Datasets:
tags:
- time-series
- forecasting
- anomaly-detection
- classification
- TSLib
license: cc-by-4.0
task_categories:
- time-series-forecasting
pretty_name: Time-Series-Library (TSLib)
language:
- en
size_categories:
- 100B<n<1T
configs:
- config_name: ETTh1
description: ETT long-term forecasting subset ETTh1 (hourly).
data_files:
- ETT-small/ETTh1.csv
- config_name: ETTh2
description: ETT long-term forecasting subset ETTh2 (hourly).
data_files:
- ETT-small/ETTh2.csv
- config_name: ETTm1
description: ETT long-term forecasting subset ETTm1 (15-min).
data_files:
- ETT-small/ETTm1.csv
- config_name: ETTm2
description: ETT long-term forecasting subset ETTm2 (15-min).
data_files:
- ETT-small/ETTm2.csv
- config_name: electricity
description: Electricity load forecasting (UCI Electricity).
data_files:
- electricity/electricity.csv
- config_name: traffic
description: Traffic volume forecasting.
data_files:
- traffic/traffic.csv
- config_name: weather
description: Weather time-series forecasting.
data_files:
- weather/weather.csv
- config_name: exchange_rate
description: Exchange rate forecasting.
data_files:
- exchange_rate/exchange_rate.csv
- config_name: national_illness
description: Influenza-like illness (ILI) forecasting.
data_files:
- illness/national_illness.csv
- config_name: m4-yearly
description: M4 Yearly forecasting subset.
data_files:
- m4/Yearly-train.csv
- m4/Yearly-test.csv
- config_name: m4-quarterly
description: M4 Quarterly forecasting subset.
data_files:
- m4/Quarterly-train.csv
- m4/Quarterly-test.csv
- config_name: m4-monthly
description: M4 Monthly forecasting subset.
data_files:
- m4/Monthly-train.csv
- m4/Monthly-test.csv
- config_name: m4-weekly
description: M4 Weekly forecasting subset.
data_files:
- m4/Weekly-train.csv
- m4/Weekly-test.csv
- config_name: m4-daily
description: M4 Daily forecasting subset.
data_files:
- m4/Daily-train.csv
- m4/Daily-test.csv
- config_name: m4-hourly
description: M4 Hourly forecasting subset.
data_files:
- m4/Hourly-train.csv
- m4/Hourly-test.csv
- config_name: EthanolConcentration
description: 'UEA multivariate classification: EthanolConcentration.'
data_files:
- EthanolConcentration/EthanolConcentration_TRAIN.ts
- EthanolConcentration/EthanolConcentration_TEST.ts
- config_name: FaceDetection
description: 'UEA multivariate classification: FaceDetection.'
data_files:
- FaceDetection/FaceDetection_TRAIN.ts
- FaceDetection/FaceDetection_TEST.ts
- config_name: Handwriting
description: 'UEA multivariate classification: Handwriting.'
data_files:
- Handwriting/Handwriting_TRAIN.ts
- Handwriting/Handwriting_TEST.ts
- config_name: Heartbeat
description: 'UEA multivariate classification: Heartbeat.'
data_files:
- Heartbeat/Heartbeat_TRAIN.ts
- Heartbeat/Heartbeat_TEST.ts
- config_name: JapaneseVowels
description: 'UEA multivariate classification: JapaneseVowels.'
data_files:
- JapaneseVowels/JapaneseVowels_TRAIN.ts
- JapaneseVowels/JapaneseVowels_TEST.ts
- config_name: PEMS-SF
description: 'UEA multivariate classification: PEMS-SF.'
data_files:
- PEMS-SF/PEMS-SF_TRAIN.ts
- PEMS-SF/PEMS-SF_TEST.ts
- config_name: SelfRegulationSCP1
description: 'UEA multivariate classification: SelfRegulationSCP1.'
data_files:
- SelfRegulationSCP1/SelfRegulationSCP1_TRAIN.ts
- SelfRegulationSCP1/SelfRegulationSCP1_TEST.ts
- config_name: SelfRegulationSCP2
description: 'UEA multivariate classification: SelfRegulationSCP2.'
data_files:
- SelfRegulationSCP2/SelfRegulationSCP2_TRAIN.ts
- SelfRegulationSCP2/SelfRegulationSCP2_TEST.ts
- config_name: SpokenArabicDigits
description: 'UEA multivariate classification: SpokenArabicDigits.'
data_files:
- SpokenArabicDigits/SpokenArabicDigits_TRAIN.ts
- SpokenArabicDigits/SpokenArabicDigits_TEST.ts
- config_name: UWaveGestureLibrary
description: 'UEA multivariate classification: UWaveGestureLibrary.'
data_files:
- UWaveGestureLibrary/UWaveGestureLibrary_TRAIN.ts
- UWaveGestureLibrary/UWaveGestureLibrary_TEST.ts
- config_name: SMD
description: Server Machine Dataset (SMD) for anomaly detection.
data_files:
- SMD/SMD_train.npy
- SMD/SMD_test.npy
- SMD/SMD_test_label.npy
- SMD/SMD_train.pkl
- SMD/SMD_test.pkl
- SMD/SMD_test_label.pkl
- config_name: MSL
description: NASA Mars Science Laboratory (MSL) anomaly detection.
data_files:
- MSL/MSL_train.npy
- MSL/MSL_test.npy
- MSL/MSL_test_label.npy
- config_name: SMAP
description: NASA Soil Moisture Active Passive (SMAP) anomaly detection.
data_files:
- SMAP/SMAP_train.npy
- SMAP/SMAP_test.npy
- SMAP/SMAP_test_label.npy
- config_name: PSM
description: KPI-based Process/System Monitoring anomaly detection.
data_files:
- PSM/train.csv
- PSM/test.csv
- PSM/test_label.csv
- config_name: SWaT
description: >-
Secure Water Treatment (SWaT) anomaly detection; CSV are preprocessed,
Excel are raw.
data_files:
- SWaT/swat_train.csv
- SWaT/swat_train2.csv
- SWaT/swat2.csv
- SWaT/swat_raw.csv
- SWaT/SWaT_Dataset_Normal_v1.xlsx
- SWaT/SWaT_Dataset_Attack_v0.xlsx
Time-Series-Library (TSLib)
TSLib is an open-source library for deep learning researchers, especially for deep time series analysis.
We provide a neat code base to evaluate advanced deep time series models or develop your model, which covers five mainstream tasks: long- and short-term forecasting, imputation, anomaly detection, and classification.
This benchmark collection is designed to evaluate and develop advanced deep time-series models. For an in-depth exploration of current time-series models and their performance, please refer to our paper Deep Time Series Models: A Comprehensive Survey and Benchmark.
To get started with the codebase and contribute, please visit the GitHub repository.
Dataset Overview
| Tasks | Benchmarks | Metrics | Series Length |
|---|---|---|---|
| Forecasting | Long-term: ETT (4 subsets), Electricity, Traffic, Weather, Exchange, ILI | MSE, MAE | 96~720 (ILI: 24~60) |
| Short-term: M4 (6 subsets) | SMAPE, MASE, OWA | 6~48 | |
| Imputation | ETT (4 subsets), Electricity, Weather | MSE, MAE | 96 |
| Classification | UEA (10 subsets) | Accuracy | 29~1751 |
| Anomaly Detection | SMD, MSL, SMAP, SWaT, PSM | Precision, Recall, F1-Score | 100 |
File Structure
Time-Series-Library/
βββ ETT-small/
βββ EthanolConcentration/
βββ FaceDetection/
βββ Handwriting/
βββ Heartbeat/
βββ JapaneseVowels/
βββ MSL/
βββ PEMS-SF/
βββ PSM/
βββ SMAP/
βββ SMD/
βββ SWaT/
βββ SelfRegulationSCP1/
βββ SelfRegulationSCP2/
βββ SpokenArabicDigits/
βββ UWaveGestureLibrary/
βββ electricity/
βββ exchange_rate/
βββ illness/
βββ m4/
βββ traffic/
βββ weather/
βββ .gitattributes
Usage
You can load the dataset directly using the datasets library:
from datasets import load_dataset
dataset = load_dataset("lalababa/Time-Series-Library", "ETT-small")
License
This dataset is released under the CC BY 4.0 License.
Citation
If you find this repo useful, please cite our paper.
@inproceedings{wu2023timesnet,
title={TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis},
author={Haixu Wu and Tengge Hu and Yong Liu and Hang Zhou and Jianmin Wang and Mingsheng Long},
booktitle={International Conference on Learning Representations},
year={2023},
}
@article{wang2024tssurvey,
title={Deep Time Series Models: A Comprehensive Survey and Benchmark},
author={Yuxuan Wang and Haixu Wu and Jiaxiang Dong and Yong Liu and Mingsheng Long and Jianmin Wang},
booktitle={arXiv preprint arXiv:2407.13278},
year={2024},
}