url): return await self._execute_command(PageCommands.go_to(url)) try: await self._wait_page_load(timeout=timeout) except asyncio.TimeoutError: raise TimeoutError('Page load timed out') async def refresh(self): """ Refreshes the page. This method reloads the current page and waits for it to finish loading. Raises: TimeoutError: If the page does not finish loading within the default timeout period (300 seconds). Returns: None """ await self._execute_command(PageCommands.refresh()) try: await self._wait_page_load() except asyncio.TimeoutError: raise TimeoutError('Page load timed out') async def get_screenshot(self, path: str): """ Captures a screenshot of the page. Args: path (str): The file path to save the screenshot to. Returns: None """ fmt = path.split('.')[-1] if fmt not in {'jpeg', 'jpg', 'png'}: raise InvalidFileExtension(f'{fmt} extension is not supported.') response = await self._execute_command( PageCommands.screenshot(fmt=fmt) ) screenshot_b64 = response['result']['data'].encode('utf-8') screenshot_bytes = decode_image_to_bytes(screenshot_b64) async with aiofiles.open(path, 'wb') as file: await file.write(screenshot_bytes) async def get_screenshot_base64(self): """ Retrieves the screenshot of the page as a base64 encoded string. Returns: str: The base64 encoded screenshot. # TODO: remove the duplicated logic """ response = await self._execute_command(PageCommands.screenshot()) return response['result']['data'] async def set_download_path(self, path: str): """ Sets the download path for the page. Args: path (str): The path where the downloaded files should be saved. """ await self._execute_command(PageCommands.set_download_path(path)) async def get_pdf_base64(self): """ Retrieves the PDF data of the page. Returns: str: The PDF data of the page. """ response = await self._execute_command(PageCommands.print_to_pdf()) return response['result']['data'] async def print_to_pdf(self, path: str): """ Prints the page to a PDF file. Args: path (str): The file path to save the PDF file to. """ response = await self._execute_command(PageCommands.print_to_pdf()) pdf_b64 = response['result']['data'].encode('utf-8') pdf_bytes = decode_image_to_bytes(pdf_b64) async with aiofiles.open(path, 'wb') as file: await file.write(pdf_bytes) async def get_network_logs(self, matches: list[str] = []): """ Retrieves network logs from the page. Args: matches (list[str]): A list of URL patterns to match network logs against. If empty, all logs are returned. Returns: list: A list of network logs that match the specified patterns. Raises: LookupError: If no network logs match the specified patterns. """ network_logs = self._connection_handler.network_logs logs_matched = [] for log in network_logs: if not log.get('params', {}).get('request', {}).get('url'): continue for match in matches: if match in log['params']['request']['url']: logs_matched.append(log) break if not logs_matched: raise LookupError('No network logs matched the specified pattern') return logs_matched async def get_network_response_bodies(self, matches: list[str] = []): """ Retrieves the response bodies of network requests that match the specified pattern. Args: matches (list): The URL patterns to match network requests against. Returns: list: A list of response bodies from network requests that match the specified patterns. """ logs_matched = await self.get_network_logs(matches) responses = [] for log in logs_matched: try: body, base64encoded = await self.get_network_response_body( log['params']['requestId'] ) except KeyError: continue response = json.loads(body) if not base64encoded else body responses.append(response) return responses async def get_network_response_body(self, request_id: str): """ Retrieves the response body of a network request. Args: request_id (str): The ID of the network request. Returns: tuple: A tuple containing: - str: The response body content - bool: Flag indicating if the body is base64 encoded """ response = await self._execute_command( NetworkCommands.get_response_body(request_id) ) return ( response['result']['body'], response['result']['base64Encoded'], ) async def enable_page_events(self): """ Enables page events for the page. This allows listening for page-related events such as load, navigate, and content change events. These events can be captured with the `on` method. Returns: None """ await self._execute_command(PageCommands.enable_page()) self._page_events_enabled = True async def enable_network_events(self): """ Enables network events for the page. This allows listening for network-related events such as request and response events. These events can be captured with the `on` method. Returns: None """ await self._execute_command(NetworkCommands.enable_network_events()) self._network_events_enabled = True async def enable_fetch_events( self, handle_auth: bool = False, resource_type: str = 'Document' ): """ Enables fetch events for the page. This allows interception of network requests before they are sent. Args: handle_auth (bool): Whether to handle authentication requests. Defaults to False. resource_type (str): The type of resource to intercept. Defaults to 'Document'. Returns: None """ await self._execute_command( FetchCommands.enable_fetch_events(handle_auth, resource_type) ) self._fetch_events_enabled = True async def enable_dom_events(self): """ Enables DOM events for the page. This allows listening for DOM-related events such as node creation, attribute modification, and node removal events. These events can be captured with the `on` method. Returns: None """ await self._execute_command(DomCommands.enable_dom_events()) self._dom_events_enabled = True async def enable_intercept_file_chooser_dialog(self): """ Enable intercepting file chooser dialogs. When file chooser interception is enabled, native file chooser dialog is not shown. Instead, a protocol event Page.fileChooserOpened is emitted. Returns: None """ await self._execute_command( PageCommands.set_intercept_file_chooser_dialog(True) ) self._intercept_file_chooser_dialog_enabled = True async def disable_fetch_events(self): """ Disables fetch events for the page. This stops the interception of network requests that was previously enabled with enable_fetch_events(). Returns: None """ await self._execute_command(FetchCommands.disable_fetch_events()) self._fetch_events_enabled = False async def disable_page_events(self): """ Disables page events for the page. This stops listening for page-related events that were previously enabled with enable_page_events(). Returns: None """ await self._execute_command(PageCommands.disable_page()) self._page_events_enabled = False async def disable_intercept_file_chooser_dialog(self): """ Disable intercepting file chooser dialogs. When file chooser interception is disabled, native file chooser dialog is shown. Returns: None """ await self._execute_command( PageCommands.set_intercept_file_chooser_dialog(False) ) self._intercept_file_chooser_dialog_enabled = False async def on( self, event_name: str, callback: callable, temporary: bool = False ): """ Registers an event listener for the page. Args: event_name (str): The event name to listen for. callback (callable): The callback function to execute when the event is triggered. temporary (bool): If True, the callback will be removed after it's triggered once. Defaults to False. Returns: int: The ID of the registered callback, which can be used to remove the listener later. """ async def callback_wrapper(event): asyncio.create_task(callback(event)) if asyncio.iscoroutinefunction(callback): function_to_register = callback_wrapper else: function_to_register = callback return await self._connection_handler.register_callback( event_name, function_to_register, temporary ) async def execute_script(self, script: str, element: WebElement = None): """ Executes a JavaScript script in the page. If an element is provided, the script will be executed in the context of that element. To provide the element context, use the 'argument' keyword in the script. Examples: ```python await page.execute_script('argument.click()', element) await page.execute_script('argument.value = "Hello, World!"', element) ``` Args: script (str): The JavaScript script to execute. element (WebElement, optional): The element to execute the script on. Use 'argument' in your script to refer to this element. Defaults to None. Returns: dict: The result of the script execution from the browser. """ if element: script = script.replace('argument', 'this') script = f'function(){{ {script} }}' object_id = element._object_id command = RuntimeCommands.call_function_on( object_id, script, return_by_value=True ) else: command = RuntimeCommands.evaluate_script(script) return await self._execute_command(command) async def _refresh_if_url_not_changed(self, url: str): """ Refreshes the page if the URL has not changed. Args: url (str): The URL to compare against. """ current_url = await self.current_url if current_url == url: await self.refresh() return True return False async def _wait_page_load(self, timeout: int = 300): """ Waits for the page to finish loading. Args: timeout (int): Maximum time in seconds to wait for the page to load. Defaults to 300 seconds. Raises: asyncio.TimeoutError: If the page does not finish loading within the specified timeout. """ start_time = asyncio.get_event_loop().time() while True: response = await self._execute_command( RuntimeCommands.evaluate_script('document.readyState') ) if response['result']['result']['value'] == 'complete': break if asyncio.get_event_loop().time() - start_time > timeout: raise asyncio.TimeoutError('Page load timed out') await asyncio.sleep(0.5) @asynccontextmanager async def expect_file_chooser( self, files: Union[str, Path, List[Union[str, Path]]] ): """ Provide a context manager that expects a file chooser dialog to be opened and handles the file upload. When a file selection signal is captured, the file is uploaded. Args: files (Union[str, Path, List[Union[str, Path]]]): The files to be uploaded. Returns: """ async def event_handler(event): await self._execute_command( DomCommands.upload_files( files=files, backend_node_id=event['params']['backendNodeId'], ) ) if self.page_events_enabled is False: _before_page_events_enabled = False await self.enable_page_events() else: _before_page_events_enabled = True if self.intercept_file_chooser_dialog_enabled is False: await self.enable_intercept_file_chooser_dialog() await self.on( PageEvents.FILE_CHOOSER_OPENED, event_handler, temporary=True ) yield if self.intercept_file_chooser_dialog_enabled is True: await self.disable_intercept_file_chooser_dialog() if _before_page_events_enabled is False: await self.disable_page_events() async def _bypass_cloudflare( self, event: dict, custom_selector: Optional[Tuple[By, str]] = None, time_before_click: int = 2, time_to_wait_captcha: int = 5, ): """ Attempt to bypass Cloudflare Turnstile captcha when detected. Args: event (dict): The event payload (unused) custom_selector (Optional[Tuple[By, str]]): Custom selector to locate the captcha element. Defaults to (By.CLASS_NAME, 'cf-turnstile'). time_before_click (int): Time to wait before clicking the captcha element in seconds. Defaults to 2 seconds. time_to_wait_captcha (int): Timeout for the captcha element to be found in seconds. Defaults to 5 seconds. """ try: selector = custom_selector or (By.CLASS_NAME, 'cf-turnstile') if element := await self.wait_element( *selector, timeout=time_to_wait_captcha, raise_exc=False ): # adjust the div size to shadow root size await self.execute_script( 'argument.style="width: 300px"', element ) await asyncio.sleep(time_before_click) await element.click() except Exception as exc: logger.error(f'Error in cloudflare bypass: {exc}') @asynccontextmanager async def expect_and_bypass_cloudflare_captcha( self, custom_selector: Optional[Tuple[By, str]] = None, time_before_click: int = 2, time_to_wait_captcha: Optional[int] = 5, ): """ Context manager to handle Cloudflare Turnstile captcha. This method sets up a callback that will automatically attempt to bypass the Cloudflare captcha when the page loads. The main code will wait until the captcha handling is complete before continuing. It creates an event to coordinate between the callback and the main code. Args: custom_selector (Optional[Tuple[By, str]]): Custom selector to locate the captcha element. Defaults to (By.CLASS_NAME, 'cf-turnstile'). time_before_click (int): Time to wait before clicking the captcha element in seconds. Defaults to 2 seconds. time_to_wait_captcha (Optional[int]): Timeout for the captcha element to be found in seconds. Defaults to 5 seconds. Returns: None """ captcha_processed = asyncio.Event() async def bypass_cloudflare(_: dict): try: await self._bypass_cloudflare( _, custom_selector, time_before_click, time_to_wait_captcha, ) finally: captcha_processed.set() _before_page_events_enabled = self.page_events_enabled if not _before_page_events_enabled: await self.enable_page_events() callback_id = await self.on(PageEvents.PAGE_LOADED, bypass_cloudflare) try: yield await captcha_processed.wait() finally: await self._connection_handler.remove_callback(callback_id) if not _before_page_events_enabled: await self.disable_page_events() async def enable_auto_solve_cloudflare_captcha( self, custom_selector: Optional[Tuple[By, str]] = None, time_before_click: int = 2, time_to_wait_captcha: int = 5, ): """ Enables automatic solving of Cloudflare Turnstile captcha. This method sets up a callback that will automatically attempt to bypass the Cloudflare captcha when the page loads. Unlike the context manager version, this keeps the callback active until explicitly disabled. Args: custom_selector (Optional[Tuple[By, str]]): Custom selector to locate the captcha element. Defaults to (By.CLASS_NAME, 'cf-turnstile'). time_before_click (int): Time to wait before clicking the captcha element in seconds. Defaults to 2 seconds. time_to_wait_captcha (int): Timeout for the captcha element to be found in seconds. Defaults to 5 seconds. Returns: int: Callback ID that can be used to disable the auto-solving """ if not self.page_events_enabled: await self.enable_page_events() callback = partial( self._bypass_cloudflare, custom_selector=custom_selector, time_before_click=time_before_click, time_to_wait_captcha=time_to_wait_captcha, ) self._cloudflare_captcha_callback_id = await self.on( PageEvents.PAGE_LOADED, callback ) async def disable_auto_solve_cloudflare_captcha(self): """ Disables automatic solving of Cloudflare Turnstile captcha. Returns: None """ await self._connection_handler.remove_callback( self._cloudflare_captcha_callback_id ) self._cloudflare_captcha_callback_id = None
5,539
f3a968ce0028c85f9d309a9d22ea60f7d3fcd2a98c7d49687251526a25d2701c
31.486216
79
0.586638
4.680267
false
false
false
false
openai/openai-agents-python
src/agents/extensions/handoff_filters.py
1,977
0
MIT License
from __future__ import annotations from ..handoffs import HandoffInputData from ..items import ( HandoffCallItem, HandoffOutputItem, RunItem, ToolCallItem, ToolCallOutputItem, TResponseInputItem, ) """Contains common handoff input filters, for convenience. """ def remove_all_tools(handoff_input_data: HandoffInputData) -> HandoffInputData: """Filters out all tool items: file search, web search and function calls+output.""" history = handoff_input_data.input_history new_items = handoff_input_data.new_items filtered_history = ( _remove_tool_types_from_input(history) if isinstance(history, tuple) else history ) filtered_pre_handoff_items = _remove_tools_from_items(handoff_input_data.pre_handoff_items) filtered_new_items = _remove_tools_from_items(new_items) return HandoffInputData( input_history=filtered_history, pre_handoff_items=filtered_pre_handoff_items, new_items=filtered_new_items, ) def _remove_tools_from_items(items: tuple[RunItem, ...]) -> tuple[RunItem, ...]: filtered_items = [] for item in items: if ( isinstance(item, HandoffCallItem) or isinstance(item, HandoffOutputItem) or isinstance(item, ToolCallItem) or isinstance(item, ToolCallOutputItem) ): continue filtered_items.append(item) return tuple(filtered_items) def _remove_tool_types_from_input( items: tuple[TResponseInputItem, ...], ) -> tuple[TResponseInputItem, ...]: tool_types = [ "function_call", "function_call_output", "computer_call", "computer_call_output", "file_search_call", "web_search_call", ] filtered_items: list[TResponseInputItem] = [] for item in items: itype = item.get("type") if itype in tool_types: continue filtered_items.append(item) return tuple(filtered_items)
533
7da5d4e08f0d80b8d44816665c6bc70024922afb10e68b599c44ce255823ce07
28.507463
95
0.650986
3.709193
false
false
false
false
browser-use/browser-use
examples/use-cases/google_sheets.py
7,576
0
MIT License
import os import sys from browser_use.browser.context import BrowserContext sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import asyncio import pyperclip from dotenv import load_dotenv from langchain_openai import ChatOpenAI from browser_use import ActionResult, Agent, Controller from browser_use.browser.browser import Browser, BrowserConfig browser = Browser( config=BrowserConfig( browser_binary_path='/Applications/Google Chrome.app/Contents/MacOS/Google Chrome', ), ) # Load environment variables load_dotenv() if not os.getenv('OPENAI_API_KEY'): raise ValueError('OPENAI_API_KEY is not set. Please add it to your environment variables.') controller = Controller() def is_google_sheet(page) -> bool: return page.url.startswith('https://docs.google.com/spreadsheets/') @controller.registry.action('Google Sheets: Open a specific Google Sheet') async def open_google_sheet(browser: BrowserContext, google_sheet_url: str): page = await browser.get_current_page() if page.url != google_sheet_url: await page.goto(google_sheet_url) await page.wait_for_load_state() if not is_google_sheet(page): return ActionResult(error='Failed to open Google Sheet, are you sure you have permissions to access this sheet?') return ActionResult(extracted_content=f'Opened Google Sheet {google_sheet_url}', include_in_memory=False) @controller.registry.action('Google Sheets: Get the contents of the entire sheet', page_filter=is_google_sheet) async def get_sheet_contents(browser: BrowserContext): page = await browser.get_current_page() # select all cells await page.keyboard.press('Enter') await page.keyboard.press('Escape') await page.keyboard.press('ControlOrMeta+A') await page.keyboard.press('ControlOrMeta+C') extracted_tsv = pyperclip.paste() return ActionResult(extracted_content=extracted_tsv, include_in_memory=True) @controller.registry.action('Google Sheets: Select a specific cell or range of cells', page_filter=is_google_sheet) async def select_cell_or_range(browser: BrowserContext, cell_or_range: str): page = await browser.get_current_page() await page.keyboard.press('Enter') # make sure we dont delete current cell contents if we were last editing await page.keyboard.press('Escape') # to clear current focus (otherwise select range popup is additive) await asyncio.sleep(0.1) await page.keyboard.press('Home') # move cursor to the top left of the sheet first await page.keyboard.press('ArrowUp') await asyncio.sleep(0.1) await page.keyboard.press('Control+G') # open the goto range popup await asyncio.sleep(0.2) await page.keyboard.type(cell_or_range, delay=0.05) await asyncio.sleep(0.2) await page.keyboard.press('Enter') await asyncio.sleep(0.2) await page.keyboard.press('Escape') # to make sure the popup still closes in the case where the jump failed return ActionResult(extracted_content=f'Selected cell {cell_or_range}', include_in_memory=False) @controller.registry.action('Google Sheets: Get the contents of a specific cell or range of cells', page_filter=is_google_sheet) async def get_range_contents(browser: BrowserContext, cell_or_range: str): page = await browser.get_current_page() await select_cell_or_range(browser, cell_or_range) await page.keyboard.press('ControlOrMeta+C') await asyncio.sleep(0.1) extracted_tsv = pyperclip.paste() return ActionResult(extracted_content=extracted_tsv, include_in_memory=True) @controller.registry.action('Google Sheets: Clear the currently selected cells', page_filter=is_google_sheet) async def clear_selected_range(browser: BrowserContext): page = await browser.get_current_page() await page.keyboard.press('Backspace') return ActionResult(extracted_content='Cleared selected range', include_in_memory=False) @controller.registry.action('Google Sheets: Input text into the currently selected cell', page_filter=is_google_sheet) async def input_selected_cell_text(browser: BrowserContext, text: str): page = await browser.get_current_page() await page.keyboard.type(text, delay=0.1) await page.keyboard.press('Enter') # make sure to commit the input so it doesn't get overwritten by the next action await page.keyboard.press('ArrowUp') return ActionResult(extracted_content=f'Inputted text {text}', include_in_memory=False) @controller.registry.action('Google Sheets: Batch update a range of cells', page_filter=is_google_sheet) async def update_range_contents(browser: BrowserContext, range: str, new_contents_tsv: str): page = await browser.get_current_page() await select_cell_or_range(browser, range) # simulate paste event from clipboard with TSV content await page.evaluate(f""" const clipboardData = new DataTransfer(); clipboardData.setData('text/plain', `{new_contents_tsv}`); document.activeElement.dispatchEvent(new ClipboardEvent('paste', {{clipboardData}})); """) return ActionResult(extracted_content=f'Updated cell {range} with {new_contents_tsv}', include_in_memory=False) # many more snippets for keyboard-shortcut based Google Sheets automation can be found here, see: # - https://github.com/philc/sheetkeys/blob/master/content_scripts/sheet_actions.js # - https://github.com/philc/sheetkeys/blob/master/content_scripts/commands.js # - https://support.google.com/docs/answer/181110?hl=en&co=GENIE.Platform%3DDesktop#zippy=%2Cmac-shortcuts # Tip: LLM is bad at spatial reasoning, don't make it navigate with arrow keys relative to current cell # if given arrow keys, it will try to jump from G1 to A2 by pressing Down, without realizing needs to go Down+LeftLeftLeftLeft async def main(): async with await browser.new_context() as context: model = ChatOpenAI(model='gpt-4o') eraser = Agent( task=""" Clear all the existing values in columns A through F in this Google Sheet: https://docs.google.com/spreadsheets/d/1INaIcfpYXlMRWO__de61SHFCaqt1lfHlcvtXZPItlpI/edit """, llm=model, browser_context=context, controller=controller, ) await eraser.run() researcher = Agent( task=""" Google to find the full name, nationality, and date of birth of the CEO of the top 10 Fortune 100 companies. For each company, append a row to this existing Google Sheet: https://docs.google.com/spreadsheets/d/1INaIcfpYXlMRWO__de61SHFCaqt1lfHlcvtXZPItlpI/edit Make sure column headers are present and all existing values in the sheet are formatted correctly. Columns: A: Company Name B: CEO Full Name C: CEO Country of Birth D: CEO Date of Birth (YYYY-MM-DD) E: Source URL where the information was found """, llm=model, browser_context=context, controller=controller, ) await researcher.run() improvised_continuer = Agent( task=""" Read the Google Sheet https://docs.google.com/spreadsheets/d/1INaIcfpYXlMRWO__de61SHFCaqt1lfHlcvtXZPItlpI/edit Add 3 more rows to the bottom continuing the existing pattern, make sure any data you add is sourced correctly. """, llm=model, browser_context=context, controller=controller, ) await improvised_continuer.run() final_fact_checker = Agent( task=""" Read the Google Sheet https://docs.google.com/spreadsheets/d/1INaIcfpYXlMRWO__de61SHFCaqt1lfHlcvtXZPItlpI/edit Fact-check every entry, add a new column F with your findings for each row. Make sure to check the source URL for each row, and make sure the information is correct. """, llm=model, browser_context=context, controller=controller, ) await final_fact_checker.run() if __name__ == '__main__': asyncio.run(main())
2,298
623f6d876c280782cedee4a319aa635d451ac4dbde667498850d02757688e115
38.253886
154
0.757128
3.29678
false
false
false
false
HKUDS/AutoAgent
autoagent/workflows/math_solver_workflow_flow.py
8,795
0
MIT License
import asyncio import json import argparse from openai import AsyncOpenAI from openai.types.chat import ChatCompletionMessageToolCall from autoagent.flow import default_drive, EventInput, ReturnBehavior from autoagent.flow.dynamic import goto_events, abort_this import re from autoagent import MetaChain from autoagent.types import Response from autoagent.registry import register_workflow def extract_answer(response: str, key: str): pattern = f"<{key}>(.*?)</{key}>" matches = re.findall(pattern, response) return matches[0] if len(matches) > 0 else None from autoagent.agents import get_math_solver_agent from autoagent.agents import get_vote_aggregator_agent @default_drive.make_event async def on_start(event: EventInput, global_ctx): print("start the workflow:" + 'math_solver_workflow') @default_drive.listen_group([on_start]) async def solve_with_gpt4(event: EventInput, global_ctx): inputs = [{'key': 'math_problem', 'description': 'The math problem that needs to be solved.'}] input_dict = dict() for inp in inputs: input_dict[inp["key"]] = global_ctx.get(inp["key"], None) messages = global_ctx.get('messages', []) task = 'Solve the math problem using systematic approach and show detailed steps.' outputs = [{'key': 'gpt4_solution', 'description': 'The solution generated by GPT-4 model.', 'condition': None, 'action': {'type': 'RESULT', 'value': None}}] agent = get_math_solver_agent('gpt-4o-2024-08-06') input_str = [] for key, value in input_dict.items(): input_str.append(f"The {key.replace('_', ' ')} is {value}") input_str = "\n".join(input_str) + "\n" query = input_str + '.\nThe task is: ' + task + '.\n' messages.append({ "role": "user", "content": query }) client = MetaChain() response: Response = await client.run_async(agent = agent, messages = messages, context_variables = global_ctx, debug = True) result = response.messages[-1]["content"] messages.extend(response.messages) global_ctx["messages"] = messages for output in outputs: ans = extract_answer(result, output["key"]) if ans: if output["action"]["type"] == "RESULT": global_ctx[output["key"]] = ans return ans elif output["action"]["type"] == "ABORT": return abort_this() elif output["action"]["type"] == "GO_TO": return goto_events([output["action"]["value"]]) elif len(outputs) == 1: global_ctx[output["key"]] = result return result raise Exception("No valid answer found") @default_drive.listen_group([on_start]) async def solve_with_claude(event: EventInput, global_ctx): inputs = [{'key': 'math_problem', 'description': 'The math problem that needs to be solved.'}] input_dict = dict() for inp in inputs: input_dict[inp["key"]] = global_ctx.get(inp["key"], None) messages = global_ctx.get('messages', []) task = 'Solve the math problem using systematic approach and show detailed steps.' outputs = [{'key': 'claude_solution', 'description': 'The solution generated by Claude model.', 'condition': None, 'action': {'type': 'RESULT', 'value': None}}] agent = get_math_solver_agent('claude-3-5-sonnet-20241022') input_str = [] for key, value in input_dict.items(): input_str.append(f"The {key.replace('_', ' ')} is {value}") input_str = "\n".join(input_str) + "\n" query = input_str + '.\nThe task is: ' + task + '.\n' messages.append({ "role": "user", "content": query }) client = MetaChain() response: Response = await client.run_async(agent = agent, messages = messages, context_variables = global_ctx, debug = True) result = response.messages[-1]["content"] messages.extend(response.messages) global_ctx["messages"] = messages for output in outputs: ans = extract_answer(result, output["key"]) if ans: if output["action"]["type"] == "RESULT": global_ctx[output["key"]] = ans return ans elif output["action"]["type"] == "ABORT": return abort_this() elif output["action"]["type"] == "GO_TO": return goto_events([output["action"]["value"]]) elif len(outputs) == 1: global_ctx[output["key"]] = result return result raise Exception("No valid answer found") @default_drive.listen_group([on_start]) async def solve_with_deepseek(event: EventInput, global_ctx): inputs = [{'key': 'math_problem', 'description': 'The math problem that needs to be solved.'}] input_dict = dict() for inp in inputs: input_dict[inp["key"]] = global_ctx.get(inp["key"], None) messages = global_ctx.get('messages', []) task = 'Solve the math problem using systematic approach and show detailed steps.' outputs = [{'key': 'deepseek_solution', 'description': 'The solution generated by Deepseek model.', 'condition': None, 'action': {'type': 'RESULT', 'value': None}}] agent = get_math_solver_agent('deepseek/deepseek-chat') input_str = [] for key, value in input_dict.items(): input_str.append(f"The {key.replace('_', ' ')} is {value}") input_str = "\n".join(input_str) + "\n" query = input_str + '.\nThe task is: ' + task + '.\n' messages.append({ "role": "user", "content": query }) client = MetaChain() response: Response = await client.run_async(agent = agent, messages = messages, context_variables = global_ctx, debug = True) result = response.messages[-1]["content"] messages.extend(response.messages) global_ctx["messages"] = messages for output in outputs: ans = extract_answer(result, output["key"]) if ans: if output["action"]["type"] == "RESULT": global_ctx[output["key"]] = ans return ans elif output["action"]["type"] == "ABORT": return abort_this() elif output["action"]["type"] == "GO_TO": return goto_events([output["action"]["value"]]) elif len(outputs) == 1: global_ctx[output["key"]] = result return result raise Exception("No valid answer found") @default_drive.listen_group([solve_with_gpt4, solve_with_claude, solve_with_deepseek]) async def aggregate_solutions(event: EventInput, global_ctx): inputs = [{'key': 'gpt4_solution', 'description': 'The solution generated by GPT-4 model.'}, {'key': 'claude_solution', 'description': 'The solution generated by Claude model.'}, {'key': 'deepseek_solution', 'description': 'The solution generated by Deepseek model.'}] input_dict = dict() for inp in inputs: input_dict[inp["key"]] = global_ctx.get(inp["key"], None) messages = global_ctx.get('messages', []) task = 'Compare all solutions and determine the final answer through majority voting.' outputs = [{'key': 'final_solution', 'description': 'The final agreed-upon solution after majority voting.', 'condition': None, 'action': {'type': 'RESULT', 'value': None}}] agent = get_vote_aggregator_agent('gpt-4o-2024-08-06') input_str = [] for key, value in input_dict.items(): input_str.append(f"The {key.replace('_', ' ')} is {value}") input_str = "\n".join(input_str) + "\n" query = input_str + '.\nThe task is: ' + task + '.\n' messages.append({ "role": "user", "content": query }) client = MetaChain() response: Response = await client.run_async(agent = agent, messages = messages, context_variables = global_ctx, debug = True) result = response.messages[-1]["content"] messages.extend(response.messages) global_ctx["messages"] = messages for output in outputs: ans = extract_answer(result, output["key"]) if ans: if output["action"]["type"] == "RESULT": global_ctx[output["key"]] = ans return ans elif output["action"]["type"] == "ABORT": return abort_this() elif output["action"]["type"] == "GO_TO": return goto_events([output["action"]["value"]]) elif len(outputs) == 1: global_ctx[output["key"]] = result return result raise Exception("No valid answer found") @register_workflow(name = 'majority_voting') async def majority_voting(system_input: str): storage_results = dict(math_problem = system_input) await default_drive.invoke_event( on_start, global_ctx=storage_results, ) system_output = storage_results.get('final_solution', None) return system_output
2,320
c86700e0fd59c6b80869c02761a41ded8e8ea73a9979cb1a6bacfc6807888ce7
42.756219
272
0.612166
3.790948
false
false
false
false
MadcowD/ell
examples/claude.py
387
0
MIT License
import ell # type: ignore @ell.simple(model="claude-3-5-sonnet-20241022", max_tokens=100) def hello_from_claude(): """You are an AI assistant. Your task is to respond to the user's message with a friendly greeting.""" return "Say hello to the world!!!" if __name__ == "__main__": ell.init(verbose=True, store="./logdir", autocommit=True) print(hello_from_claude())
124
e4c04ea149b61475c86a19b1b3cec0ffaf179b02e6cef871cd068c354a327e47
31.25
106
0.666667
3.120968
false
false
false
false
fudan-generative-vision/hallo
scripts/train_stage2.py
37,347
0
MIT License
# pylint: disable=E1101,C0415,W0718,R0801 # scripts/train_stage2.py """ This is the main training script for stage 2 of the project. It imports necessary packages, defines necessary classes and functions, and trains the model using the provided configuration. The script includes the following classes and functions: 1. Net: A PyTorch model that takes noisy latents, timesteps, reference image latents, face embeddings, and face masks as input and returns the denoised latents. 2. get_attention_mask: A function that rearranges the mask tensors to the required format. 3. get_noise_scheduler: A function that creates and returns the noise schedulers for training and validation. 4. process_audio_emb: A function that processes the audio embeddings to concatenate with other tensors. 5. log_validation: A function that logs the validation information using the given VAE, image encoder, network, scheduler, accelerator, width, height, and configuration. 6. train_stage2_process: A function that processes the training stage 2 using the given configuration. 7. load_config: A function that loads the configuration file from the given path. The script also includes the necessary imports and a brief description of the purpose of the file. """ import argparse import copy import logging import math import os import random import time import warnings from datetime import datetime from typing import List, Tuple import diffusers import mlflow import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs from diffusers import AutoencoderKL, DDIMScheduler from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available from einops import rearrange, repeat from omegaconf import OmegaConf from torch import nn from tqdm.auto import tqdm from hallo.animate.face_animate import FaceAnimatePipeline from hallo.datasets.audio_processor import AudioProcessor from hallo.datasets.image_processor import ImageProcessor from hallo.datasets.talk_video import TalkingVideoDataset from hallo.models.audio_proj import AudioProjModel from hallo.models.face_locator import FaceLocator from hallo.models.image_proj import ImageProjModel from hallo.models.mutual_self_attention import ReferenceAttentionControl from hallo.models.unet_2d_condition import UNet2DConditionModel from hallo.models.unet_3d import UNet3DConditionModel from hallo.utils.util import (compute_snr, delete_additional_ckpt, import_filename, init_output_dir, load_checkpoint, save_checkpoint, seed_everything, tensor_to_video) warnings.filterwarnings("ignore") # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.10.0.dev0") logger = get_logger(__name__, log_level="INFO") class Net(nn.Module): """ The Net class defines a neural network model that combines a reference UNet2DConditionModel, a denoising UNet3DConditionModel, a face locator, and other components to animate a face in a static image. Args: reference_unet (UNet2DConditionModel): The reference UNet2DConditionModel used for face animation. denoising_unet (UNet3DConditionModel): The denoising UNet3DConditionModel used for face animation. face_locator (FaceLocator): The face locator model used for face animation. reference_control_writer: The reference control writer component. reference_control_reader: The reference control reader component. imageproj: The image projection model. audioproj: The audio projection model. Forward method: noisy_latents (torch.Tensor): The noisy latents tensor. timesteps (torch.Tensor): The timesteps tensor. ref_image_latents (torch.Tensor): The reference image latents tensor. face_emb (torch.Tensor): The face embeddings tensor. audio_emb (torch.Tensor): The audio embeddings tensor. mask (torch.Tensor): Hard face mask for face locator. full_mask (torch.Tensor): Pose Mask. face_mask (torch.Tensor): Face Mask lip_mask (torch.Tensor): Lip Mask uncond_img_fwd (bool): A flag indicating whether to perform reference image unconditional forward pass. uncond_audio_fwd (bool): A flag indicating whether to perform audio unconditional forward pass. Returns: torch.Tensor: The output tensor of the neural network model. """ def __init__( self, reference_unet: UNet2DConditionModel, denoising_unet: UNet3DConditionModel, face_locator: FaceLocator, reference_control_writer, reference_control_reader, imageproj, audioproj, ): super().__init__() self.reference_unet = reference_unet self.denoising_unet = denoising_unet self.face_locator = face_locator self.reference_control_writer = reference_control_writer self.reference_control_reader = reference_control_reader self.imageproj = imageproj self.audioproj = audioproj def forward( self, noisy_latents: torch.Tensor, timesteps: torch.Tensor, ref_image_latents: torch.Tensor, face_emb: torch.Tensor, audio_emb: torch.Tensor, mask: torch.Tensor, full_mask: torch.Tensor, face_mask: torch.Tensor, lip_mask: torch.Tensor, uncond_img_fwd: bool = False, uncond_audio_fwd: bool = False, ): """ simple docstring to prevent pylint error """ face_emb = self.imageproj(face_emb) mask = mask.to(device="cuda") mask_feature = self.face_locator(mask) audio_emb = audio_emb.to( device=self.audioproj.device, dtype=self.audioproj.dtype) audio_emb = self.audioproj(audio_emb) # condition forward if not uncond_img_fwd: ref_timesteps = torch.zeros_like(timesteps) ref_timesteps = repeat( ref_timesteps, "b -> (repeat b)", repeat=ref_image_latents.size(0) // ref_timesteps.size(0), ) self.reference_unet( ref_image_latents, ref_timesteps, encoder_hidden_states=face_emb, return_dict=False, ) self.reference_control_reader.update(self.reference_control_writer) if uncond_audio_fwd: audio_emb = torch.zeros_like(audio_emb).to( device=audio_emb.device, dtype=audio_emb.dtype ) model_pred = self.denoising_unet( noisy_latents, timesteps, mask_cond_fea=mask_feature, encoder_hidden_states=face_emb, audio_embedding=audio_emb, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask ).sample return model_pred def get_attention_mask(mask: torch.Tensor, weight_dtype: torch.dtype) -> torch.Tensor: """ Rearrange the mask tensors to the required format. Args: mask (torch.Tensor): The input mask tensor. weight_dtype (torch.dtype): The data type for the mask tensor. Returns: torch.Tensor: The rearranged mask tensor. """ if isinstance(mask, List): _mask = [] for m in mask: _mask.append( rearrange(m, "b f 1 h w -> (b f) (h w)").to(weight_dtype)) return _mask mask = rearrange(mask, "b f 1 h w -> (b f) (h w)").to(weight_dtype) return mask def get_noise_scheduler(cfg: argparse.Namespace) -> Tuple[DDIMScheduler, DDIMScheduler]: """ Create noise scheduler for training. Args: cfg (argparse.Namespace): Configuration object. Returns: Tuple[DDIMScheduler, DDIMScheduler]: Train noise scheduler and validation noise scheduler. """ sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs) if cfg.enable_zero_snr: sched_kwargs.update( rescale_betas_zero_snr=True, timestep_spacing="trailing", prediction_type="v_prediction", ) val_noise_scheduler = DDIMScheduler(**sched_kwargs) sched_kwargs.update({"beta_schedule": "scaled_linear"}) train_noise_scheduler = DDIMScheduler(**sched_kwargs) return train_noise_scheduler, val_noise_scheduler def process_audio_emb(audio_emb: torch.Tensor) -> torch.Tensor: """ Process the audio embedding to concatenate with other tensors. Parameters: audio_emb (torch.Tensor): The audio embedding tensor to process. Returns: concatenated_tensors (List[torch.Tensor]): The concatenated tensor list. """ concatenated_tensors = [] for i in range(audio_emb.shape[0]): vectors_to_concat = [ audio_emb[max(min(i + j, audio_emb.shape[0] - 1), 0)]for j in range(-2, 3)] concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0)) audio_emb = torch.stack(concatenated_tensors, dim=0) return audio_emb def log_validation( accelerator: Accelerator, vae: AutoencoderKL, net: Net, scheduler: DDIMScheduler, width: int, height: int, clip_length: int = 24, generator: torch.Generator = None, cfg: dict = None, save_dir: str = None, global_step: int = 0, times: int = None, face_analysis_model_path: str = "", ) -> None: """ Log validation video during the training process. Args: accelerator (Accelerator): The accelerator for distributed training. vae (AutoencoderKL): The autoencoder model. net (Net): The main neural network model. scheduler (DDIMScheduler): The scheduler for noise. width (int): The width of the input images. height (int): The height of the input images. clip_length (int): The length of the video clips. Defaults to 24. generator (torch.Generator): The random number generator. Defaults to None. cfg (dict): The configuration dictionary. Defaults to None. save_dir (str): The directory to save validation results. Defaults to None. global_step (int): The current global step in training. Defaults to 0. times (int): The number of inference times. Defaults to None. face_analysis_model_path (str): The path to the face analysis model. Defaults to "". Returns: torch.Tensor: The tensor result of the validation. """ ori_net = accelerator.unwrap_model(net) reference_unet = ori_net.reference_unet denoising_unet = ori_net.denoising_unet face_locator = ori_net.face_locator imageproj = ori_net.imageproj audioproj = ori_net.audioproj generator = torch.manual_seed(42) tmp_denoising_unet = copy.deepcopy(denoising_unet) pipeline = FaceAnimatePipeline( vae=vae, reference_unet=reference_unet, denoising_unet=tmp_denoising_unet, face_locator=face_locator, image_proj=imageproj, scheduler=scheduler, ) pipeline = pipeline.to("cuda") image_processor = ImageProcessor((width, height), face_analysis_model_path) audio_processor = AudioProcessor( cfg.data.sample_rate, cfg.data.fps, cfg.wav2vec_config.model_path, cfg.wav2vec_config.features == "last", os.path.dirname(cfg.audio_separator.model_path), os.path.basename(cfg.audio_separator.model_path), os.path.join(save_dir, '.cache', "audio_preprocess") ) for idx, ref_img_path in enumerate(cfg.ref_img_path): audio_path = cfg.audio_path[idx] source_image_pixels, \ source_image_face_region, \ source_image_face_emb, \ source_image_full_mask, \ source_image_face_mask, \ source_image_lip_mask = image_processor.preprocess( ref_img_path, os.path.join(save_dir, '.cache'), cfg.face_expand_ratio) audio_emb, audio_length = audio_processor.preprocess( audio_path, clip_length) audio_emb = process_audio_emb(audio_emb) source_image_pixels = source_image_pixels.unsqueeze(0) source_image_face_region = source_image_face_region.unsqueeze(0) source_image_face_emb = source_image_face_emb.reshape(1, -1) source_image_face_emb = torch.tensor(source_image_face_emb) source_image_full_mask = [ (mask.repeat(clip_length, 1)) for mask in source_image_full_mask ] source_image_face_mask = [ (mask.repeat(clip_length, 1)) for mask in source_image_face_mask ] source_image_lip_mask = [ (mask.repeat(clip_length, 1)) for mask in source_image_lip_mask ] times = audio_emb.shape[0] // clip_length tensor_result = [] generator = torch.manual_seed(42) for t in range(times): print(f"[{t+1}/{times}]") if len(tensor_result) == 0: # The first iteration motion_zeros = source_image_pixels.repeat( cfg.data.n_motion_frames, 1, 1, 1) motion_zeros = motion_zeros.to( dtype=source_image_pixels.dtype, device=source_image_pixels.device) pixel_values_ref_img = torch.cat( [source_image_pixels, motion_zeros], dim=0) # concat the ref image and the first motion frames else: motion_frames = tensor_result[-1][0] motion_frames = motion_frames.permute(1, 0, 2, 3) motion_frames = motion_frames[0 - cfg.data.n_motion_frames:] motion_frames = motion_frames * 2.0 - 1.0 motion_frames = motion_frames.to( dtype=source_image_pixels.dtype, device=source_image_pixels.device) pixel_values_ref_img = torch.cat( [source_image_pixels, motion_frames], dim=0) # concat the ref image and the motion frames pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0) audio_tensor = audio_emb[ t * clip_length: min((t + 1) * clip_length, audio_emb.shape[0]) ] audio_tensor = audio_tensor.unsqueeze(0) audio_tensor = audio_tensor.to( device=audioproj.device, dtype=audioproj.dtype) audio_tensor = audioproj(audio_tensor) pipeline_output = pipeline( ref_image=pixel_values_ref_img, audio_tensor=audio_tensor, face_emb=source_image_face_emb, face_mask=source_image_face_region, pixel_values_full_mask=source_image_full_mask, pixel_values_face_mask=source_image_face_mask, pixel_values_lip_mask=source_image_lip_mask, width=cfg.data.train_width, height=cfg.data.train_height, video_length=clip_length, num_inference_steps=cfg.inference_steps, guidance_scale=cfg.cfg_scale, generator=generator, ) tensor_result.append(pipeline_output.videos) tensor_result = torch.cat(tensor_result, dim=2) tensor_result = tensor_result.squeeze(0) tensor_result = tensor_result[:, :audio_length] audio_name = os.path.basename(audio_path).split('.')[0] ref_name = os.path.basename(ref_img_path).split('.')[0] output_file = os.path.join(save_dir,f"{global_step}_{ref_name}_{audio_name}.mp4") # save the result after all iteration tensor_to_video(tensor_result, output_file, audio_path) # clean up del tmp_denoising_unet del pipeline del image_processor del audio_processor torch.cuda.empty_cache() return tensor_result def train_stage2_process(cfg: argparse.Namespace) -> None: """ Trains the model using the given configuration (cfg). Args: cfg (dict): The configuration dictionary containing the parameters for training. Notes: - This function trains the model using the given configuration. - It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler. - The training progress is logged and tracked using the accelerator. - The trained model is saved after the training is completed. """ kwargs = DistributedDataParallelKwargs(find_unused_parameters=False) accelerator = Accelerator( gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps, mixed_precision=cfg.solver.mixed_precision, log_with="mlflow", project_dir="./mlruns", kwargs_handlers=[kwargs], ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if cfg.seed is not None: seed_everything(cfg.seed) # create output dir for training exp_name = cfg.exp_name save_dir = f"{cfg.output_dir}/{exp_name}" checkpoint_dir = os.path.join(save_dir, "checkpoints") module_dir = os.path.join(save_dir, "modules") validation_dir = os.path.join(save_dir, "validation") if accelerator.is_main_process: init_output_dir([save_dir, checkpoint_dir, module_dir, validation_dir]) accelerator.wait_for_everyone() if cfg.weight_dtype == "fp16": weight_dtype = torch.float16 elif cfg.weight_dtype == "bf16": weight_dtype = torch.bfloat16 elif cfg.weight_dtype == "fp32": weight_dtype = torch.float32 else: raise ValueError( f"Do not support weight dtype: {cfg.weight_dtype} during training" ) # Create Models vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to( "cuda", dtype=weight_dtype ) reference_unet = UNet2DConditionModel.from_pretrained( cfg.base_model_path, subfolder="unet", ).to(device="cuda", dtype=weight_dtype) denoising_unet = UNet3DConditionModel.from_pretrained_2d( cfg.base_model_path, cfg.mm_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container( cfg.unet_additional_kwargs), use_landmark=False ).to(device="cuda", dtype=weight_dtype) imageproj = ImageProjModel( cross_attention_dim=denoising_unet.config.cross_attention_dim, clip_embeddings_dim=512, clip_extra_context_tokens=4, ).to(device="cuda", dtype=weight_dtype) face_locator = FaceLocator( conditioning_embedding_channels=320, ).to(device="cuda", dtype=weight_dtype) audioproj = AudioProjModel( seq_len=5, blocks=12, channels=768, intermediate_dim=512, output_dim=768, context_tokens=32, ).to(device="cuda", dtype=weight_dtype) # load module weight from stage 1 stage1_ckpt_dir = cfg.stage1_ckpt_dir denoising_unet.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "denoising_unet.pth"), map_location="cpu", ), strict=False, ) reference_unet.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "reference_unet.pth"), map_location="cpu", ), strict=False, ) face_locator.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "face_locator.pth"), map_location="cpu", ), strict=False, ) imageproj.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "imageproj.pth"), map_location="cpu", ), strict=False, ) # Freeze vae.requires_grad_(False) imageproj.requires_grad_(False) reference_unet.requires_grad_(False) denoising_unet.requires_grad_(False) face_locator.requires_grad_(False) audioproj.requires_grad_(True) # Set motion module learnable trainable_modules = cfg.trainable_para for name, module in denoising_unet.named_modules(): if any(trainable_mod in name for trainable_mod in trainable_modules): for params in module.parameters(): params.requires_grad_(True) reference_control_writer = ReferenceAttentionControl( reference_unet, do_classifier_free_guidance=False, mode="write", fusion_blocks="full", ) reference_control_reader = ReferenceAttentionControl( denoising_unet, do_classifier_free_guidance=False, mode="read", fusion_blocks="full", ) net = Net( reference_unet, denoising_unet, face_locator, reference_control_writer, reference_control_reader, imageproj, audioproj, ).to(dtype=weight_dtype) # get noise scheduler train_noise_scheduler, val_noise_scheduler = get_noise_scheduler(cfg) if cfg.solver.enable_xformers_memory_efficient_attention: if is_xformers_available(): reference_unet.enable_xformers_memory_efficient_attention() denoising_unet.enable_xformers_memory_efficient_attention() else: raise ValueError( "xformers is not available. Make sure it is installed correctly" ) if cfg.solver.gradient_checkpointing: reference_unet.enable_gradient_checkpointing() denoising_unet.enable_gradient_checkpointing() if cfg.solver.scale_lr: learning_rate = ( cfg.solver.learning_rate * cfg.solver.gradient_accumulation_steps * cfg.data.train_bs * accelerator.num_processes ) else: learning_rate = cfg.solver.learning_rate # Initialize the optimizer if cfg.solver.use_8bit_adam: try: import bitsandbytes as bnb except ImportError as exc: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) from exc optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW trainable_params = list( filter(lambda p: p.requires_grad, net.parameters())) logger.info(f"Total trainable params {len(trainable_params)}") optimizer = optimizer_cls( trainable_params, lr=learning_rate, betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2), weight_decay=cfg.solver.adam_weight_decay, eps=cfg.solver.adam_epsilon, ) # Scheduler lr_scheduler = get_scheduler( cfg.solver.lr_scheduler, optimizer=optimizer, num_warmup_steps=cfg.solver.lr_warmup_steps * cfg.solver.gradient_accumulation_steps, num_training_steps=cfg.solver.max_train_steps * cfg.solver.gradient_accumulation_steps, ) # get data loader train_dataset = TalkingVideoDataset( img_size=(cfg.data.train_width, cfg.data.train_height), sample_rate=cfg.data.sample_rate, n_sample_frames=cfg.data.n_sample_frames, n_motion_frames=cfg.data.n_motion_frames, audio_margin=cfg.data.audio_margin, data_meta_paths=cfg.data.train_meta_paths, wav2vec_cfg=cfg.wav2vec_config, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=16 ) # Prepare everything with our `accelerator`. ( net, optimizer, train_dataloader, lr_scheduler, ) = accelerator.prepare( net, optimizer, train_dataloader, lr_scheduler, ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil( len(train_dataloader) / cfg.solver.gradient_accumulation_steps ) # Afterwards we recalculate our number of training epochs num_train_epochs = math.ceil( cfg.solver.max_train_steps / num_update_steps_per_epoch ) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: run_time = datetime.now().strftime("%Y%m%d-%H%M") accelerator.init_trackers( exp_name, init_kwargs={"mlflow": {"run_name": run_time}}, ) # dump config file mlflow.log_dict( OmegaConf.to_container( cfg), "config.yaml" ) logger.info(f"save config to {save_dir}") OmegaConf.save( cfg, os.path.join(save_dir, "config.yaml") ) # Train! total_batch_size = ( cfg.data.train_bs * accelerator.num_processes * cfg.solver.gradient_accumulation_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {cfg.data.train_bs}") logger.info( f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" ) logger.info( f" Gradient Accumulation steps = {cfg.solver.gradient_accumulation_steps}" ) logger.info(f" Total optimization steps = {cfg.solver.max_train_steps}") global_step = 0 first_epoch = 0 # # Potentially load in the weights and states from a previous save if cfg.resume_from_checkpoint: logger.info(f"Loading checkpoint from {checkpoint_dir}") global_step = load_checkpoint(cfg, checkpoint_dir, accelerator) first_epoch = global_step // num_update_steps_per_epoch # Only show the progress bar once on each machine. progress_bar = tqdm( range(global_step, cfg.solver.max_train_steps), disable=not accelerator.is_local_main_process, ) progress_bar.set_description("Steps") for _ in range(first_epoch, num_train_epochs): train_loss = 0.0 t_data_start = time.time() for _, batch in enumerate(train_dataloader): t_data = time.time() - t_data_start with accelerator.accumulate(net): # Convert videos to latent space pixel_values_vid = batch["pixel_values_vid"].to(weight_dtype) pixel_values_face_mask = batch["pixel_values_face_mask"] pixel_values_face_mask = get_attention_mask( pixel_values_face_mask, weight_dtype ) pixel_values_lip_mask = batch["pixel_values_lip_mask"] pixel_values_lip_mask = get_attention_mask( pixel_values_lip_mask, weight_dtype ) pixel_values_full_mask = batch["pixel_values_full_mask"] pixel_values_full_mask = get_attention_mask( pixel_values_full_mask, weight_dtype ) with torch.no_grad(): video_length = pixel_values_vid.shape[1] pixel_values_vid = rearrange( pixel_values_vid, "b f c h w -> (b f) c h w" ) latents = vae.encode(pixel_values_vid).latent_dist.sample() latents = rearrange( latents, "(b f) c h w -> b c f h w", f=video_length ) latents = latents * 0.18215 noise = torch.randn_like(latents) if cfg.noise_offset > 0: noise += cfg.noise_offset * torch.randn( (latents.shape[0], latents.shape[1], 1, 1, 1), device=latents.device, ) bsz = latents.shape[0] # Sample a random timestep for each video timesteps = torch.randint( 0, train_noise_scheduler.num_train_timesteps, (bsz,), device=latents.device, ) timesteps = timesteps.long() # mask for face locator pixel_values_mask = ( batch["pixel_values_mask"].unsqueeze( 1).to(dtype=weight_dtype) ) pixel_values_mask = repeat( pixel_values_mask, "b f c h w -> b (repeat f) c h w", repeat=video_length, ) pixel_values_mask = pixel_values_mask.transpose( 1, 2) uncond_img_fwd = random.random() < cfg.uncond_img_ratio uncond_audio_fwd = random.random() < cfg.uncond_audio_ratio start_frame = random.random() < cfg.start_ratio pixel_values_ref_img = batch["pixel_values_ref_img"].to( dtype=weight_dtype ) # initialize the motion frames as zero maps if start_frame: pixel_values_ref_img[:, 1:] = 0.0 ref_img_and_motion = rearrange( pixel_values_ref_img, "b f c h w -> (b f) c h w" ) with torch.no_grad(): ref_image_latents = vae.encode( ref_img_and_motion ).latent_dist.sample() ref_image_latents = ref_image_latents * 0.18215 image_prompt_embeds = batch["face_emb"].to( dtype=imageproj.dtype, device=imageproj.device ) # add noise noisy_latents = train_noise_scheduler.add_noise( latents, noise, timesteps ) # Get the target for loss depending on the prediction type if train_noise_scheduler.prediction_type == "epsilon": target = noise elif train_noise_scheduler.prediction_type == "v_prediction": target = train_noise_scheduler.get_velocity( latents, noise, timesteps ) else: raise ValueError( f"Unknown prediction type {train_noise_scheduler.prediction_type}" ) # ---- Forward!!! ----- model_pred = net( noisy_latents=noisy_latents, timesteps=timesteps, ref_image_latents=ref_image_latents, face_emb=image_prompt_embeds, mask=pixel_values_mask, full_mask=pixel_values_full_mask, face_mask=pixel_values_face_mask, lip_mask=pixel_values_lip_mask, audio_emb=batch["audio_tensor"].to( dtype=weight_dtype), uncond_img_fwd=uncond_img_fwd, uncond_audio_fwd=uncond_audio_fwd, ) if cfg.snr_gamma == 0: loss = F.mse_loss( model_pred.float(), target.float(), reduction="mean", ) else: snr = compute_snr(train_noise_scheduler, timesteps) if train_noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack( [snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1 ).min(dim=1)[0] / snr ) loss = F.mse_loss( model_pred.float(), target.float(), reduction="mean", ) loss = ( loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights ).mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather( loss.repeat(cfg.data.train_bs)).mean() train_loss += avg_loss.item() / cfg.solver.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_( trainable_params, cfg.solver.max_grad_norm, ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() if accelerator.sync_gradients: reference_control_reader.clear() reference_control_writer.clear() progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % cfg.val.validation_steps == 0 or global_step==1: if accelerator.is_main_process: generator = torch.Generator(device=accelerator.device) generator.manual_seed(cfg.seed) log_validation( accelerator=accelerator, vae=vae, net=net, scheduler=val_noise_scheduler, width=cfg.data.train_width, height=cfg.data.train_height, clip_length=cfg.data.n_sample_frames, cfg=cfg, save_dir=validation_dir, global_step=global_step, times=cfg.single_inference_times if cfg.single_inference_times is not None else None, face_analysis_model_path=cfg.face_analysis_model_path ) logs = { "step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "td": f"{t_data:.2f}s", } t_data_start = time.time() progress_bar.set_postfix(**logs) if ( global_step % cfg.checkpointing_steps == 0 or global_step == cfg.solver.max_train_steps ): # save model save_path = os.path.join( checkpoint_dir, f"checkpoint-{global_step}") if accelerator.is_main_process: delete_additional_ckpt(checkpoint_dir, 30) accelerator.wait_for_everyone() accelerator.save_state(save_path) # save model weight unwrap_net = accelerator.unwrap_model(net) if accelerator.is_main_process: save_checkpoint( unwrap_net, module_dir, "net", global_step, total_limit=30, ) if global_step >= cfg.solver.max_train_steps: break # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() accelerator.end_training() def load_config(config_path: str) -> dict: """ Loads the configuration file. Args: config_path (str): Path to the configuration file. Returns: dict: The configuration dictionary. """ if config_path.endswith(".yaml"): return OmegaConf.load(config_path) if config_path.endswith(".py"): return import_filename(config_path).cfg raise ValueError("Unsupported format for config file") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--config", type=str, default="./configs/train/stage2.yaml" ) args = parser.parse_args() try: config = load_config(args.config) train_stage2_process(config) except Exception as e: logging.error("Failed to execute the training process: %s", e)
9,334
4d47c87601970edb30a6004ea1f343f7e1b3fffcbef50adb7d2729a39fc672af
36.686176
126
0.590891
4.001178
false
false
false
false
microsoft/TRELLIS
dataset_toolkits/datasets/HSSD.py
3,654
0
MIT License
import os import re import argparse import tarfile from concurrent.futures import ThreadPoolExecutor from tqdm import tqdm import pandas as pd import huggingface_hub from utils import get_file_hash def add_args(parser: argparse.ArgumentParser): pass def get_metadata(**kwargs): metadata = pd.read_csv("hf://datasets/JeffreyXiang/TRELLIS-500K/HSSD.csv") return metadata def download(metadata, output_dir, **kwargs): os.makedirs(os.path.join(output_dir, 'raw'), exist_ok=True) # check login try: huggingface_hub.whoami() except: print("\033[93m") print("Haven't logged in to the Hugging Face Hub.") print("Visit https://huggingface.co/settings/tokens to get a token.") print("\033[0m") huggingface_hub.login() try: huggingface_hub.hf_hub_download(repo_id="hssd/hssd-models", filename="README.md", repo_type="dataset") except: print("\033[93m") print("Error downloading HSSD dataset.") print("Check if you have access to the HSSD dataset.") print("Visit https://huggingface.co/datasets/hssd/hssd-models for more information") print("\033[0m") downloaded = {} metadata = metadata.set_index("file_identifier") with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor, \ tqdm(total=len(metadata), desc="Downloading") as pbar: def worker(instance: str) -> str: try: huggingface_hub.hf_hub_download(repo_id="hssd/hssd-models", filename=instance, repo_type="dataset", local_dir=os.path.join(output_dir, 'raw')) sha256 = get_file_hash(os.path.join(output_dir, 'raw', instance)) pbar.update() return sha256 except Exception as e: pbar.update() print(f"Error extracting for {instance}: {e}") return None sha256s = executor.map(worker, metadata.index) executor.shutdown(wait=True) for k, sha256 in zip(metadata.index, sha256s): if sha256 is not None: if sha256 == metadata.loc[k, "sha256"]: downloaded[sha256] = os.path.join('raw', k) else: print(f"Error downloading {k}: sha256s do not match") return pd.DataFrame(downloaded.items(), columns=['sha256', 'local_path']) def foreach_instance(metadata, output_dir, func, max_workers=None, desc='Processing objects') -> pd.DataFrame: import os from concurrent.futures import ThreadPoolExecutor from tqdm import tqdm # load metadata metadata = metadata.to_dict('records') # processing objects records = [] max_workers = max_workers or os.cpu_count() try: with ThreadPoolExecutor(max_workers=max_workers) as executor, \ tqdm(total=len(metadata), desc=desc) as pbar: def worker(metadatum): try: local_path = metadatum['local_path'] sha256 = metadatum['sha256'] file = os.path.join(output_dir, local_path) record = func(file, sha256) if record is not None: records.append(record) pbar.update() except Exception as e: print(f"Error processing object {sha256}: {e}") pbar.update() executor.map(worker, metadata) executor.shutdown(wait=True) except: print("Error happened during processing.") return pd.DataFrame.from_records(records)
941
2941f745453ea7f0e0e270ce24debab54a8e2721fc0a4b92b0a5a14fbb63bf49
34.475728
158
0.594964
3.883103
false
false
false
false
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
1