Datasets:

Modalities:
Tabular
Formats:
parquet
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
mask
int64
n_pcs
int64
pcs
list
steps
list
k
int64
zeitler_defect
int64
entropy_bits
float64
entropy_norm
float64
lz_norm
float64
evenness_defect
float64
arrangement_defect
float64
unique_intervals_defect
float64
composite_defect
float64
x_0
int64
x_1
int64
x_2
int64
x_3
int64
x_4
int64
x_5
int64
x_6
int64
x_7
int64
x_8
int64
x_9
int64
x_10
int64
x_11
int64
3
12
[ 0, 1 ]
[ 1, 11 ]
2
2
1
1
1.5
1
0
1
0.7
1
1
0
0
0
0
0
0
0
0
0
0
5
12
[ 0, 2 ]
[ 2, 10 ]
2
2
1
1
2
0.8
0
1
0.6
1
0
1
0
0
0
0
0
0
0
0
0
7
12
[ 0, 1, 2 ]
[ 1, 1, 10 ]
3
3
0.918296
0.918296
1.333333
1
0
0.5
0.6
1
1
1
0
0
0
0
0
0
0
0
0
9
12
[ 0, 3 ]
[ 3, 9 ]
2
2
1
1
1.5
0.6
0
1
0.5
1
0
0
1
0
0
0
0
0
0
0
0
11
12
[ 0, 1, 3 ]
[ 1, 2, 9 ]
3
3
1.584963
1
1.333333
0.83887
0.011628
1
0.622924
1
1
0
1
0
0
0
0
0
0
0
0
13
12
[ 0, 2, 3 ]
[ 2, 1, 9 ]
3
3
1.584963
1
1.333333
0.83887
0.011628
1
0.622924
1
0
1
1
0
0
0
0
0
0
0
0
15
12
[ 0, 1, 2, 3 ]
[ 1, 1, 1, 9 ]
4
4
0.811278
0.811278
1
1
0
0.333333
0.566667
1
1
1
1
0
0
0
0
0
0
0
0
17
12
[ 0, 4 ]
[ 4, 8 ]
2
2
1
1
1.5
0.4
0
1
0.4
1
0
0
0
1
0
0
0
0
0
0
0
19
12
[ 0, 1, 4 ]
[ 1, 3, 8 ]
3
3
1.584963
1
1.333333
0.693889
0.054054
1
0.563161
1
1
0
0
1
0
0
0
0
0
0
0
21
12
[ 0, 2, 4 ]
[ 2, 2, 8 ]
3
3
0.918296
0.918296
1
0.666667
0
0.5
0.433333
1
0
1
0
1
0
0
0
0
0
0
0
23
12
[ 0, 1, 2, 4 ]
[ 1, 1, 2, 8 ]
4
4
1.5
0.946395
1
0.841625
0.014286
0.666667
0.558432
1
1
1
0
1
0
0
0
0
0
0
0
25
12
[ 0, 3, 4 ]
[ 3, 1, 8 ]
3
3
1.584963
1
1.333333
0.693889
0.054054
1
0.563161
1
0
0
1
1
0
0
0
0
0
0
0
27
12
[ 0, 1, 3, 4 ]
[ 1, 2, 1, 8 ]
4
4
1.5
0.946395
1.25
0.841625
0
0.666667
0.554146
1
1
0
1
1
0
0
0
0
0
0
0
29
12
[ 0, 2, 3, 4 ]
[ 2, 1, 1, 8 ]
4
4
1.5
0.946395
1.25
0.841625
0.014286
0.666667
0.558432
1
0
1
1
1
0
0
0
0
0
0
0
31
12
[ 0, 1, 2, 3, 4 ]
[ 1, 1, 1, 1, 8 ]
5
5
0.721928
0.721928
0.8
1
0
0.25
0.55
1
1
1
1
1
0
0
0
0
0
0
0
33
12
[ 0, 5 ]
[ 5, 7 ]
2
1
1
1
1.5
0.2
0
1
0.3
1
0
0
0
0
1
0
0
0
0
0
0
35
12
[ 0, 1, 5 ]
[ 1, 4, 7 ]
3
2
1.584963
1
1.333333
0.57735
0.136364
1
0.529584
1
1
0
0
0
1
0
0
0
0
0
0
37
12
[ 0, 2, 5 ]
[ 2, 3, 7 ]
3
2
1.584963
1
1.333333
0.509175
0.016129
1
0.459426
1
0
1
0
0
1
0
0
0
0
0
0
39
12
[ 0, 1, 2, 5 ]
[ 1, 1, 3, 7 ]
4
3
1.5
0.946395
1
0.707107
0.066667
0.666667
0.506887
1
1
1
0
0
1
0
0
0
0
0
0
41
12
[ 0, 3, 5 ]
[ 3, 2, 7 ]
3
2
1.584963
1
1.333333
0.509175
0.016129
1
0.459426
1
0
0
1
0
1
0
0
0
0
0
0
43
12
[ 0, 1, 3, 5 ]
[ 1, 2, 2, 7 ]
4
3
1.5
0.946395
1.25
0.677003
0.017241
0.666667
0.477007
1
1
0
1
0
1
0
0
0
0
0
0
45
12
[ 0, 2, 3, 5 ]
[ 2, 1, 2, 7 ]
4
3
1.5
0.946395
1.25
0.677003
0
0.666667
0.471835
1
0
1
1
0
1
0
0
0
0
0
0
47
12
[ 0, 1, 2, 3, 5 ]
[ 1, 1, 1, 2, 7 ]
5
4
1.370951
0.864974
1
0.832993
0.017857
0.5
0.521854
1
1
1
1
0
1
0
0
0
0
0
0
49
12
[ 0, 4, 5 ]
[ 4, 1, 7 ]
3
2
1.584963
1
1.333333
0.57735
0.136364
1
0.529584
1
0
0
0
1
1
0
0
0
0
0
0
51
12
[ 0, 1, 4, 5 ]
[ 1, 3, 1, 7 ]
4
3
1.5
0.946395
1.25
0.707107
0
0.666667
0.486887
1
1
0
0
1
1
0
0
0
0
0
0
53
12
[ 0, 2, 4, 5 ]
[ 2, 2, 1, 7 ]
4
3
1.5
0.946395
1
0.677003
0.017241
0.666667
0.477007
1
0
1
0
1
1
0
0
0
0
0
0
55
12
[ 0, 1, 2, 4, 5 ]
[ 1, 1, 2, 1, 7 ]
5
4
1.370951
0.864974
0.8
0.832993
0.017857
0.5
0.521854
1
1
1
0
1
1
0
0
0
0
0
0
57
12
[ 0, 3, 4, 5 ]
[ 3, 1, 1, 7 ]
4
3
1.5
0.946395
1.25
0.707107
0.066667
0.666667
0.506887
1
0
0
1
1
1
0
0
0
0
0
0
59
12
[ 0, 1, 3, 4, 5 ]
[ 1, 2, 1, 1, 7 ]
5
4
1.370951
0.864974
1.2
0.832993
0.017857
0.5
0.521854
1
1
0
1
1
1
0
0
0
0
0
0
61
12
[ 0, 2, 3, 4, 5 ]
[ 2, 1, 1, 1, 7 ]
5
4
1.370951
0.864974
1
0.832993
0.017857
0.5
0.521854
1
0
1
1
1
1
0
0
0
0
0
0
63
12
[ 0, 1, 2, 3, 4, 5 ]
[ 1, 1, 1, 1, 1, 7 ]
6
5
0.650022
0.650022
0.833333
1
0
0.2
0.54
1
1
1
1
1
1
0
0
0
0
0
0
65
12
[ 0, 6 ]
[ 6, 6 ]
2
2
-0
0
1.5
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
67
12
[ 0, 1, 6 ]
[ 1, 5, 6 ]
3
2
1.584963
1
1.333333
0.509175
0.016129
1
0.459426
1
1
0
0
0
0
1
0
0
0
0
0
69
12
[ 0, 2, 6 ]
[ 2, 4, 6 ]
3
3
1.584963
1
1.333333
0.3849
0.071429
1
0.413879
1
0
1
0
0
0
1
0
0
0
0
0
71
12
[ 0, 1, 2, 6 ]
[ 1, 1, 4, 6 ]
4
3
1.5
0.946395
1
0.612372
0.074074
0.666667
0.461742
1
1
1
0
0
0
1
0
0
0
0
0
73
12
[ 0, 3, 6 ]
[ 3, 3, 6 ]
3
3
0.918296
0.918296
1
0.333333
0
0.5
0.266667
1
0
0
1
0
0
1
0
0
0
0
0
75
12
[ 0, 1, 3, 6 ]
[ 1, 2, 3, 6 ]
4
3
2
1
1.25
0.540062
0.08
1
0.494031
1
1
0
1
0
0
1
0
0
0
0
0
77
12
[ 0, 2, 3, 6 ]
[ 2, 1, 3, 6 ]
4
4
2
1
1.25
0.540062
0.02
1
0.476031
1
0
1
1
0
0
1
0
0
0
0
0
79
12
[ 0, 1, 2, 3, 6 ]
[ 1, 1, 1, 3, 6 ]
5
4
1.370951
0.864974
1
0.699854
0.083333
0.5
0.474927
1
1
1
1
0
0
1
0
0
0
0
0
81
12
[ 0, 4, 6 ]
[ 4, 2, 6 ]
3
3
1.584963
1
1.333333
0.3849
0.071429
1
0.413879
1
0
0
0
1
0
1
0
0
0
0
0
83
12
[ 0, 1, 4, 6 ]
[ 1, 3, 2, 6 ]
4
3
2
1
1.25
0.540062
0.02
1
0.476031
1
1
0
0
1
0
1
0
0
0
0
0
85
12
[ 0, 2, 4, 6 ]
[ 2, 2, 2, 6 ]
4
4
0.811278
0.811278
1
0.5
0
0.333333
0.316667
1
0
1
0
1
0
1
0
0
0
0
0
87
12
[ 0, 1, 2, 4, 6 ]
[ 1, 1, 2, 2, 6 ]
5
4
1.521928
0.96023
1
0.662401
0.043478
0.5
0.444244
1
1
1
0
1
0
1
0
0
0
0
0
89
12
[ 0, 3, 4, 6 ]
[ 3, 1, 2, 6 ]
4
4
2
1
1.25
0.540062
0.02
1
0.476031
1
0
0
1
1
0
1
0
0
0
0
0
91
12
[ 0, 1, 3, 4, 6 ]
[ 1, 2, 1, 2, 6 ]
5
4
1.521928
0.96023
1
0.662401
0.043478
0.5
0.444244
1
1
0
1
1
0
1
0
0
0
0
0
93
12
[ 0, 2, 3, 4, 6 ]
[ 2, 1, 1, 2, 6 ]
5
5
1.521928
0.96023
1
0.662401
0
0.5
0.431201
1
0
1
1
1
0
1
0
0
0
0
0
95
12
[ 0, 1, 2, 3, 4, 6 ]
[ 1, 1, 1, 1, 2, 6 ]
6
5
1.251629
0.78969
0.833333
0.816497
0.022727
0.4
0.495066
1
1
1
1
1
0
1
0
0
0
0
0
97
12
[ 0, 5, 6 ]
[ 5, 1, 6 ]
3
2
1.584963
1
1.333333
0.509175
0.016129
1
0.459426
1
0
0
0
0
1
1
0
0
0
0
0
99
12
[ 0, 1, 5, 6 ]
[ 1, 4, 1, 6 ]
4
2
1.5
0.946395
1.25
0.612372
0
0.666667
0.43952
1
1
0
0
0
1
1
0
0
0
0
0
101
12
[ 0, 2, 5, 6 ]
[ 2, 3, 1, 6 ]
4
3
2
1
1.25
0.540062
0.02
1
0.476031
1
0
1
0
0
1
1
0
0
0
0
0
103
12
[ 0, 1, 2, 5, 6 ]
[ 1, 1, 3, 1, 6 ]
5
3
1.370951
0.864974
0.8
0.699854
0.083333
0.5
0.474927
1
1
1
0
0
1
1
0
0
0
0
0
105
12
[ 0, 3, 5, 6 ]
[ 3, 2, 1, 6 ]
4
3
2
1
1.25
0.540062
0.08
1
0.494031
1
0
0
1
0
1
1
0
0
0
0
0
107
12
[ 0, 1, 3, 5, 6 ]
[ 1, 2, 2, 1, 6 ]
5
3
1.521928
0.96023
1
0.662401
0
0.5
0.431201
1
1
0
1
0
1
1
0
0
0
0
0
109
12
[ 0, 2, 3, 5, 6 ]
[ 2, 1, 2, 1, 6 ]
5
4
1.521928
0.96023
1
0.662401
0.043478
0.5
0.444244
1
0
1
1
0
1
1
0
0
0
0
0
111
12
[ 0, 1, 2, 3, 5, 6 ]
[ 1, 1, 1, 2, 1, 6 ]
6
4
1.251629
0.78969
0.833333
0.816497
0.022727
0.4
0.495066
1
1
1
1
0
1
1
0
0
0
0
0
113
12
[ 0, 4, 5, 6 ]
[ 4, 1, 1, 6 ]
4
3
1.5
0.946395
1.25
0.612372
0.074074
0.666667
0.461742
1
0
0
0
1
1
1
0
0
0
0
0
115
12
[ 0, 1, 4, 5, 6 ]
[ 1, 3, 1, 1, 6 ]
5
3
1.370951
0.864974
1.2
0.699854
0.083333
0.5
0.474927
1
1
0
0
1
1
1
0
0
0
0
0
117
12
[ 0, 2, 4, 5, 6 ]
[ 2, 2, 1, 1, 6 ]
5
4
1.521928
0.96023
1
0.662401
0.043478
0.5
0.444244
1
0
1
0
1
1
1
0
0
0
0
0
119
12
[ 0, 1, 2, 4, 5, 6 ]
[ 1, 1, 2, 1, 1, 6 ]
6
4
1.251629
0.78969
0.833333
0.816497
0
0.4
0.488248
1
1
1
0
1
1
1
0
0
0
0
0
121
12
[ 0, 3, 4, 5, 6 ]
[ 3, 1, 1, 1, 6 ]
5
4
1.370951
0.864974
1
0.699854
0.083333
0.5
0.474927
1
0
0
1
1
1
1
0
0
0
0
0
123
12
[ 0, 1, 3, 4, 5, 6 ]
[ 1, 2, 1, 1, 1, 6 ]
6
4
1.251629
0.78969
1
0.816497
0.022727
0.4
0.495066
1
1
0
1
1
1
1
0
0
0
0
0
125
12
[ 0, 2, 3, 4, 5, 6 ]
[ 2, 1, 1, 1, 1, 6 ]
6
5
1.251629
0.78969
0.833333
0.816497
0.022727
0.4
0.495066
1
0
1
1
1
1
1
0
0
0
0
0
127
12
[ 0, 1, 2, 3, 4, 5, 6 ]
[ 1, 1, 1, 1, 1, 1, 6 ]
7
5
0.591673
0.591673
0.714286
1
0
0.2
0.54
1
1
1
1
1
1
1
0
0
0
0
0
129
12
[ 0, 7 ]
[ 7, 5 ]
2
1
1
1
1.5
0.2
0
1
0.3
1
0
0
0
0
0
0
1
0
0
0
0
131
12
[ 0, 1, 7 ]
[ 1, 6, 5 ]
3
2
1.584963
1
1.333333
0.509175
0.016129
1
0.459426
1
1
0
0
0
0
0
1
0
0
0
0
133
12
[ 0, 2, 7 ]
[ 2, 5, 5 ]
3
1
0.918296
0.918296
1.333333
0.333333
0
0.5
0.266667
1
0
1
0
0
0
0
1
0
0
0
0
135
12
[ 0, 1, 2, 7 ]
[ 1, 1, 5, 5 ]
4
2
1
1
1
0.57735
0
0.333333
0.355342
1
1
1
0
0
0
0
1
0
0
0
0
137
12
[ 0, 3, 7 ]
[ 3, 4, 5 ]
3
2
1.584963
1
1.333333
0.19245
0.02
1
0.302225
1
0
0
1
0
0
0
1
0
0
0
0
139
12
[ 0, 1, 3, 7 ]
[ 1, 2, 4, 5 ]
4
3
2
1
1.25
0.456435
0.043478
1
0.441261
1
1
0
1
0
0
0
1
0
0
0
0
141
12
[ 0, 2, 3, 7 ]
[ 2, 1, 4, 5 ]
4
2
2
1
1.25
0.456435
0.043478
1
0.441261
1
0
1
1
0
0
0
1
0
0
0
0
143
12
[ 0, 1, 2, 3, 7 ]
[ 1, 1, 1, 4, 5 ]
5
3
1.370951
0.864974
1
0.6227
0.022727
0.5
0.418168
1
1
1
1
0
0
0
1
0
0
0
0
145
12
[ 0, 4, 7 ]
[ 4, 3, 5 ]
3
2
1.584963
1
1.333333
0.19245
0.02
1
0.302225
1
0
0
0
1
0
0
1
0
0
0
0
147
12
[ 0, 1, 4, 7 ]
[ 1, 3, 3, 5 ]
4
3
1.5
0.946395
1.25
0.408248
0.090909
0.666667
0.36473
1
1
0
0
1
0
0
1
0
0
0
0
149
12
[ 0, 2, 4, 7 ]
[ 2, 2, 3, 5 ]
4
2
1.5
0.946395
1
0.353553
0.02381
0.666667
0.317253
1
0
1
0
1
0
0
1
0
0
0
0
151
12
[ 0, 1, 2, 4, 7 ]
[ 1, 1, 2, 3, 5 ]
5
3
1.921928
0.960964
1
0.534522
0.125
0.75
0.454761
1
1
1
0
1
0
0
1
0
0
0
0
153
12
[ 0, 3, 4, 7 ]
[ 3, 1, 3, 5 ]
4
3
1.5
0.946395
1.25
0.408248
0
0.666667
0.337457
1
0
0
1
1
0
0
1
0
0
0
0
155
12
[ 0, 1, 3, 4, 7 ]
[ 1, 2, 1, 3, 5 ]
5
4
1.921928
0.960964
1.2
0.534522
0.1
0.75
0.447261
1
1
0
1
1
0
0
1
0
0
0
0
157
12
[ 0, 2, 3, 4, 7 ]
[ 2, 1, 1, 3, 5 ]
5
3
1.921928
0.960964
1.2
0.534522
0.025
0.75
0.424761
1
0
1
1
1
0
0
1
0
0
0
0
159
12
[ 0, 1, 2, 3, 4, 7 ]
[ 1, 1, 1, 1, 3, 5 ]
6
4
1.251629
0.78969
0.833333
0.68313
0.105263
0.4
0.453144
1
1
1
1
1
0
0
1
0
0
0
0
161
12
[ 0, 5, 7 ]
[ 5, 2, 5 ]
3
1
0.918296
0.918296
1.333333
0.333333
0
0.5
0.266667
1
0
0
0
0
1
0
1
0
0
0
0
163
12
[ 0, 1, 5, 7 ]
[ 1, 4, 2, 5 ]
4
2
2
1
1.25
0.456435
0.021739
1
0.434739
1
1
0
0
0
1
0
1
0
0
0
0
165
12
[ 0, 2, 5, 7 ]
[ 2, 3, 2, 5 ]
4
1
1.5
0.946395
1.25
0.353553
0
0.666667
0.31011
1
0
1
0
0
1
0
1
0
0
0
0
167
12
[ 0, 1, 2, 5, 7 ]
[ 1, 1, 3, 2, 5 ]
5
2
1.921928
0.960964
1
0.534522
0.1
0.75
0.447261
1
1
1
0
0
1
0
1
0
0
0
0
169
12
[ 0, 3, 5, 7 ]
[ 3, 2, 2, 5 ]
4
2
1.5
0.946395
1.25
0.353553
0.02381
0.666667
0.317253
1
0
0
1
0
1
0
1
0
0
0
0
171
12
[ 0, 1, 3, 5, 7 ]
[ 1, 2, 2, 2, 5 ]
5
3
1.370951
0.864974
1
0.484452
0.026316
0.5
0.350121
1
1
0
1
0
1
0
1
0
0
0
0
173
12
[ 0, 2, 3, 5, 7 ]
[ 2, 1, 2, 2, 5 ]
5
2
1.370951
0.864974
1.2
0.484452
0.026316
0.5
0.350121
1
0
1
1
0
1
0
1
0
0
0
0
175
12
[ 0, 1, 2, 3, 5, 7 ]
[ 1, 1, 1, 2, 2, 5 ]
6
3
1.459148
0.92062
1
0.632456
0.055556
0.4
0.412894
1
1
1
1
0
1
0
1
0
0
0
0
177
12
[ 0, 4, 5, 7 ]
[ 4, 1, 2, 5 ]
4
2
2
1
1.25
0.456435
0.043478
1
0.441261
1
0
0
0
1
1
0
1
0
0
0
0
179
12
[ 0, 1, 4, 5, 7 ]
[ 1, 3, 1, 2, 5 ]
5
3
1.921928
0.960964
1.2
0.534522
0.125
0.75
0.454761
1
1
0
0
1
1
0
1
0
0
0
0
181
12
[ 0, 2, 4, 5, 7 ]
[ 2, 2, 1, 2, 5 ]
5
2
1.370951
0.864974
0.8
0.484452
0.026316
0.5
0.350121
1
0
1
0
1
1
0
1
0
0
0
0
183
12
[ 0, 1, 2, 4, 5, 7 ]
[ 1, 1, 2, 1, 2, 5 ]
6
3
1.459148
0.92062
0.833333
0.632456
0.027778
0.4
0.404561
1
1
1
0
1
1
0
1
0
0
0
0
185
12
[ 0, 3, 4, 5, 7 ]
[ 3, 1, 1, 2, 5 ]
5
3
1.921928
0.960964
1.2
0.534522
0.025
0.75
0.424761
1
0
0
1
1
1
0
1
0
0
0
0
187
12
[ 0, 1, 3, 4, 5, 7 ]
[ 1, 2, 1, 1, 2, 5 ]
6
4
1.459148
0.92062
1
0.632456
0.055556
0.4
0.412894
1
1
0
1
1
1
0
1
0
0
0
0
189
12
[ 0, 2, 3, 4, 5, 7 ]
[ 2, 1, 1, 1, 2, 5 ]
6
3
1.459148
0.92062
1
0.632456
0
0.4
0.396228
1
0
1
1
1
1
0
1
0
0
0
0
191
12
[ 0, 1, 2, 3, 4, 5, 7 ]
[ 1, 1, 1, 1, 1, 2, 5 ]
7
4
1.148835
0.724834
0.857143
0.791623
0.029412
0.4
0.484635
1
1
1
1
1
1
0
1
0
0
0
0
193
12
[ 0, 6, 7 ]
[ 6, 1, 5 ]
3
2
1.584963
1
1.333333
0.509175
0.016129
1
0.459426
1
0
0
0
0
0
1
1
0
0
0
0
195
12
[ 0, 1, 6, 7 ]
[ 1, 5, 1, 5 ]
4
2
1
1
1.25
0.57735
0
0.333333
0.355342
1
1
0
0
0
0
1
1
0
0
0
0
197
12
[ 0, 2, 6, 7 ]
[ 2, 4, 1, 5 ]
4
2
2
1
1.25
0.456435
0.021739
1
0.434739
1
0
1
0
0
0
1
1
0
0
0
0
199
12
[ 0, 1, 2, 6, 7 ]
[ 1, 1, 4, 1, 5 ]
5
2
1.370951
0.864974
0.8
0.6227
0.022727
0.5
0.418168
1
1
1
0
0
0
1
1
0
0
0
0
201
12
[ 0, 3, 6, 7 ]
[ 3, 3, 1, 5 ]
4
3
1.5
0.946395
1
0.408248
0.090909
0.666667
0.36473
1
0
0
1
0
0
1
1
0
0
0
0
End of preview. Expand in Data Studio

Musical Scales in the 12-Tone Equal Temperament System: Defects Dataset

All 12-TET pitch-class sets that include the root (pc 0), with size ≥1 and no max-gap filter. Includes per-scale metrics and binary vectors.

Contents

  • mask: bitmask of present pitch classes (LSB = pc 0).
  • n_pcs: total pitch classes (12).
  • pcs: list of pitch classes present.
  • steps: circular step vector (sorted pcs differences, wrapping at 12).
  • k: number of notes in the scale.
  • x_0 ... x_11: binary vector indicating presence of each pitch class.
  • pcs_json, steps_json: JSON-encoded pcs/steps for convenience.

Defect and entropy metrics

  • zeitler_defect: count of degrees whose perfect fifth (p+7 mod 12) is missing.
  • evenness_defect: normalized spacing unevenness. Compute std of step sizes vs ideal (12/k); divide by the maximum std observed for this k across all scales to map to [0,1].
  • evenness_defect_count: integer unit moves to nearest even partition. Build the ideal integer step pattern (floor/ceil of 12/k summing to 12), sort both actual and ideal steps, take L1 distance, divide by 2 (each +1/–1 pair counts as one move).
  • arrangement_defect: palindromic symmetry defect in [0,1]; 0 if step vector matches some rotation of its reverse (max cosine similarity), 1 for least symmetric.
  • unique_intervals_defect: in [0,1]; 0 if only one distinct step size, 1 if as many distinct step sizes as possible (capped at min(k,6)).
  • composite_defect: weighted mix 0.5*evenness_defect + 0.3*arrangement_defect + 0.2*unique_intervals_defect, in [0,1].
  • entropy_bits: Shannon entropy (bits) of the step-size distribution.
  • entropy_norm: entropy_bits normalized by log2 of the number of distinct step sizes (0–1).
  • lz_norm: normalized LZ76-style complexity of the step sequence (c/L, heuristic).

Generation settings

  • Enumeration: all masks with pc 0 present, k ≥ 1, no max-gap filter (--min-k 1 --no-gap-filter --max-gap 0).
  • Pitch-class system: 12-TET.

How we generated this dataset

  • Scale enumeration: Iterate over all (2^{12}) masks; keep only those with root (pc 0) set and size (k \ge 1). No circular-gap filter is applied in this build.
  • Intervals and steps: For each retained mask, convert to pcs, sort, and build the circular step vector (including wrap-around at 12).
  • Zeitler defect: Count notes whose perfect fifth (p + 7 mod 12) is absent.
  • Evenness metrics:
    • Normalized evenness defect: std of step sizes vs ideal (12/k), divided by the maximum std observed for that (k) across all scales (yields [0,1] within each (k)).
    • Evenness defect count: minimal semitone “unit moves” to reach the nearest integer even partition of 12; sort actual and ideal step patterns, take (\ell_1) distance, divide by 2.
  • Symmetry/interval diversity:
    • Arrangement defect: 1 minus the best cosine similarity between the step vector and any rotation of its reverse (0 = palindromic under some rotation).
    • Unique intervals defect: 0 if one distinct step size; 1 if as many distinct step sizes as possible (capped at (\min(k,6))).
  • Composite defect: Weighted mix (0.5 \cdot \text{evenness} + 0.3 \cdot \text{arrangement} + 0.2 \cdot \text{unique_intervals}).
  • Entropy/complexity:
    • entropy_bits: Shannon entropy (bits) of the step-size distribution.
    • entropy_norm: entropy_bits divided by (\log_2) of the number of distinct step sizes.
    • lz_norm: heuristic LZ76-style normalized complexity of the step sequence (c/L).
  • Representations: Store pcs/steps, mask, k, and binary indicator columns x_0...x_11. Also keep JSON-encoded pcs/steps for CSV friendliness.

Sample results

image

Reference

@misc{buehler_materiomusic,
    title        = {Materiomusic as a Generative Framework for Creativity and Discovery},
    author       = {Buehler, Markus J.},
    institution  = {MIT},
    year         = {2025},
    note         = {Manuscript},
  }
Downloads last month
39