text
stringlengths
12
1.05M
repo_name
stringlengths
5
86
path
stringlengths
4
191
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
12
1.05M
keyword
listlengths
1
23
text_hash
stringlengths
64
64
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pathlib import pytest from cloudevents.http import CloudEvent, to_binary, to_structured from functions_framework import create_app TEST_FUNCTIONS_DIR = pathlib.Path(__file__).resolve().parent / "test_functions" TEST_DATA_DIR = pathlib.Path(__file__).resolve().parent / "test_data" # Python 3.5: ModuleNotFoundError does not exist try: _ModuleNotFoundError = ModuleNotFoundError except: _ModuleNotFoundError = ImportError @pytest.fixture def data_payload(): return {"name": "john"} @pytest.fixture def cloud_event_1_0(): attributes = { "specversion": "1.0", "id": "my-id", "source": "from-galaxy-far-far-away", "type": "cloud_event.greet.you", "time": "2020-08-16T13:58:54.471765", } data = {"name": "john"} return CloudEvent(attributes, data) @pytest.fixture def cloud_event_0_3(): attributes = { "id": "my-id", "source": "from-galaxy-far-far-away", "type": "cloud_event.greet.you", "specversion": "0.3", "time": "2020-08-16T13:58:54.471765", } data = {"name": "john"} return CloudEvent(attributes, data) @pytest.fixture def create_headers_binary(): return lambda specversion: { "ce-id": "my-id", "ce-source": "from-galaxy-far-far-away", "ce-type": "cloud_event.greet.you", "ce-specversion": specversion, "time": "2020-08-16T13:58:54.471765", } @pytest.fixture def create_structured_data(): return lambda specversion: { "id": "my-id", "source": "from-galaxy-far-far-away", "type": "cloud_event.greet.you", "specversion": specversion, "time": "2020-08-16T13:58:54.471765", } @pytest.fixture def background_event(): with open(TEST_DATA_DIR / "pubsub_text-legacy-input.json", "r") as f: return json.load(f) @pytest.fixture def client(): source = TEST_FUNCTIONS_DIR / "cloud_events" / "main.py" target = "function" return create_app(target, source, "cloudevent").test_client() @pytest.fixture def empty_client(): source = TEST_FUNCTIONS_DIR / "cloud_events" / "empty_data.py" target = "function" return create_app(target, source, "cloudevent").test_client() @pytest.fixture def converted_background_event_client(): source = TEST_FUNCTIONS_DIR / "cloud_events" / "converted_background_event.py" target = "function" return create_app(target, source, "cloudevent").test_client() def test_event(client, cloud_event_1_0): headers, data = to_structured(cloud_event_1_0) resp = client.post("/", headers=headers, data=data) assert resp.status_code == 200 assert resp.data == b"OK" def test_binary_event(client, cloud_event_1_0): headers, data = to_binary(cloud_event_1_0) resp = client.post("/", headers=headers, data=data) assert resp.status_code == 200 assert resp.data == b"OK" def test_event_0_3(client, cloud_event_0_3): headers, data = to_structured(cloud_event_0_3) resp = client.post("/", headers=headers, data=data) assert resp.status_code == 200 assert resp.data == b"OK" def test_binary_event_0_3(client, cloud_event_0_3): headers, data = to_binary(cloud_event_0_3) resp = client.post("/", headers=headers, data=data) assert resp.status_code == 200 assert resp.data == b"OK" @pytest.mark.parametrize("specversion", ["0.3", "1.0"]) def test_cloud_event_missing_required_binary_fields( client, specversion, create_headers_binary, data_payload ): headers = create_headers_binary(specversion) for remove_key in headers: if remove_key == "time": continue invalid_headers = {key: headers[key] for key in headers if key != remove_key} resp = client.post("/", headers=invalid_headers, json=data_payload) assert resp.status_code == 400 assert "MissingRequiredFields" in resp.get_data().decode() @pytest.mark.parametrize("specversion", ["0.3", "1.0"]) def test_cloud_event_missing_required_structured_fields( client, specversion, create_structured_data ): headers = {"Content-Type": "application/cloudevents+json"} data = create_structured_data(specversion) for remove_key in data: if remove_key == "time": continue invalid_data = {key: data[key] for key in data if key != remove_key} resp = client.post("/", headers=headers, json=invalid_data) assert resp.status_code == 400 assert "MissingRequiredFields" in resp.data.decode() def test_invalid_fields_binary(client, create_headers_binary, data_payload): # Testing none specversion fails headers = create_headers_binary("not a spec version") resp = client.post("/", headers=headers, json=data_payload) assert resp.status_code == 400 assert "InvalidRequiredFields" in resp.data.decode() def test_unparsable_cloud_event(client): resp = client.post("/", headers={}, data="") assert resp.status_code == 400 assert "MissingRequiredFields" in resp.data.decode() @pytest.mark.parametrize("specversion", ["0.3", "1.0"]) def test_empty_data_binary(empty_client, create_headers_binary, specversion): headers = create_headers_binary(specversion) resp = empty_client.post("/", headers=headers, json="") assert resp.status_code == 200 assert resp.get_data() == b"OK" @pytest.mark.parametrize("specversion", ["0.3", "1.0"]) def test_empty_data_structured(empty_client, specversion, create_structured_data): headers = {"Content-Type": "application/cloudevents+json"} data = create_structured_data(specversion) resp = empty_client.post("/", headers=headers, json=data) assert resp.status_code == 200 assert resp.get_data() == b"OK" @pytest.mark.parametrize("specversion", ["0.3", "1.0"]) def test_no_mime_type_structured(empty_client, specversion, create_structured_data): data = create_structured_data(specversion) resp = empty_client.post("/", headers={}, json=data) assert resp.status_code == 200 assert resp.get_data() == b"OK" def test_background_event(converted_background_event_client, background_event): resp = converted_background_event_client.post( "/", headers={}, json=background_event ) assert resp.status_code == 200 assert resp.get_data() == b"OK"
GoogleCloudPlatform/functions-framework-python
tests/test_cloud_event_functions.py
Python
apache-2.0
6,917
[ "Galaxy" ]
e71584641d989d2629385b605948fdb3042e59d6ad712d36faebaa3f626d162d
#------------------------------------------------------------------------------- # Name: utils # Purpose: Helper functions for unit tests # # Author: Brian Skinn # [email protected] # # Created: 12 Mar 2016 # Copyright: (c) Brian Skinn 2016 # License: The MIT License; see "license.txt" for full license terms # and contributor agreement. # # This file is part of opan (Open Anharmonic), a system for automated # computation of anharmonic properties of molecular systems via wrapper # calls to computational/quantum chemical software packages. # # http://www.github.com/bskinn/opan # #------------------------------------------------------------------------------- def assertErrorAndTypecode(self, errtype, cobj, tc, *args, **kwargs): """ Wrapper for asserting correct OpanErrors and proper typecodes. Function tests (using testclass.assertX methods) whether 'cobj' raises 'errtype' with typecode 'tc' when instantiated/called with *args and **kwargs. If imported into a :class:`~unittest.TestCase` subclass, this function is treated by Python as a class method and the initial `testclass` argument behaves like the `self` argument of such a class method. In particular, this means that the :class:`~unittest.TestCase` class should NOT be passed as the first argument in this usage situation. Parameters ---------- self : referenced object Subclass of unittest.TestCase (or related), from which the .assertX methods should be called errtype : object reference Subclass of OpanError expected to be raised cobj : object reference Callable object to be instantiated or called tc : str / typecode "enum" Typecode to check for *args and **kwargs are passed to the instantiation of 'cobj' Returns ------- (none) """ # Assert the proper error self.assertRaises(errtype, cobj, *args, **kwargs) # Ensure correct typecode; suppress repeated error, and ignore any # other error raised, as it will have been reported by the above # .assertRaises call try: out = cobj(*args, **kwargs) except errtype as err: self.assertEqual(err.tc, tc) except Exception: # pragma: no cover pass ## end def assertErrorAndTypecode def setUpTestDir(dirname): """ Create and change working directory to test directory. Parameters ---------- dirname : str Name of desired working directory """ import os, time # Wait 10ms for folder access to clear time.sleep(0.01) # Check if test directory already exists (or file of same name); # error if so if os.path.isdir(dirname) or os.path.isfile(dirname): # pragma: no cover raise IOError("Cannot create new test directory!") # Create and change to test directory os.mkdir(dirname) os.chdir(dirname) def tearDownTestDir(dirname): """ Exit and attempt removal of test directory Parameters ---------- dirname: str Name of working directory """ import os # Switch to parent directory os.chdir(os.path.pardir) # Try to remove the temp directory os.rmdir(dirname) def inject_tests(ns, data, namestr, f_template): """ Function to automate test method creation/injection Parameters ---------- ns |dict| -- Namespace into which functions are to be injected data |dict| -- Lookup dictionary with data to be passed to `f_template` namestr |str| -- String template for the names of the test methods to be injected. Must contain exactly one substitution field ("{0}" is preferred), into which each key from `data` will be substituted to define the unique method name f_template `callable` -- Function to call to carry out the desired test """ for k, d in data.items(): fxnname = namestr.format(k) fxn = lambda self, k=k, d=d: f_template(self, k, d) ns.update({fxnname: fxn}) if __name__ == '__main__': # pragma: no cover print("Module not executable.")
bskinn/opan
opan/test/utils.py
Python
mit
4,217
[ "Brian" ]
c8a5f8ec48deb3ca8733b92004e4ec4b335085f49aaf40d3f989485bd1e3a8af
""" Models for the shopping cart and assorted purchase types """ from collections import namedtuple from datetime import datetime from datetime import timedelta from decimal import Decimal import json import analytics from io import BytesIO from django.db.models import Q import pytz import logging import smtplib import StringIO import csv from boto.exception import BotoServerError # this is a super-class of SESError and catches connection errors from django.dispatch import receiver from django.db import models from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from django.core.mail import send_mail from django.contrib.auth.models import User from django.utils.translation import ugettext as _, ugettext_lazy from django.db import transaction from django.db.models import Sum, Count from django.db.models.signals import post_save, post_delete from django.core.urlresolvers import reverse from model_utils.managers import InheritanceManager from model_utils.models import TimeStampedModel from django.core.mail.message import EmailMessage from xmodule.modulestore.django import modulestore from eventtracking import tracker from courseware.courses import get_course_by_id from config_models.models import ConfigurationModel from course_modes.models import CourseMode from edxmako.shortcuts import render_to_string from student.models import CourseEnrollment, UNENROLL_DONE from util.query import use_read_replica_if_available from xmodule_django.models import CourseKeyField from .exceptions import ( InvalidCartItem, PurchasedCallbackException, ItemAlreadyInCartException, AlreadyEnrolledInCourseException, CourseDoesNotExistException, MultipleCouponsNotAllowedException, InvalidStatusToRetire, UnexpectedOrderItemStatus, ItemNotFoundInCartException ) from microsite_configuration import microsite from shoppingcart.pdf import PDFInvoice log = logging.getLogger("shoppingcart") ORDER_STATUSES = ( # The user is selecting what he/she wants to purchase. ('cart', 'cart'), # The user has been sent to the external payment processor. # At this point, the order should NOT be modified. # If the user returns to the payment flow, he/she will start a new order. ('paying', 'paying'), # The user has successfully purchased the items in the order. ('purchased', 'purchased'), # The user's order has been refunded. ('refunded', 'refunded'), # The user's order went through, but the order was erroneously left # in 'cart'. ('defunct-cart', 'defunct-cart'), # The user's order went through, but the order was erroneously left # in 'paying'. ('defunct-paying', 'defunct-paying'), ) # maps order statuses to their defunct states ORDER_STATUS_MAP = { 'cart': 'defunct-cart', 'paying': 'defunct-paying', } # we need a tuple to represent the primary key of various OrderItem subclasses OrderItemSubclassPK = namedtuple('OrderItemSubclassPK', ['cls', 'pk']) # pylint: disable=invalid-name class OrderTypes(object): """ This class specify purchase OrderTypes. """ PERSONAL = 'personal' BUSINESS = 'business' ORDER_TYPES = ( (PERSONAL, 'personal'), (BUSINESS, 'business'), ) class Order(models.Model): """ This is the model for an order. Before purchase, an Order and its related OrderItems are used as the shopping cart. FOR ANY USER, THERE SHOULD ONLY EVER BE ZERO OR ONE ORDER WITH STATUS='cart'. """ user = models.ForeignKey(User, db_index=True) currency = models.CharField(default="usd", max_length=8) # lower case ISO currency codes status = models.CharField(max_length=32, default='cart', choices=ORDER_STATUSES) purchase_time = models.DateTimeField(null=True, blank=True) refunded_time = models.DateTimeField(null=True, blank=True) # Now we store data needed to generate a reasonable receipt # These fields only make sense after the purchase bill_to_first = models.CharField(max_length=64, blank=True) bill_to_last = models.CharField(max_length=64, blank=True) bill_to_street1 = models.CharField(max_length=128, blank=True) bill_to_street2 = models.CharField(max_length=128, blank=True) bill_to_city = models.CharField(max_length=64, blank=True) bill_to_state = models.CharField(max_length=8, blank=True) bill_to_postalcode = models.CharField(max_length=16, blank=True) bill_to_country = models.CharField(max_length=64, blank=True) bill_to_ccnum = models.CharField(max_length=8, blank=True) # last 4 digits bill_to_cardtype = models.CharField(max_length=32, blank=True) # a JSON dump of the CC processor response, for completeness processor_reply_dump = models.TextField(blank=True) # bulk purchase registration code workflow billing details company_name = models.CharField(max_length=255, null=True, blank=True) company_contact_name = models.CharField(max_length=255, null=True, blank=True) company_contact_email = models.CharField(max_length=255, null=True, blank=True) recipient_name = models.CharField(max_length=255, null=True, blank=True) recipient_email = models.CharField(max_length=255, null=True, blank=True) customer_reference_number = models.CharField(max_length=63, null=True, blank=True) order_type = models.CharField(max_length=32, default='personal', choices=OrderTypes.ORDER_TYPES) @classmethod def get_cart_for_user(cls, user): """ Always use this to preserve the property that at most 1 order per user has status = 'cart' """ # find the newest element in the db try: cart_order = cls.objects.filter(user=user, status='cart').order_by('-id')[:1].get() except ObjectDoesNotExist: # if nothing exists in the database, create a new cart cart_order, _created = cls.objects.get_or_create(user=user, status='cart') return cart_order @classmethod def does_user_have_cart(cls, user): """ Returns a boolean whether a shopping cart (Order) exists for the specified user """ return cls.objects.filter(user=user, status='cart').exists() @classmethod def user_cart_has_items(cls, user, item_types=None): """ Returns true if the user (anonymous user ok) has a cart with items in it. (Which means it should be displayed. If a item_type is passed in, then we check to see if the cart has at least one of those types of OrderItems """ if not user.is_authenticated(): return False cart = cls.get_cart_for_user(user) if not item_types: # check to see if the cart has at least some item in it return cart.has_items() else: # if the caller is explicitly asking to check for particular types for item_type in item_types: if cart.has_items(item_type): return True return False @classmethod def remove_cart_item_from_order(cls, item, user): """ Removes the item from the cart if the item.order.status == 'cart'. Also removes any code redemption associated with the order_item """ if item.order.status == 'cart': log.info("order item %s removed for user %s", str(item.id), user) item.delete() # remove any redemption entry associated with the item CouponRedemption.remove_code_redemption_from_item(item, user) @property def total_cost(self): """ Return the total cost of the cart. If the order has been purchased, returns total of all purchased and not refunded items. """ return sum(i.line_cost for i in self.orderitem_set.filter(status=self.status)) # pylint: disable=no-member def has_items(self, item_type=None): """ Does the cart have any items in it? If an item_type is passed in then we check to see if there are any items of that class type """ if not item_type: return self.orderitem_set.exists() # pylint: disable=no-member else: items = self.orderitem_set.all().select_subclasses() # pylint: disable=no-member for item in items: if isinstance(item, item_type): return True return False def reset_cart_items_prices(self): """ Reset the items price state in the user cart """ for item in self.orderitem_set.all(): # pylint: disable=no-member if item.is_discounted: item.unit_cost = item.list_price item.save() def clear(self): """ Clear out all the items in the cart """ self.orderitem_set.all().delete() # pylint: disable=no-member @transaction.commit_on_success def start_purchase(self): """ Start the purchase process. This will set the order status to "paying", at which point it should no longer be modified. Future calls to `Order.get_cart_for_user()` will filter out orders with status "paying", effectively creating a new (empty) cart. """ if self.status == 'cart': self.status = 'paying' self.save() for item in OrderItem.objects.filter(order=self).select_subclasses(): item.start_purchase() def update_order_type(self): """ updating order type. This method wil inspect the quantity associated with the OrderItem. In the application, it is implied that when qty > 1, then the user is to purchase 'RegistrationCodes' which are randomly generated strings that users can distribute to others in order for them to enroll in paywalled courses. The UI/UX may change in the future to make the switching between PaidCourseRegistration and CourseRegCodeItems a more explicit UI gesture from the purchaser """ cart_items = self.orderitem_set.all() # pylint: disable=no-member is_order_type_business = False for cart_item in cart_items: if cart_item.qty > 1: is_order_type_business = True items_to_delete = [] old_to_new_id_map = [] if is_order_type_business: for cart_item in cart_items: if hasattr(cart_item, 'paidcourseregistration'): course_reg_code_item = CourseRegCodeItem.add_to_order(self, cart_item.paidcourseregistration.course_id, cart_item.qty) # update the discounted prices if coupon redemption applied course_reg_code_item.list_price = cart_item.list_price course_reg_code_item.unit_cost = cart_item.unit_cost course_reg_code_item.save() items_to_delete.append(cart_item) old_to_new_id_map.append({"oldId": cart_item.id, "newId": course_reg_code_item.id}) else: for cart_item in cart_items: if hasattr(cart_item, 'courseregcodeitem'): paid_course_registration = PaidCourseRegistration.add_to_order(self, cart_item.courseregcodeitem.course_id) # update the discounted prices if coupon redemption applied paid_course_registration.list_price = cart_item.list_price paid_course_registration.unit_cost = cart_item.unit_cost paid_course_registration.save() items_to_delete.append(cart_item) old_to_new_id_map.append({"oldId": cart_item.id, "newId": paid_course_registration.id}) for item in items_to_delete: item.delete() self.order_type = OrderTypes.BUSINESS if is_order_type_business else OrderTypes.PERSONAL self.save() return old_to_new_id_map def generate_pdf_receipt(self, order_items): """ Generates the pdf receipt for the given order_items and returns the pdf_buffer. """ items_data = [] for item in order_items: item_total = item.qty * item.unit_cost items_data.append({ 'item_description': item.pdf_receipt_display_name, 'quantity': item.qty, 'list_price': item.get_list_price(), 'discount': item.get_list_price() - item.unit_cost, 'item_total': item_total }) pdf_buffer = BytesIO() PDFInvoice( items_data=items_data, item_id=str(self.id), # pylint: disable=no-member date=self.purchase_time, is_invoice=False, total_cost=self.total_cost, payment_received=self.total_cost, balance=0 ).generate_pdf(pdf_buffer) return pdf_buffer def generate_registration_codes_csv(self, orderitems, site_name): """ this function generates the csv file """ course_info = [] csv_file = StringIO.StringIO() csv_writer = csv.writer(csv_file) csv_writer.writerow(['Course Name', 'Registration Code', 'URL']) for item in orderitems: course_id = item.course_id course = get_course_by_id(getattr(item, 'course_id'), depth=0) registration_codes = CourseRegistrationCode.objects.filter(course_id=course_id, order=self) course_info.append((course.display_name, ' (' + course.start_datetime_text() + '-' + course.end_datetime_text() + ')')) for registration_code in registration_codes: redemption_url = reverse('register_code_redemption', args=[registration_code.code]) url = '{base_url}{redemption_url}'.format(base_url=site_name, redemption_url=redemption_url) csv_writer.writerow([unicode(course.display_name).encode("utf-8"), registration_code.code, url]) return csv_file, course_info def send_confirmation_emails(self, orderitems, is_order_type_business, csv_file, pdf_file, site_name, courses_info): """ send confirmation e-mail """ recipient_list = [(self.user.username, getattr(self.user, 'email'), 'user')] # pylint: disable=no-member if self.company_contact_email: recipient_list.append((self.company_contact_name, self.company_contact_email, 'company_contact')) joined_course_names = "" if self.recipient_email: recipient_list.append((self.recipient_name, self.recipient_email, 'email_recipient')) courses_names_with_dates = [course_info[0] + course_info[1] for course_info in courses_info] joined_course_names = " " + ", ".join(courses_names_with_dates) if not is_order_type_business: subject = _("Order Payment Confirmation") else: subject = _('Confirmation and Registration Codes for the following courses: {course_name_list}').format( course_name_list=joined_course_names ) dashboard_url = '{base_url}{dashboard}'.format( base_url=site_name, dashboard=reverse('dashboard') ) try: from_address = microsite.get_value( 'email_from_address', settings.PAYMENT_SUPPORT_EMAIL ) # Send a unique email for each recipient. Don't put all email addresses in a single email. for recipient in recipient_list: message = render_to_string( 'emails/business_order_confirmation_email.txt' if is_order_type_business else 'emails/order_confirmation_email.txt', { 'order': self, 'recipient_name': recipient[0], 'recipient_type': recipient[2], 'site_name': site_name, 'order_items': orderitems, 'course_names': ", ".join([course_info[0] for course_info in courses_info]), 'dashboard_url': dashboard_url, 'currency_symbol': settings.PAID_COURSE_REGISTRATION_CURRENCY[1], 'order_placed_by': '{username} ({email})'.format(username=self.user.username, email=getattr(self.user, 'email')), # pylint: disable=no-member 'has_billing_info': settings.FEATURES['STORE_BILLING_INFO'], 'platform_name': microsite.get_value('platform_name', settings.PLATFORM_NAME), 'payment_support_email': microsite.get_value('payment_support_email', settings.PAYMENT_SUPPORT_EMAIL), 'payment_email_signature': microsite.get_value('payment_email_signature'), } ) email = EmailMessage( subject=subject, body=message, from_email=from_address, to=[recipient[1]] ) # Only the business order is HTML formatted. A single seat order confirmation is plain text. if is_order_type_business: email.content_subtype = "html" if csv_file: email.attach(u'RegistrationCodesRedemptionUrls.csv', csv_file.getvalue(), 'text/csv') if pdf_file is not None: email.attach(u'Receipt.pdf', pdf_file.getvalue(), 'application/pdf') else: file_buffer = StringIO.StringIO(_('pdf download unavailable right now, please contact support.')) email.attach(u'pdf_not_available.txt', file_buffer.getvalue(), 'text/plain') email.send() except (smtplib.SMTPException, BotoServerError): # sadly need to handle diff. mail backends individually log.error('Failed sending confirmation e-mail for order %d', self.id) # pylint: disable=no-member def purchase(self, first='', last='', street1='', street2='', city='', state='', postalcode='', country='', ccnum='', cardtype='', processor_reply_dump=''): """ Call to mark this order as purchased. Iterates through its OrderItems and calls their purchased_callback `first` - first name of person billed (e.g. John) `last` - last name of person billed (e.g. Smith) `street1` - first line of a street address of the billing address (e.g. 11 Cambridge Center) `street2` - second line of a street address of the billing address (e.g. Suite 101) `city` - city of the billing address (e.g. Cambridge) `state` - code of the state, province, or territory of the billing address (e.g. MA) `postalcode` - postal code of the billing address (e.g. 02142) `country` - country code of the billing address (e.g. US) `ccnum` - last 4 digits of the credit card number of the credit card billed (e.g. 1111) `cardtype` - 3-digit code representing the card type used (e.g. 001) `processor_reply_dump` - all the parameters returned by the processor """ if self.status == 'purchased': log.error( u"`purchase` method called on order {}, but order is already purchased.".format(self.id) # pylint: disable=no-member ) return self.status = 'purchased' self.purchase_time = datetime.now(pytz.utc) self.bill_to_first = first self.bill_to_last = last self.bill_to_city = city self.bill_to_state = state self.bill_to_country = country self.bill_to_postalcode = postalcode if settings.FEATURES['STORE_BILLING_INFO']: self.bill_to_street1 = street1 self.bill_to_street2 = street2 self.bill_to_ccnum = ccnum self.bill_to_cardtype = cardtype self.processor_reply_dump = processor_reply_dump # save these changes on the order, then we can tell when we are in an # inconsistent state self.save() # this should return all of the objects with the correct types of the # subclasses orderitems = OrderItem.objects.filter(order=self).select_subclasses() site_name = microsite.get_value('SITE_NAME', settings.SITE_NAME) if self.order_type == OrderTypes.BUSINESS: self.update_order_type() for item in orderitems: item.purchase_item() csv_file = None courses_info = [] if self.order_type == OrderTypes.BUSINESS: # # Generate the CSV file that contains all of the RegistrationCodes that have already been # generated when the purchase has transacted # csv_file, courses_info = self.generate_registration_codes_csv(orderitems, site_name) try: pdf_file = self.generate_pdf_receipt(orderitems) except Exception: # pylint: disable=broad-except log.exception('Exception at creating pdf file.') pdf_file = None try: self.send_confirmation_emails( orderitems, self.order_type == OrderTypes.BUSINESS, csv_file, pdf_file, site_name, courses_info ) except Exception: # pylint: disable=broad-except # Catch all exceptions here, since the Django view implicitly # wraps this in a transaction. If the order completes successfully, # we don't want to roll back just because we couldn't send # the confirmation email. log.exception('Error occurred while sending payment confirmation email') self._emit_order_event('Completed Order', orderitems) def refund(self): """ Refund the given order. As of right now, this just marks the order as refunded. """ self.status = 'refunded' self.save() orderitems = OrderItem.objects.filter(order=self).select_subclasses() self._emit_order_event('Refunded Order', orderitems) def _emit_order_event(self, event_name, orderitems): """ Emit an analytics event with the given name for this Order. Will iterate over all associated OrderItems and add them as products in the event as well. """ try: if settings.LMS_SEGMENT_KEY: tracking_context = tracker.get_tracker().resolve_context() analytics.track(self.user.id, event_name, { # pylint: disable=no-member 'orderId': self.id, # pylint: disable=no-member 'total': str(self.total_cost), 'currency': self.currency, 'products': [item.analytics_data() for item in orderitems] }, context={ 'ip': tracking_context.get('ip'), 'Google Analytics': { 'clientId': tracking_context.get('client_id') } }) except Exception: # pylint: disable=broad-except # Capturing all exceptions thrown while tracking analytics events. We do not want # an operation to fail because of an analytics event, so we will capture these # errors in the logs. log.exception( u'Unable to emit {event} event for user {user} and order {order}'.format( event=event_name, user=self.user.id, order=self.id) # pylint: disable=no-member ) def add_billing_details(self, company_name='', company_contact_name='', company_contact_email='', recipient_name='', recipient_email='', customer_reference_number=''): """ This function is called after the user selects a purchase type of "Business" and is asked to enter the optional billing details. The billing details are updated for that order. company_name - Name of purchasing organization company_contact_name - Name of the key contact at the company the sale was made to company_contact_email - Email of the key contact at the company the sale was made to recipient_name - Name of the company should the invoice be sent to recipient_email - Email of the company should the invoice be sent to customer_reference_number - purchase order number of the organization associated with this Order """ self.company_name = company_name self.company_contact_name = company_contact_name self.company_contact_email = company_contact_email self.recipient_name = recipient_name self.recipient_email = recipient_email self.customer_reference_number = customer_reference_number self.save() def generate_receipt_instructions(self): """ Call to generate specific instructions for each item in the order. This gets displayed on the receipt page, typically. Instructions are something like "visit your dashboard to see your new courses". This will return two things in a pair. The first will be a dict with keys=OrderItemSubclassPK corresponding to an OrderItem and values=a set of html instructions they generate. The second will be a set of de-duped html instructions """ instruction_set = set([]) # heh. not ia32 or alpha or sparc instruction_dict = {} order_items = OrderItem.objects.filter(order=self).select_subclasses() for item in order_items: item_pk_with_subclass, set_of_html = item.generate_receipt_instructions() instruction_dict[item_pk_with_subclass] = set_of_html instruction_set.update(set_of_html) return instruction_dict, instruction_set def retire(self): """ Method to "retire" orders that have gone through to the payment service but have (erroneously) not had their statuses updated. This method only works on orders that satisfy the following conditions: 1) the order status is either "cart" or "paying" (otherwise we raise an InvalidStatusToRetire error) 2) the order's order item's statuses match the order's status (otherwise we throw an UnexpectedOrderItemStatus error) """ # if an order is already retired, no-op: if self.status in ORDER_STATUS_MAP.values(): return if self.status not in ORDER_STATUS_MAP.keys(): raise InvalidStatusToRetire( "order status {order_status} is not 'paying' or 'cart'".format( order_status=self.status ) ) for item in self.orderitem_set.all(): # pylint: disable=no-member if item.status != self.status: raise UnexpectedOrderItemStatus( "order_item status is different from order status" ) self.status = ORDER_STATUS_MAP[self.status] self.save() for item in self.orderitem_set.all(): # pylint: disable=no-member item.retire() def find_item_by_course_id(self, course_id): """ course_id: Course id of the item to find Returns OrderItem from the Order given a course_id Raises exception ItemNotFoundException when the item having the given course_id is not present in the cart """ cart_items = OrderItem.objects.filter(order=self).select_subclasses() found_items = [] for item in cart_items: if getattr(item, 'course_id', None): if item.course_id == course_id: found_items.append(item) if not found_items: raise ItemNotFoundInCartException return found_items class OrderItem(TimeStampedModel): """ This is the basic interface for order items. Order items are line items that fill up the shopping carts and orders. Each implementation of OrderItem should provide its own purchased_callback as a method. """ objects = InheritanceManager() order = models.ForeignKey(Order, db_index=True) # this is denormalized, but convenient for SQL queries for reports, etc. user should always be = order.user user = models.ForeignKey(User, db_index=True) # this is denormalized, but convenient for SQL queries for reports, etc. status should always be = order.status status = models.CharField(max_length=32, default='cart', choices=ORDER_STATUSES, db_index=True) qty = models.IntegerField(default=1) unit_cost = models.DecimalField(default=0.0, decimal_places=2, max_digits=30) list_price = models.DecimalField(decimal_places=2, max_digits=30, null=True) line_desc = models.CharField(default="Misc. Item", max_length=1024) currency = models.CharField(default="usd", max_length=8) # lower case ISO currency codes fulfilled_time = models.DateTimeField(null=True, db_index=True) refund_requested_time = models.DateTimeField(null=True, db_index=True) service_fee = models.DecimalField(default=0.0, decimal_places=2, max_digits=30) # general purpose field, not user-visible. Used for reporting report_comments = models.TextField(default="") @property def line_cost(self): """ Return the total cost of this OrderItem """ return self.qty * self.unit_cost @classmethod def add_to_order(cls, order, *args, **kwargs): """ A suggested convenience function for subclasses. NOTE: This does not add anything to the cart. That is left up to the subclasses to implement for themselves """ # this is a validation step to verify that the currency of the item we # are adding is the same as the currency of the order we are adding it # to currency = kwargs.get('currency', 'usd') if order.currency != currency and order.orderitem_set.exists(): raise InvalidCartItem(_("Trying to add a different currency into the cart")) @transaction.commit_on_success def purchase_item(self): """ This is basically a wrapper around purchased_callback that handles modifying the OrderItem itself """ self.purchased_callback() self.status = 'purchased' self.fulfilled_time = datetime.now(pytz.utc) self.save() def start_purchase(self): """ Start the purchase process. This will set the order item status to "paying", at which point it should no longer be modified. """ self.status = 'paying' self.save() def purchased_callback(self): """ This is called on each inventory item in the shopping cart when the purchase goes through. """ raise NotImplementedError def generate_receipt_instructions(self): """ This is called on each item in a purchased order to generate receipt instructions. This should return a list of `ReceiptInstruction`s in HTML string Default implementation is to return an empty set """ return self.pk_with_subclass, set([]) @property def pk_with_subclass(self): """ Returns a named tuple that annotates the pk of this instance with its class, to fully represent a pk of a subclass (inclusive) of OrderItem """ return OrderItemSubclassPK(type(self), self.pk) @property def is_discounted(self): """ Returns True if the item a discount coupon has been applied to the OrderItem and False otherwise. Earlier, the OrderItems were stored with an empty list_price if a discount had not been applied. Now we consider the item to be non discounted if list_price is None or list_price == unit_cost. In these lines, an item is discounted if it's non-None and list_price and unit_cost mismatch. This should work with both new and old records. """ return self.list_price and self.list_price != self.unit_cost def get_list_price(self): """ Returns the unit_cost if no discount has been applied, or the list_price if it is defined. """ return self.list_price if self.list_price else self.unit_cost @property def single_item_receipt_template(self): """ The template that should be used when there's only one item in the order """ return 'shoppingcart/receipt.html' @property def single_item_receipt_context(self): """ Extra variables needed to render the template specified in `single_item_receipt_template` """ return {} def additional_instruction_text(self, **kwargs): # pylint: disable=unused-argument """ Individual instructions for this order item. Currently, only used for emails. """ return '' @property def pdf_receipt_display_name(self): """ How to display this item on a PDF printed receipt file. This can be overridden by the subclasses of OrderItem """ course_key = getattr(self, 'course_id', None) if course_key: course = get_course_by_id(course_key, depth=0) return course.display_name else: raise Exception( "Not Implemented. OrderItems that are not Course specific should have" " a overridden pdf_receipt_display_name property" ) def analytics_data(self): """Simple function used to construct analytics data for the OrderItem. The default implementation returns defaults for most attributes. When no name or category is specified by the implementation, the string 'N/A' is placed for the name and category. This should be handled appropriately by all implementations. Returns A dictionary containing analytics data for this OrderItem. """ return { 'id': self.id, # pylint: disable=no-member 'sku': type(self).__name__, 'name': 'N/A', 'price': str(self.unit_cost), 'quantity': self.qty, 'category': 'N/A', } def retire(self): """ Called by the `retire` method defined in the `Order` class. Retires an order item if its (and its order's) status was erroneously not updated to "purchased" after the order was processed. """ self.status = ORDER_STATUS_MAP[self.status] self.save() class Invoice(TimeStampedModel): """ This table capture all the information needed to support "invoicing" which is when a user wants to purchase Registration Codes, but will not do so via a Credit Card transaction. """ company_name = models.CharField(max_length=255, db_index=True) company_contact_name = models.CharField(max_length=255) company_contact_email = models.CharField(max_length=255) recipient_name = models.CharField(max_length=255) recipient_email = models.CharField(max_length=255) address_line_1 = models.CharField(max_length=255) address_line_2 = models.CharField(max_length=255, null=True, blank=True) address_line_3 = models.CharField(max_length=255, null=True, blank=True) city = models.CharField(max_length=255, null=True) state = models.CharField(max_length=255, null=True) zip = models.CharField(max_length=15, null=True) country = models.CharField(max_length=64, null=True) # This field has been deprecated. # The total amount can now be calculated as the sum # of each invoice item associated with the invoice. # For backwards compatibility, this field is maintained # and written to during invoice creation. total_amount = models.FloatField() # This field has been deprecated in order to support # invoices for items that are not course-related. # Although this field is still maintained for backwards # compatibility, you should use CourseRegistrationCodeInvoiceItem # to look up the course ID for purchased redeem codes. course_id = CourseKeyField(max_length=255, db_index=True) internal_reference = models.CharField( max_length=255, null=True, blank=True, help_text=ugettext_lazy("Internal reference code for this invoice.") ) customer_reference_number = models.CharField( max_length=63, null=True, blank=True, help_text=ugettext_lazy("Customer's reference code for this invoice.") ) is_valid = models.BooleanField(default=True) @classmethod def get_invoice_total_amount_for_course(cls, course_key): """ returns the invoice total amount generated by course. """ result = cls.objects.filter(course_id=course_key, is_valid=True).aggregate(total=Sum('total_amount')) total = result.get('total', 0) return total if total else 0 def generate_pdf_invoice(self, course, course_price, quantity, sale_price): """ Generates the pdf invoice for the given course and returns the pdf_buffer. """ discount_per_item = float(course_price) - sale_price / quantity list_price = course_price - discount_per_item items_data = [{ 'item_description': course.display_name, 'quantity': quantity, 'list_price': list_price, 'discount': discount_per_item, 'item_total': quantity * list_price }] pdf_buffer = BytesIO() PDFInvoice( items_data=items_data, item_id=str(self.id), # pylint: disable=no-member date=datetime.now(pytz.utc), is_invoice=True, total_cost=float(self.total_amount), payment_received=0, balance=float(self.total_amount) ).generate_pdf(pdf_buffer) return pdf_buffer def snapshot(self): """Create a snapshot of the invoice. A snapshot is a JSON-serializable representation of the invoice's state, including its line items and associated transactions (payments/refunds). This is useful for saving the history of changes to the invoice. Returns: dict """ return { 'internal_reference': self.internal_reference, 'customer_reference': self.customer_reference_number, 'is_valid': self.is_valid, 'contact_info': { 'company_name': self.company_name, 'company_contact_name': self.company_contact_name, 'company_contact_email': self.company_contact_email, 'recipient_name': self.recipient_name, 'recipient_email': self.recipient_email, 'address_line_1': self.address_line_1, 'address_line_2': self.address_line_2, 'address_line_3': self.address_line_3, 'city': self.city, 'state': self.state, 'zip': self.zip, 'country': self.country, }, 'items': [ item.snapshot() for item in InvoiceItem.objects.filter(invoice=self).select_subclasses() ], 'transactions': [ trans.snapshot() for trans in InvoiceTransaction.objects.filter(invoice=self) ], } def __unicode__(self): label = ( unicode(self.internal_reference) if self.internal_reference else u"No label" ) created = ( self.created.strftime("%Y-%m-%d") # pylint: disable=no-member if self.created else u"No date" ) return u"{label} ({date_created})".format( label=label, date_created=created ) INVOICE_TRANSACTION_STATUSES = ( # A payment/refund is in process, but money has not yet been transferred ('started', 'started'), # A payment/refund has completed successfully # This should be set ONLY once money has been successfully exchanged. ('completed', 'completed'), # A payment/refund was promised, but was cancelled before # money had been transferred. An example would be # cancelling a refund check before the recipient has # a chance to deposit it. ('cancelled', 'cancelled') ) class InvoiceTransaction(TimeStampedModel): """Record payment and refund information for invoices. There are two expected use cases: 1) We send an invoice to someone, and they send us a check. We then manually create an invoice transaction to represent the payment. 2) We send an invoice to someone, and they pay us. Later, we need to issue a refund for the payment. We manually create a transaction with a negative amount to represent the refund. """ invoice = models.ForeignKey(Invoice) amount = models.DecimalField( default=0.0, decimal_places=2, max_digits=30, help_text=ugettext_lazy( "The amount of the transaction. Use positive amounts for payments" " and negative amounts for refunds." ) ) currency = models.CharField( default="usd", max_length=8, help_text=ugettext_lazy("Lower-case ISO currency codes") ) comments = models.TextField( null=True, blank=True, help_text=ugettext_lazy("Optional: provide additional information for this transaction") ) status = models.CharField( max_length=32, default='started', choices=INVOICE_TRANSACTION_STATUSES, help_text=ugettext_lazy( "The status of the payment or refund. " "'started' means that payment is expected, but money has not yet been transferred. " "'completed' means that the payment or refund was received. " "'cancelled' means that payment or refund was expected, but was cancelled before money was transferred. " ) ) created_by = models.ForeignKey(User) last_modified_by = models.ForeignKey(User, related_name='last_modified_by_user') @classmethod def get_invoice_transaction(cls, invoice_id): """ if found Returns the Invoice Transaction object for the given invoice_id else returns None """ try: return cls.objects.get(Q(invoice_id=invoice_id), Q(status='completed') | Q(status='refunded')) except InvoiceTransaction.DoesNotExist: return None @classmethod def get_total_amount_of_paid_course_invoices(cls, course_key): """ returns the total amount of the paid invoices. """ result = cls.objects.filter(amount__gt=0, invoice__course_id=course_key, status='completed').aggregate( total=Sum('amount') ) total = result.get('total', 0) return total if total else 0 def snapshot(self): """Create a snapshot of the invoice transaction. The returned dictionary is JSON-serializable. Returns: dict """ return { 'amount': unicode(self.amount), 'currency': self.currency, 'comments': self.comments, 'status': self.status, 'created_by': self.created_by.username, # pylint: disable=no-member 'last_modified_by': self.last_modified_by.username # pylint: disable=no-member } class InvoiceItem(TimeStampedModel): """ This is the basic interface for invoice items. Each invoice item represents a "line" in the invoice. For example, in an invoice for course registration codes, there might be an invoice item representing 10 registration codes for the DemoX course. """ objects = InheritanceManager() invoice = models.ForeignKey(Invoice, db_index=True) qty = models.IntegerField( default=1, help_text=ugettext_lazy("The number of items sold.") ) unit_price = models.DecimalField( default=0.0, decimal_places=2, max_digits=30, help_text=ugettext_lazy("The price per item sold, including discounts.") ) currency = models.CharField( default="usd", max_length=8, help_text=ugettext_lazy("Lower-case ISO currency codes") ) def snapshot(self): """Create a snapshot of the invoice item. The returned dictionary is JSON-serializable. Returns: dict """ return { 'qty': self.qty, 'unit_price': unicode(self.unit_price), 'currency': self.currency } class CourseRegistrationCodeInvoiceItem(InvoiceItem): """ This is an invoice item that represents a payment for a course registration. """ course_id = CourseKeyField(max_length=128, db_index=True) def snapshot(self): """Create a snapshot of the invoice item. This is the same as a snapshot for other invoice items, with the addition of a `course_id` field. Returns: dict """ snapshot = super(CourseRegistrationCodeInvoiceItem, self).snapshot() snapshot['course_id'] = unicode(self.course_id) return snapshot class InvoiceHistory(models.Model): """History of changes to invoices. This table stores snapshots of invoice state, including the associated line items and transactions (payments/refunds). Entries in the table are created, but never deleted or modified. We use Django signals to save history entries on change events. These signals are fired within a database transaction, so the history record is created only if the invoice change is successfully persisted. """ timestamp = models.DateTimeField(auto_now_add=True, db_index=True) invoice = models.ForeignKey(Invoice) # JSON-serialized representation of the current state # of the invoice, including its line items and # transactions (payments/refunds). snapshot = models.TextField(blank=True) @classmethod def save_invoice_snapshot(cls, invoice): """Save a snapshot of the invoice's current state. Arguments: invoice (Invoice): The invoice to save. """ cls.objects.create( invoice=invoice, snapshot=json.dumps(invoice.snapshot()) ) @staticmethod def snapshot_receiver(sender, instance, **kwargs): # pylint: disable=unused-argument """Signal receiver that saves a snapshot of an invoice. Arguments: sender: Not used, but required by Django signals. instance (Invoice, InvoiceItem, or InvoiceTransaction) """ if isinstance(instance, Invoice): InvoiceHistory.save_invoice_snapshot(instance) elif hasattr(instance, 'invoice'): InvoiceHistory.save_invoice_snapshot(instance.invoice) class Meta(object): # pylint: disable=missing-docstring get_latest_by = "timestamp" # Hook up Django signals to record changes in the history table. # We record any change to an invoice, invoice item, or transaction. # We also record any deletion of a transaction, since users can delete # transactions via Django admin. # Note that we need to include *each* InvoiceItem subclass # here, since Django signals do not fire automatically for subclasses # of the "sender" class. post_save.connect(InvoiceHistory.snapshot_receiver, sender=Invoice) post_save.connect(InvoiceHistory.snapshot_receiver, sender=InvoiceItem) post_save.connect(InvoiceHistory.snapshot_receiver, sender=CourseRegistrationCodeInvoiceItem) post_save.connect(InvoiceHistory.snapshot_receiver, sender=InvoiceTransaction) post_delete.connect(InvoiceHistory.snapshot_receiver, sender=InvoiceTransaction) class CourseRegistrationCode(models.Model): """ This table contains registration codes With registration code, a user can register for a course for free """ code = models.CharField(max_length=32, db_index=True, unique=True) course_id = CourseKeyField(max_length=255, db_index=True) created_by = models.ForeignKey(User, related_name='created_by_user') created_at = models.DateTimeField(auto_now_add=True) order = models.ForeignKey(Order, db_index=True, null=True, related_name="purchase_order") mode_slug = models.CharField(max_length=100, null=True) is_valid = models.BooleanField(default=True) # For backwards compatibility, we maintain the FK to "invoice" # In the future, we will remove this in favor of the FK # to "invoice_item" (which can be used to look up the invoice). invoice = models.ForeignKey(Invoice, null=True) invoice_item = models.ForeignKey(CourseRegistrationCodeInvoiceItem, null=True) @classmethod def order_generated_registration_codes(cls, course_id): """ Returns the registration codes that were generated via bulk purchase scenario. """ return cls.objects.filter(order__isnull=False, course_id=course_id) @classmethod def invoice_generated_registration_codes(cls, course_id): """ Returns the registration codes that were generated via invoice. """ return cls.objects.filter(invoice__isnull=False, course_id=course_id) class RegistrationCodeRedemption(models.Model): """ This model contains the registration-code redemption info """ order = models.ForeignKey(Order, db_index=True, null=True) registration_code = models.ForeignKey(CourseRegistrationCode, db_index=True) redeemed_by = models.ForeignKey(User, db_index=True) redeemed_at = models.DateTimeField(auto_now_add=True, null=True) course_enrollment = models.ForeignKey(CourseEnrollment, null=True) @classmethod def registration_code_used_for_enrollment(cls, course_enrollment): """ Returns RegistrationCodeRedemption object if registration code has been used during the course enrollment else Returns None. """ # theoretically there could be more than one (e.g. someone self-unenrolls # then re-enrolls with a different regcode) reg_codes = cls.objects.filter(course_enrollment=course_enrollment).order_by('-redeemed_at') if reg_codes: # return the first one. In all normal use cases of registration codes # the user will only have one return reg_codes[0] return None @classmethod def is_registration_code_redeemed(cls, course_reg_code): """ Checks the existence of the registration code in the RegistrationCodeRedemption """ return cls.objects.filter(registration_code__code=course_reg_code).exists() @classmethod def get_registration_code_redemption(cls, code, course_id): """ Returns the registration code redemption object if found else returns None. """ try: code_redemption = cls.objects.get(registration_code__code=code, registration_code__course_id=course_id) except cls.DoesNotExist: code_redemption = None return code_redemption @classmethod def create_invoice_generated_registration_redemption(cls, course_reg_code, user): # pylint: disable=invalid-name """ This function creates a RegistrationCodeRedemption entry in case the registration codes were invoice generated and thus the order_id is missing. """ code_redemption = RegistrationCodeRedemption(registration_code=course_reg_code, redeemed_by=user) code_redemption.save() return code_redemption class SoftDeleteCouponManager(models.Manager): """ Use this manager to get objects that have a is_active=True """ def get_active_coupons_query_set(self): """ filter the is_active = True Coupons only """ return super(SoftDeleteCouponManager, self).get_query_set().filter(is_active=True) def get_query_set(self): """ get all the coupon objects """ return super(SoftDeleteCouponManager, self).get_query_set() class Coupon(models.Model): """ This table contains coupon codes A user can get a discount offer on course if provide coupon code """ code = models.CharField(max_length=32, db_index=True) description = models.CharField(max_length=255, null=True, blank=True) course_id = CourseKeyField(max_length=255) percentage_discount = models.IntegerField(default=0) created_by = models.ForeignKey(User) created_at = models.DateTimeField(auto_now_add=True) is_active = models.BooleanField(default=True) expiration_date = models.DateTimeField(null=True, blank=True) def __unicode__(self): return "[Coupon] code: {} course: {}".format(self.code, self.course_id) objects = SoftDeleteCouponManager() @property def display_expiry_date(self): """ return the coupon expiration date in the readable format """ return (self.expiration_date - timedelta(days=1)).strftime("%B %d, %Y") if self.expiration_date else None class CouponRedemption(models.Model): """ This table contain coupon redemption info """ order = models.ForeignKey(Order, db_index=True) user = models.ForeignKey(User, db_index=True) coupon = models.ForeignKey(Coupon, db_index=True) @classmethod def remove_code_redemption_from_item(cls, item, user): """ If an item removed from shopping cart then we will remove the corresponding redemption info of coupon code """ order_item_course_id = getattr(item, 'course_id') try: # Try to remove redemption information of coupon code, If exist. coupon_redemption = cls.objects.get( user=user, coupon__course_id=order_item_course_id if order_item_course_id else CourseKeyField.Empty, order=item.order_id ) coupon_redemption.delete() log.info( u'Coupon "%s" redemption entry removed for user "%s" for order item "%s"', coupon_redemption.coupon.code, user, str(item.id), ) except CouponRedemption.DoesNotExist: log.debug(u'Code redemption does not exist for order item id=%s.', str(item.id)) @classmethod def remove_coupon_redemption_from_cart(cls, user, cart): """ This method delete coupon redemption """ coupon_redemption = cls.objects.filter(user=user, order=cart) if coupon_redemption: coupon_redemption.delete() log.info(u'Coupon redemption entry removed for user %s for order %s', user, cart.id) @classmethod def get_discount_price(cls, percentage_discount, value): """ return discounted price against coupon """ discount = Decimal("{0:.2f}".format(Decimal(percentage_discount / 100.00) * value)) return value - discount @classmethod def add_coupon_redemption(cls, coupon, order, cart_items): """ add coupon info into coupon_redemption model """ is_redemption_applied = False coupon_redemptions = cls.objects.filter(order=order, user=order.user) for coupon_redemption in coupon_redemptions: if coupon_redemption.coupon.code != coupon.code or coupon_redemption.coupon.id == coupon.id: log.exception( u"Coupon redemption already exist for user '%s' against order id '%s'", order.user.username, order.id, ) raise MultipleCouponsNotAllowedException for item in cart_items: if getattr(item, 'course_id'): if item.course_id == coupon.course_id: coupon_redemption = cls(order=order, user=order.user, coupon=coupon) coupon_redemption.save() discount_price = cls.get_discount_price(coupon.percentage_discount, item.unit_cost) item.list_price = item.unit_cost item.unit_cost = discount_price item.save() log.info( u"Discount generated for user %s against order id '%s'", order.user.username, order.id, ) is_redemption_applied = True return is_redemption_applied return is_redemption_applied @classmethod def get_top_discount_codes_used(cls, course_id): """ Returns the top discount codes used. QuerySet = [ { 'coupon__percentage_discount': 22, 'coupon__code': '12', 'coupon__used_count': '2', }, { ... } ] """ return cls.objects.filter(order__status='purchased', coupon__course_id=course_id).values( 'coupon__code', 'coupon__percentage_discount' ).annotate(coupon__used_count=Count('coupon__code')).order_by('-coupon__used_count') @classmethod def get_total_coupon_code_purchases(cls, course_id): """ returns total seats purchases using coupon codes """ return cls.objects.filter(order__status='purchased', coupon__course_id=course_id).aggregate(Count('coupon')) class PaidCourseRegistration(OrderItem): """ This is an inventory item for paying for a course registration """ course_id = CourseKeyField(max_length=128, db_index=True) mode = models.SlugField(default=CourseMode.DEFAULT_MODE_SLUG) course_enrollment = models.ForeignKey(CourseEnrollment, null=True) @classmethod def get_self_purchased_seat_count(cls, course_key, status='purchased'): """ returns the count of paid_course items filter by course_id and status. """ return cls.objects.filter(course_id=course_key, status=status).count() @classmethod def get_course_item_for_user_enrollment(cls, user, course_id, course_enrollment): """ Returns PaidCourseRegistration object if user has payed for the course enrollment else Returns None """ try: return cls.objects.filter(course_id=course_id, user=user, course_enrollment=course_enrollment, status='purchased').latest('id') except PaidCourseRegistration.DoesNotExist: return None @classmethod def contained_in_order(cls, order, course_id): """ Is the course defined by course_id contained in the order? """ return course_id in [ item.course_id for item in order.orderitem_set.all().select_subclasses("paidcourseregistration") if isinstance(item, cls) ] @classmethod def get_total_amount_of_purchased_item(cls, course_key, status='purchased'): """ This will return the total amount of money that a purchased course generated """ total_cost = 0 result = cls.objects.filter(course_id=course_key, status=status).aggregate( total=Sum('unit_cost', field='qty * unit_cost') ) if result['total'] is not None: total_cost = result['total'] return total_cost @classmethod @transaction.commit_on_success def add_to_order(cls, order, course_id, mode_slug=CourseMode.DEFAULT_MODE_SLUG, cost=None, currency=None): """ A standardized way to create these objects, with sensible defaults filled in. Will update the cost if called on an order that already carries the course. Returns the order item """ # First a bunch of sanity checks: # actually fetch the course to make sure it exists, use this to # throw errors if it doesn't. course = modulestore().get_course(course_id) if not course: log.error("User {} tried to add non-existent course {} to cart id {}" .format(order.user.email, course_id, order.id)) raise CourseDoesNotExistException if cls.contained_in_order(order, course_id): log.warning( u"User %s tried to add PaidCourseRegistration for course %s, already in cart id %s", order.user.email, course_id, order.id, ) raise ItemAlreadyInCartException if CourseEnrollment.is_enrolled(user=order.user, course_key=course_id): log.warning("User {} trying to add course {} to cart id {}, already registered" .format(order.user.email, course_id, order.id)) raise AlreadyEnrolledInCourseException ### Validations done, now proceed ### handle default arguments for mode_slug, cost, currency course_mode = CourseMode.mode_for_course(course_id, mode_slug) if not course_mode: # user could have specified a mode that's not set, in that case return the DEFAULT_MODE course_mode = CourseMode.DEFAULT_MODE if not cost: cost = course_mode.min_price if not currency: currency = course_mode.currency super(PaidCourseRegistration, cls).add_to_order(order, course_id, cost, currency=currency) item, created = cls.objects.get_or_create(order=order, user=order.user, course_id=course_id) item.status = order.status item.mode = course_mode.slug item.qty = 1 item.unit_cost = cost item.list_price = cost item.line_desc = _(u'Registration for Course: {course_name}').format( course_name=course.display_name_with_default) item.currency = currency order.currency = currency item.report_comments = item.csv_report_comments order.save() item.save() log.info("User {} added course registration {} to cart: order {}" .format(order.user.email, course_id, order.id)) return item def purchased_callback(self): """ When purchased, this should enroll the user in the course. We are assuming that course settings for enrollment date are configured such that only if the (user.email, course_id) pair is found in CourseEnrollmentAllowed will the user be allowed to enroll. Otherwise requiring payment would in fact be quite silly since there's a clear back door. """ if not modulestore().has_course(self.course_id): msg = u"The customer purchased Course {0}, but that course doesn't exist!".format(self.course_id) log.error(msg) raise PurchasedCallbackException(msg) # enroll in course and link to the enrollment_id self.course_enrollment = CourseEnrollment.enroll(user=self.user, course_key=self.course_id, mode=self.mode) self.save() log.info("Enrolled {0} in paid course {1}, paid ${2}" .format(self.user.email, self.course_id, self.line_cost)) # pylint: disable=no-member def generate_receipt_instructions(self): """ Generates instructions when the user has purchased a PaidCourseRegistration. Basically tells the user to visit the dashboard to see their new classes """ notification = _( u"Please visit your {link_start}dashboard{link_end} " u"to see your new course." ).format( link_start=u'<a href="{url}">'.format(url=reverse('dashboard')), link_end=u'</a>', ) return self.pk_with_subclass, set([notification]) @property def csv_report_comments(self): """ Tries to fetch an annotation associated with the course_id from the database. If not found, returns u"". Otherwise returns the annotation """ try: return PaidCourseRegistrationAnnotation.objects.get(course_id=self.course_id).annotation except PaidCourseRegistrationAnnotation.DoesNotExist: return u"" def analytics_data(self): """Simple function used to construct analytics data for the OrderItem. If the Order Item is associated with a course, additional fields will be populated with course information. If there is a mode associated, the mode data is included in the SKU. Returns A dictionary containing analytics data for this OrderItem. """ data = super(PaidCourseRegistration, self).analytics_data() sku = data['sku'] if self.course_id != CourseKeyField.Empty: data['name'] = unicode(self.course_id) data['category'] = unicode(self.course_id.org) if self.mode: data['sku'] = sku + u'.' + unicode(self.mode) return data class CourseRegCodeItem(OrderItem): """ This is an inventory item for paying for generating course registration codes """ course_id = CourseKeyField(max_length=128, db_index=True) mode = models.SlugField(default=CourseMode.DEFAULT_MODE_SLUG) @classmethod def get_bulk_purchased_seat_count(cls, course_key, status='purchased'): """ returns the sum of bulk purchases seats. """ total = 0 result = cls.objects.filter(course_id=course_key, status=status).aggregate(total=Sum('qty')) if result['total'] is not None: total = result['total'] return total @classmethod def contained_in_order(cls, order, course_id): """ Is the course defined by course_id contained in the order? """ return course_id in [ item.course_id for item in order.orderitem_set.all().select_subclasses("courseregcodeitem") if isinstance(item, cls) ] @classmethod def get_total_amount_of_purchased_item(cls, course_key, status='purchased'): """ This will return the total amount of money that a purchased course generated """ total_cost = 0 result = cls.objects.filter(course_id=course_key, status=status).aggregate( total=Sum('unit_cost', field='qty * unit_cost') ) if result['total'] is not None: total_cost = result['total'] return total_cost @classmethod @transaction.commit_on_success def add_to_order(cls, order, course_id, qty, mode_slug=CourseMode.DEFAULT_MODE_SLUG, cost=None, currency=None): # pylint: disable=arguments-differ """ A standardized way to create these objects, with sensible defaults filled in. Will update the cost if called on an order that already carries the course. Returns the order item """ # First a bunch of sanity checks: # actually fetch the course to make sure it exists, use this to # throw errors if it doesn't. course = modulestore().get_course(course_id) if not course: log.error("User {} tried to add non-existent course {} to cart id {}" .format(order.user.email, course_id, order.id)) raise CourseDoesNotExistException if cls.contained_in_order(order, course_id): log.warning("User {} tried to add PaidCourseRegistration for course {}, already in cart id {}" .format(order.user.email, course_id, order.id)) raise ItemAlreadyInCartException if CourseEnrollment.is_enrolled(user=order.user, course_key=course_id): log.warning("User {} trying to add course {} to cart id {}, already registered" .format(order.user.email, course_id, order.id)) raise AlreadyEnrolledInCourseException ### Validations done, now proceed ### handle default arguments for mode_slug, cost, currency course_mode = CourseMode.mode_for_course(course_id, mode_slug) if not course_mode: # user could have specified a mode that's not set, in that case return the DEFAULT_MODE course_mode = CourseMode.DEFAULT_MODE if not cost: cost = course_mode.min_price if not currency: currency = course_mode.currency super(CourseRegCodeItem, cls).add_to_order(order, course_id, cost, currency=currency) item, created = cls.objects.get_or_create(order=order, user=order.user, course_id=course_id) # pylint: disable=unused-variable item.status = order.status item.mode = course_mode.slug item.unit_cost = cost item.list_price = cost item.qty = qty item.line_desc = _(u'Enrollment codes for Course: {course_name}').format( course_name=course.display_name_with_default) item.currency = currency order.currency = currency item.report_comments = item.csv_report_comments order.save() item.save() log.info("User {} added course registration {} to cart: order {}" .format(order.user.email, course_id, order.id)) return item def purchased_callback(self): """ The purchase is completed, this OrderItem type will generate Registration Codes that will be redeemed by users """ if not modulestore().has_course(self.course_id): msg = u"The customer purchased Course {0}, but that course doesn't exist!".format(self.course_id) log.error(msg) raise PurchasedCallbackException(msg) total_registration_codes = int(self.qty) # we need to import here because of a circular dependency # we should ultimately refactor code to have save_registration_code in this models.py # file, but there's also a shared dependency on a random string generator which # is in another PR (for another feature) from instructor.views.api import save_registration_code for i in range(total_registration_codes): # pylint: disable=unused-variable save_registration_code(self.user, self.course_id, self.mode, order=self.order) log.info("Enrolled {0} in paid course {1}, paid ${2}" .format(self.user.email, self.course_id, self.line_cost)) # pylint: disable=no-member @property def csv_report_comments(self): """ Tries to fetch an annotation associated with the course_id from the database. If not found, returns u"". Otherwise returns the annotation """ try: return CourseRegCodeItemAnnotation.objects.get(course_id=self.course_id).annotation except CourseRegCodeItemAnnotation.DoesNotExist: return u"" def analytics_data(self): """Simple function used to construct analytics data for the OrderItem. If the OrderItem is associated with a course, additional fields will be populated with course information. If a mode is available, it will be included in the SKU. Returns A dictionary containing analytics data for this OrderItem. """ data = super(CourseRegCodeItem, self).analytics_data() sku = data['sku'] if self.course_id != CourseKeyField.Empty: data['name'] = unicode(self.course_id) data['category'] = unicode(self.course_id.org) if self.mode: data['sku'] = sku + u'.' + unicode(self.mode) return data class CourseRegCodeItemAnnotation(models.Model): """ A model that maps course_id to an additional annotation. This is specifically needed because when Stanford generates report for the paid courses, each report item must contain the payment account associated with a course. And unfortunately we didn't have the concept of a "SKU" or stock item where we could keep this association, so this is to retrofit it. """ course_id = CourseKeyField(unique=True, max_length=128, db_index=True) annotation = models.TextField(null=True) def __unicode__(self): # pylint: disable=no-member return u"{} : {}".format(self.course_id.to_deprecated_string(), self.annotation) class PaidCourseRegistrationAnnotation(models.Model): """ A model that maps course_id to an additional annotation. This is specifically needed because when Stanford generates report for the paid courses, each report item must contain the payment account associated with a course. And unfortunately we didn't have the concept of a "SKU" or stock item where we could keep this association, so this is to retrofit it. """ course_id = CourseKeyField(unique=True, max_length=128, db_index=True) annotation = models.TextField(null=True) def __unicode__(self): # pylint: disable=no-member return u"{} : {}".format(self.course_id.to_deprecated_string(), self.annotation) class CertificateItem(OrderItem): """ This is an inventory item for purchasing certificates """ course_id = CourseKeyField(max_length=128, db_index=True) course_enrollment = models.ForeignKey(CourseEnrollment) mode = models.SlugField() @receiver(UNENROLL_DONE) def refund_cert_callback(sender, course_enrollment=None, skip_refund=False, **kwargs): # pylint: disable=no-self-argument,unused-argument """ When a CourseEnrollment object calls its unenroll method, this function checks to see if that unenrollment occurred in a verified certificate that was within the refund deadline. If so, it actually performs the refund. Returns the refunded certificate on a successful refund; else, it returns nothing. """ # Only refund verified cert unenrollments that are within bounds of the expiration date if (not course_enrollment.refundable()) or skip_refund: return target_certs = CertificateItem.objects.filter(course_id=course_enrollment.course_id, user_id=course_enrollment.user, status='purchased', mode='verified') try: target_cert = target_certs[0] except IndexError: log.error( u"Matching CertificateItem not found while trying to refund. User %s, Course %s", course_enrollment.user, course_enrollment.course_id, ) return target_cert.status = 'refunded' target_cert.refund_requested_time = datetime.now(pytz.utc) target_cert.save() target_cert.order.refund() order_number = target_cert.order_id # send billing an email so they can handle refunding subject = _("[Refund] User-Requested Refund") message = "User {user} ({user_email}) has requested a refund on Order #{order_number}.".format(user=course_enrollment.user, user_email=course_enrollment.user.email, order_number=order_number) to_email = [settings.PAYMENT_SUPPORT_EMAIL] from_email = microsite.get_value('payment_support_email', settings.PAYMENT_SUPPORT_EMAIL) try: send_mail(subject, message, from_email, to_email, fail_silently=False) except Exception as exception: # pylint: disable=broad-except err_str = ('Failed sending email to billing to request a refund for verified certificate' ' (User {user}, Course {course}, CourseEnrollmentID {ce_id}, Order #{order})\n{exception}') log.error(err_str.format( user=course_enrollment.user, course=course_enrollment.course_id, ce_id=course_enrollment.id, order=order_number, exception=exception, )) return target_cert @classmethod @transaction.commit_on_success def add_to_order(cls, order, course_id, cost, mode, currency='usd'): """ Add a CertificateItem to an order Returns the CertificateItem object after saving `order` - an order that this item should be added to, generally the cart order `course_id` - the course that we would like to purchase as a CertificateItem `cost` - the amount the user will be paying for this CertificateItem `mode` - the course mode that this certificate is going to be issued for This item also creates a new enrollment if none exists for this user and this course. Example Usage: cart = Order.get_cart_for_user(user) CertificateItem.add_to_order(cart, 'edX/Test101/2013_Fall', 30, 'verified') """ super(CertificateItem, cls).add_to_order(order, course_id, cost, currency=currency) course_enrollment = CourseEnrollment.get_or_create_enrollment(order.user, course_id) # do some validation on the enrollment mode valid_modes = CourseMode.modes_for_course_dict(course_id) if mode in valid_modes: mode_info = valid_modes[mode] else: msg = u"Mode {mode} does not exist for {course_id}".format(mode=mode, course_id=course_id) log.error(msg) raise InvalidCartItem( _(u"Mode {mode} does not exist for {course_id}").format(mode=mode, course_id=course_id) ) item, _created = cls.objects.get_or_create( order=order, user=order.user, course_id=course_id, course_enrollment=course_enrollment, mode=mode, ) item.status = order.status item.qty = 1 item.unit_cost = cost item.list_price = cost course_name = modulestore().get_course(course_id).display_name # Translators: In this particular case, mode_name refers to a # particular mode (i.e. Honor Code Certificate, Verified Certificate, etc) # by which a user could enroll in the given course. item.line_desc = _("{mode_name} for course {course}").format( mode_name=mode_info.name, course=course_name ) item.currency = currency order.currency = currency order.save() item.save() return item def purchased_callback(self): """ When purchase goes through, activate and update the course enrollment for the correct mode """ self.course_enrollment.change_mode(self.mode) self.course_enrollment.activate() def additional_instruction_text(self): verification_reminder = "" is_enrollment_mode_verified = self.course_enrollment.is_verified_enrollment() # pylint: disable=E1101 if is_enrollment_mode_verified: domain = microsite.get_value('SITE_NAME', settings.SITE_NAME) path = reverse('verify_student_verify_now', kwargs={'course_id': unicode(self.course_id)}) verification_url = "http://{domain}{path}".format(domain=domain, path=path) verification_reminder = _( "If you haven't verified your identity yet, please start the verification process ({verification_url})." ).format(verification_url=verification_url) refund_reminder = _( "You have up to two weeks into the course to unenroll and receive a full refund." "To receive your refund, contact {billing_email}. " "Please include your order number in your email. " "Please do NOT include your credit card information." ).format( billing_email=settings.PAYMENT_SUPPORT_EMAIL ) # Need this to be unicode in case the reminder strings # have been translated and contain non-ASCII unicode return u"{verification_reminder} {refund_reminder}".format( verification_reminder=verification_reminder, refund_reminder=refund_reminder ) @classmethod def verified_certificates_count(cls, course_id, status): """Return a queryset of CertificateItem for every verified enrollment in course_id with the given status.""" return use_read_replica_if_available( CertificateItem.objects.filter(course_id=course_id, mode='verified', status=status).count()) # TODO combine these three methods into one @classmethod def verified_certificates_monetary_field_sum(cls, course_id, status, field_to_aggregate): """ Returns a Decimal indicating the total sum of field_to_aggregate for all verified certificates with a particular status. Sample usages: - status 'refunded' and field_to_aggregate 'unit_cost' will give the total amount of money refunded for course_id - status 'purchased' and field_to_aggregate 'service_fees' gives the sum of all service fees for purchased certificates etc """ query = use_read_replica_if_available( CertificateItem.objects.filter(course_id=course_id, mode='verified', status=status)).aggregate(Sum(field_to_aggregate))[field_to_aggregate + '__sum'] if query is None: return Decimal(0.00) else: return query @classmethod def verified_certificates_contributing_more_than_minimum(cls, course_id): return use_read_replica_if_available( CertificateItem.objects.filter( course_id=course_id, mode='verified', status='purchased', unit_cost__gt=(CourseMode.min_course_price_for_verified_for_currency(course_id, 'usd')))).count() def analytics_data(self): """Simple function used to construct analytics data for the OrderItem. If the CertificateItem is associated with a course, additional fields will be populated with course information. If there is a mode associated with the certificate, it is included in the SKU. Returns A dictionary containing analytics data for this OrderItem. """ data = super(CertificateItem, self).analytics_data() sku = data['sku'] if self.course_id != CourseKeyField.Empty: data['name'] = unicode(self.course_id) data['category'] = unicode(self.course_id.org) if self.mode: data['sku'] = sku + u'.' + unicode(self.mode) return data class DonationConfiguration(ConfigurationModel): """Configure whether donations are enabled on the site.""" pass class Donation(OrderItem): """A donation made by a user. Donations can be made for a specific course or to the organization as a whole. Users can choose the donation amount. """ # Types of donations DONATION_TYPES = ( ("general", "A general donation"), ("course", "A donation to a particular course") ) # The type of donation donation_type = models.CharField(max_length=32, default="general", choices=DONATION_TYPES) # If a donation is made for a specific course, then store the course ID here. # If the donation is made to the organization as a whole, # set this field to CourseKeyField.Empty course_id = CourseKeyField(max_length=255, db_index=True) @classmethod @transaction.commit_on_success def add_to_order(cls, order, donation_amount, course_id=None, currency='usd'): """Add a donation to an order. Args: order (Order): The order to add this donation to. donation_amount (Decimal): The amount the user is donating. Keyword Args: course_id (CourseKey): If provided, associate this donation with a particular course. currency (str): The currency used for the the donation. Raises: InvalidCartItem: The provided course ID is not valid. Returns: Donation """ # This will validate the currency but won't actually add the item to the order. super(Donation, cls).add_to_order(order, currency=currency) # Create a line item description, including the name of the course # if this is a per-course donation. # This will raise an exception if the course can't be found. description = cls._line_item_description(course_id=course_id) params = { "order": order, "user": order.user, "status": order.status, "qty": 1, "unit_cost": donation_amount, "currency": currency, "line_desc": description } if course_id is not None: params["course_id"] = course_id params["donation_type"] = "course" else: params["donation_type"] = "general" return cls.objects.create(**params) def purchased_callback(self): """Donations do not need to be fulfilled, so this method does nothing.""" pass def generate_receipt_instructions(self): """Provide information about tax-deductible donations in the receipt. Returns: tuple of (Donation, unicode) """ return self.pk_with_subclass, set([self._tax_deduction_msg()]) def additional_instruction_text(self, **kwargs): # pylint: disable=unused-argument """Provide information about tax-deductible donations in the confirmation email. Returns: unicode """ return self._tax_deduction_msg() def _tax_deduction_msg(self): """Return the translated version of the tax deduction message. Returns: unicode """ return _( u"We greatly appreciate this generous contribution and your support of the {platform_name} mission. " u"This receipt was prepared to support charitable contributions for tax purposes. " u"We confirm that neither goods nor services were provided in exchange for this gift." ).format(platform_name=settings.PLATFORM_NAME) @classmethod def _line_item_description(cls, course_id=None): """Create a line-item description for the donation. Includes the course display name if provided. Keyword Arguments: course_id (CourseKey) Raises: CourseDoesNotExistException: The course ID is not valid. Returns: unicode """ # If a course ID is provided, include the display name of the course # in the line item description. if course_id is not None: course = modulestore().get_course(course_id) if course is None: msg = u"Could not find a course with the ID '{course_id}'".format(course_id=course_id) log.error(msg) raise CourseDoesNotExistException( _(u"Could not find a course with the ID '{course_id}'").format(course_id=course_id) ) return _(u"Donation for {course}").format(course=course.display_name) # The donation is for the organization as a whole, not a specific course else: return _(u"Donation for {platform_name}").format(platform_name=settings.PLATFORM_NAME) @property def single_item_receipt_context(self): return { 'receipt_has_donation_item': True, } def analytics_data(self): """Simple function used to construct analytics data for the OrderItem. If the donation is associated with a course, additional fields will be populated with course information. When no name or category is specified by the implementation, the platform name is used as a default value for required event fields, to declare that the Order is specific to the platform, rather than a specific product name or category. Returns A dictionary containing analytics data for this OrderItem. """ data = super(Donation, self).analytics_data() if self.course_id != CourseKeyField.Empty: data['name'] = unicode(self.course_id) data['category'] = unicode(self.course_id.org) else: data['name'] = settings.PLATFORM_NAME data['category'] = settings.PLATFORM_NAME return data @property def pdf_receipt_display_name(self): """ How to display this item on a PDF printed receipt file. """ return self._line_item_description(course_id=self.course_id)
adoosii/edx-platform
lms/djangoapps/shoppingcart/models.py
Python
agpl-3.0
89,116
[ "VisIt" ]
ac8ad8f7f39b4fe96f3190fce12b2356c63d0d6748d82f9a27e7124c70f193bb
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class RMzid(RPackage): """A parser for mzIdentML files implemented using the XML package. The parser tries to be general and able to handle all types of mzIdentML files with the drawback of having less 'pretty' output than a vendor specific parser. Please contact the maintainer with any problems and supply an mzIdentML file so the problems can be fixed quickly.""" homepage = "https://www.bioconductor.org/packages/mzID/" url = "https://git.bioconductor.org/packages/mzID" version('1.14.0', git='https://git.bioconductor.org/packages/mzID', commit='1c53aa6523ae61d3ebb13381381fc119d6cc6115') depends_on('r-xml', type=('build', 'run')) depends_on('r-plyr', type=('build', 'run')) depends_on('r-doparallel', type=('build', 'run')) depends_on('r-foreach', type=('build', 'run')) depends_on('r-iterators', type=('build', 'run')) depends_on('r-protgenerics', type=('build', 'run')) depends_on('[email protected]:3.4.9', when='@1.14.0')
skosukhin/spack
var/spack/repos/builtin/packages/r-mzid/package.py
Python
lgpl-2.1
2,260
[ "Bioconductor" ]
787bd08e8d1d346671cf7f4f242d045a2e70f5d810399094cfcfdccc54c4ca91
# Copyright (C) 2015, Carlo de Franchis <[email protected]> # Copyright (C) 2015, Gabriele Facciolo <[email protected]> # Copyright (C) 2015, Enric Meinhardt <[email protected]> # Copyright (C) 2015, Julien Michel <[email protected]> import os import numpy as np from s2plib import common from s2plib.config import cfg def rectify_secondary_tile_only(algo): if algo in ['tvl1_2d']: return True else: return False def compute_disparity_map(im1, im2, disp, mask, algo, disp_min=None, disp_max=None, extra_params=''): """ Runs a block-matching binary on a pair of stereo-rectified images. Args: im1, im2: rectified stereo pair disp: path to the output diparity map mask: path to the output rejection mask algo: string used to indicate the desired binary. Currently it can be one among 'hirschmuller02', 'hirschmuller08', 'hirschmuller08_laplacian', 'hirschmuller08_cauchy', 'sgbm', 'msmw', 'tvl1', 'mgm', 'mgm_multi' and 'micmac' disp_min : smallest disparity to consider disp_max : biggest disparity to consider extra_params: optional string with algorithm-dependent parameters """ if rectify_secondary_tile_only(algo) is False: disp_min = [disp_min] disp_max = [disp_max] # limit disparity bounds np.alltrue(len(disp_min) == len(disp_max)) for dim in range(len(disp_min)): if disp_min[dim] is not None and disp_max[dim] is not None: image_size = common.image_size_gdal(im1) if disp_max[dim] - disp_min[dim] > image_size[dim]: center = 0.5 * (disp_min[dim] + disp_max[dim]) disp_min[dim] = int(center - 0.5 * image_size[dim]) disp_max[dim] = int(center + 0.5 * image_size[dim]) # round disparity bounds if disp_min[dim] is not None: disp_min[dim] = int(np.floor(disp_min[dim])) if disp_max is not None: disp_max[dim] = int(np.ceil(disp_max[dim])) if rectify_secondary_tile_only(algo) is False: disp_min = disp_min[0] disp_max = disp_max[0] # define environment variables env = os.environ.copy() env['OMP_NUM_THREADS'] = str(cfg['omp_num_threads']) # call the block_matching binary if algo == 'hirschmuller02': bm_binary = 'subpix.sh' common.run('{0} {1} {2} {3} {4} {5} {6} {7}'.format(bm_binary, im1, im2, disp, mask, disp_min, disp_max, extra_params)) # extra_params: LoG(0) regionRadius(3) # LoG: Laplacian of Gaussian preprocess 1:enabled 0:disabled # regionRadius: radius of the window if algo == 'hirschmuller08': bm_binary = 'callSGBM.sh' common.run('{0} {1} {2} {3} {4} {5} {6} {7}'.format(bm_binary, im1, im2, disp, mask, disp_min, disp_max, extra_params)) # extra_params: regionRadius(3) P1(default) P2(default) LRdiff(1) # regionRadius: radius of the window # P1, P2 : regularization parameters # LRdiff: maximum difference between left and right disparity maps if algo == 'hirschmuller08_laplacian': bm_binary = 'callSGBM_lap.sh' common.run('{0} {1} {2} {3} {4} {5} {6} {7}'.format(bm_binary, im1, im2, disp, mask, disp_min, disp_max, extra_params)) if algo == 'hirschmuller08_cauchy': bm_binary = 'callSGBM_cauchy.sh' common.run('{0} {1} {2} {3} {4} {5} {6} {7}'.format(bm_binary, im1, im2, disp, mask, disp_min, disp_max, extra_params)) if algo == 'sgbm': # opencv sgbm function implements a modified version of Hirschmuller's # Semi-Global Matching (SGM) algorithm described in "Stereo Processing # by Semiglobal Matching and Mutual Information", PAMI, 2008 p1 = 8 # penalizes disparity changes of 1 between neighbor pixels p2 = 32 # penalizes disparity changes of more than 1 # it is required that p2 > p1. The larger p1, p2, the smoother the disparity win = 3 # matched block size. It must be a positive odd number lr = 1 # maximum difference allowed in the left-right disparity check cost = common.tmpfile('.tif') common.run('sgbm {} {} {} {} {} {} {} {} {} {}'.format(im1, im2, disp, cost, disp_min, disp_max, win, p1, p2, lr)) # create rejection mask (0 means rejected, 1 means accepted) # keep only the points that are matched and present in both input images common.run('plambda {0} "x 0 join" | backflow - {2} | plambda {0} {1} - "x isfinite y isfinite z isfinite and and" -o {3}'.format(disp, im1, im2, mask)) if algo == 'tvl1': tvl1 = 'callTVL1.sh' common.run('{0} {1} {2} {3} {4}'.format(tvl1, im1, im2, disp, mask), env) if algo == 'tvl1_2d': tvl1 = 'callTVL1.sh' common.run('{0} {1} {2} {3} {4} {5}'.format(tvl1, im1, im2, disp, mask, 1), env) if algo == 'msmw': bm_binary = 'iip_stereo_correlation_multi_win2' common.run('{0} -i 1 -n 4 -p 4 -W 5 -x 9 -y 9 -r 1 -d 1 -t -1 -s 0 -b 0 -o 0.25 -f 0 -P 32 -m {1} -M {2} {3} {4} {5} {6}'.format(bm_binary, disp_min, disp_max, im1, im2, disp, mask)) if algo == 'msmw2': bm_binary = 'iip_stereo_correlation_multi_win2_newversion' common.run('{0} -i 1 -n 4 -p 4 -W 5 -x 9 -y 9 -r 1 -d 1 -t -1 -s 0 -b 0 -o -0.25 -f 0 -P 32 -D 0 -O 25 -c 0 -m {1} -M {2} {3} {4} {5} {6}'.format( bm_binary, disp_min, disp_max, im1, im2, disp, mask), env) if algo == 'msmw3': bm_binary = 'msmw' common.run('{0} -m {1} -M {2} -il {3} -ir {4} -dl {5} -kl {6}'.format( bm_binary, disp_min, disp_max, im1, im2, disp, mask)) if algo == 'mgm': env['MEDIAN'] = '1' env['CENSUS_NCC_WIN'] = str(cfg['census_ncc_win']) env['TSGM'] = '3' conf = '{}_confidence.tif'.format(os.path.splitext(disp)[0]) common.run('{0} -r {1} -R {2} -s vfit -t census -O 8 {3} {4} {5} -confidence_consensusL {6}'.format('mgm', disp_min, disp_max, im1, im2, disp, conf), env) # produce the mask: rejected pixels are marked with nan of inf in disp # map common.run('plambda {0} "isfinite" -o {1}'.format(disp, mask)) if algo == 'mgm_multi_lsd': ref = im1 sec = im2 wref = common.tmpfile('.tif') wsec = common.tmpfile('.tif') # TODO TUNE LSD PARAMETERS TO HANDLE DIRECTLY 12 bits images? # image dependent weights based on lsd segments image_size = common.image_size_gdal(ref) common.run('qauto %s | \ lsd - - | \ cut -d\' \' -f1,2,3,4 | \ pview segments %d %d | \ plambda - "255 x - 255 / 2 pow 0.1 fmax" -o %s'%(ref,image_size[0], image_size[1],wref)) # image dependent weights based on lsd segments image_size = common.image_size_gdal(sec) common.run('qauto %s | \ lsd - - | \ cut -d\' \' -f1,2,3,4 | \ pview segments %d %d | \ plambda - "255 x - 255 / 2 pow 0.1 fmax" -o %s'%(sec,image_size[0], image_size[1],wsec)) env['REMOVESMALLCC'] = str(cfg['stereo_speckle_filter']) env['SUBPIX'] = '2' env['MEDIAN'] = '1' env['CENSUS_NCC_WIN'] = str(cfg['census_ncc_win']) # it is required that p2 > p1. The larger p1, p2, the smoother the disparity regularity_multiplier = cfg['stereo_regularity_multiplier'] # increasing these numbers compensates the loss of regularity after incorporating LSD weights P1 = 12*regularity_multiplier # penalizes disparity changes of 1 between neighbor pixels P2 = 48*regularity_multiplier # penalizes disparity changes of more than 1 conf = disp+'.confidence.tif' common.run('{0} -r {1} -R {2} -S 6 -s vfit -t census -O 8 -P1 {7} -P2 {8} -wl {3} -wr {4} -confidence_consensusL {10} {5} {6} {9}'.format('mgm_multi', disp_min, disp_max, wref,wsec, im1, im2, P1, P2, disp, conf), env) # produce the mask: rejected pixels are marked with nan of inf in disp # map common.run('plambda {0} "isfinite" -o {1}'.format(disp, mask)) if algo == 'mgm_multi': env['REMOVESMALLCC'] = str(cfg['stereo_speckle_filter']) env['MINDIFF'] = '1' env['CENSUS_NCC_WIN'] = str(cfg['census_ncc_win']) env['SUBPIX'] = '2' # it is required that p2 > p1. The larger p1, p2, the smoother the disparity regularity_multiplier = cfg['stereo_regularity_multiplier'] P1 = 8*regularity_multiplier # penalizes disparity changes of 1 between neighbor pixels P2 = 32*regularity_multiplier # penalizes disparity changes of more than 1 conf = '{}_confidence.tif'.format(os.path.splitext(disp)[0]) common.run('{0} -r {1} -R {2} -S 6 -s vfit -t census {3} {4} {5} -confidence_consensusL {6}'.format('mgm_multi', disp_min, disp_max, im1, im2, disp, conf), env) # produce the mask: rejected pixels are marked with nan of inf in disp # map common.run('plambda {0} "isfinite" -o {1}'.format(disp, mask)) if (algo == 'micmac'): # add micmac binaries to the PATH environment variable s2p_dir = os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))) micmac_bin = os.path.join(s2p_dir, 'bin', 'micmac', 'bin') os.environ['PATH'] = os.environ['PATH'] + os.pathsep + micmac_bin # prepare micmac xml params file micmac_params = os.path.join(s2p_dir, '3rdparty', 'micmac_params.xml') work_dir = os.path.dirname(os.path.abspath(im1)) common.run('cp {0} {1}'.format(micmac_params, work_dir)) # run MICMAC common.run('MICMAC {0:s}'.format(os.path.join(work_dir, 'micmac_params.xml'))) # copy output disp map micmac_disp = os.path.join(work_dir, 'MEC-EPI', 'Px1_Num6_DeZoom1_LeChantier.tif') disp = os.path.join(work_dir, 'rectified_disp.tif') common.run('cp {0} {1}'.format(micmac_disp, disp)) # compute mask by rejecting the 10% of pixels with lowest correlation score micmac_cost = os.path.join(work_dir, 'MEC-EPI', 'Correl_LeChantier_Num_5.tif') mask = os.path.join(work_dir, 'rectified_mask.png') common.run('plambda {0} "x x%q10 < 0 255 if" -o {1}'.format(micmac_cost, mask))
dyoussef/s2p
s2plib/block_matching.py
Python
agpl-3.0
12,358
[ "Gaussian" ]
1681b330d49e8d3df77d2397225927f9029564fc5c293b64df3852a0f87c45ec
__author__ = 'bptripp' from os import listdir from os.path import isfile, join import time import numpy as np import matplotlib.pyplot as plt import cPickle from PIL import Image from scipy.optimize import bisect from quaternion import angle_between_quaterions, to_quaternion def get_random_points(n, radius, surface=False): point_directions = np.random.randn(3, n) norms = np.sum(point_directions**2, axis=0)**.5 points = radius * point_directions / norms if not surface: # points = points * np.random.rand(n)**(1./3.) palm = .035 #TODO: whoops, this is in metres, not fraction of radius points = points * (palm + (1-palm)*np.random.rand(n)) return points def get_random_angles(n, std=np.pi/8.): """ :param n: Number of angles needed :return: Random angles in restricted ranges, meant as deviations in perspective around looking staight at something. """ angles = std*np.random.randn(3, n) angles[2,:] = 2*np.pi*np.random.rand(1, n) return angles def get_rotation_matrix(point, angle): """ :param point: Location of camera :param angle: Not what you expect: this is a list of angles relative to looking at (0,0,0), about world-z (azimuth), camera-y (elevation), and camera-z (roll). Random samples are produced by get_random_angles(). :return: just what you expect """ z = -point #location of (0,0,0) relative to point alpha = np.arctan(z[1]/z[0]) if z[0] < 0: alpha = alpha + np.pi if alpha < 0: alpha = alpha + 2.*np.pi alpha = alpha + angle[0] # rotate by alpha about z Rz = np.array([[np.cos(alpha), -np.sin(alpha), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]]) # find elevation in new coordinates beta = -np.arctan(np.sqrt(z[0]**2+z[1]**2)/z[2]) if z[2] < 0: beta = beta + np.pi if beta < 0: beta = beta + 2.*np.pi beta = beta + angle[1] # rotate by beta about y Ry = np.array([[np.cos(beta), 0, -np.sin(beta)], [0, 1, 0], [np.sin(beta), 0, np.cos(beta)]]) gamma = angle[2] Rz2 = np.array([[np.cos(-gamma), -np.sin(-gamma), 0], [np.sin(-gamma), np.cos(-gamma), 0], [0, 0, 1]]) return np.dot(Rz, np.dot(Ry, Rz2)) def check_rotation_matrix(scatter=False): from mpl_toolkits.mplot3d import axes3d, Axes3D n = 6 points = get_random_points(n, 2) angles = get_random_angles(n) # point = np.array([1,1e-6,1e-6]) # point = np.array([1e-6,1,1e-6]) fig = plt.figure() ax = fig.add_subplot(1,1,1,projection='3d') for i in range(points.shape[1]): point = points[:,i] angle = angles[:,i] if not scatter: angle[0] = 0 angle[1] = 0 R = get_rotation_matrix(point, angle) ax.scatter(0, 0, 0, color='b') ax.scatter(point[0], point[1], point[2], color='r') x = np.dot(R, np.array([1,0,0])) y = np.dot(R, np.array([0,1,0])) z = np.dot(R, np.array([0,0,1])) ax.plot([point[0],point[0]+x[0]], [point[1],point[1]+x[1]], [point[2],point[2]+x[2]], color='r') ax.plot([point[0],point[0]+y[0]], [point[1],point[1]+y[1]], [point[2],point[2]+y[2]], color='g') ax.plot([point[0],point[0]+z[0]], [point[1],point[1]+z[1]], [point[2],point[2]+z[2]], color='b') plt.xlabel('x') plt.ylabel('y') plt.ylabel('z') if not scatter: plt.title('blue axes should point AT blue dot (zero)') else: plt.title('blue axes should point NEAR blue dot (zero)') plt.show() def check_depth_from_random_perspective(): from depthmap import loadOBJ, Display filename = '../data/obj_files/24_bowl-02-Mar-2016-07-03-29.obj' verts, faces = loadOBJ(filename) # put vertical centre at zero verts = np.array(verts) minz = np.min(verts, axis=0)[2] maxz = np.max(verts, axis=0)[2] verts[:,2] = verts[:,2] - (minz+maxz)/2 n = 6 points = get_random_points(n, .25) angles = get_random_angles(n) point = points[:,0] angle = angles[:,0] rot = get_rotation_matrix(point, angle) im_width = 80 d = Display(imsize=(im_width,im_width)) d.set_camera_position(point, rot, .5) d.set_mesh(verts, faces) depth = d.read_depth() d.close() X = np.arange(0, im_width) Y = np.arange(0, im_width) X, Y = np.meshgrid(X, Y) from mpl_toolkits.mplot3d import axes3d, Axes3D fig = plt.figure() ax = fig.add_subplot(1,1,1,projection='3d') ax.plot_wireframe(X, Y, depth) ax.set_xlabel('x') plt.show() def find_vertical(point): """ Find new angle[2] so that camera-up points up. In terms of rotation matrix, R[2,0] should be 0 (x-axis horizontal) and R[2,1] should be positive (pointing up rather than down). """ def f(gamma): return get_rotation_matrix(point, np.array([0, 0, gamma]))[2][0] gamma = bisect(f, 0, np.pi) # if get_rotation_matrix(point, np.array([0, 0, gamma]))[2][1] < 0: if get_rotation_matrix(point, np.array([0, 0, gamma]))[2][1] > 0: gamma = gamma + np.pi return gamma def check_find_vertical(): n = 3 points = get_random_points(n, .35, surface=True) for i in range(n): point = points[:,i] gamma = find_vertical(point) rot = get_rotation_matrix(point, np.array([0, 0, gamma])) print(rot) # if np.abs(rot[2,0] > 1e-6) or rot[2,1] < 0: if np.abs(rot[2,0] > 1e-6) or rot[2,1] > 0: print('error with gamma: ' + str(gamma) + ' should be 0: ' + str(rot[2,0]) + ' should be +ve: ' + str(rot[2,1])) def plot_random_samples(): n = 1000 points = get_random_points(n, .25) angles = get_random_angles(n) from mpl_toolkits.mplot3d import axes3d, Axes3D fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(1,2,1,projection='3d') ax.scatter(points[0,:], points[1,:], points[2,:]) ax = fig.add_subplot(1,2,2,projection='3d') ax.scatter(angles[0,:], angles[1,:], angles[2,:]) plt.show() def get_perspectives(obj_filename, points, angles, im_width=80, near_clip=.25, far_clip=0.8, fov=45, camera_offset=.45, target_point=None): from depthmap import loadOBJ, Display, get_distance verts, faces = loadOBJ(obj_filename) # put vertical centre at zero verts = np.array(verts) min_bounding_box = np.min(verts, axis=0) max_bounding_box = np.max(verts, axis=0) # set bounding box centre to 0,0,0 verts[:,0] = verts[:,0] - (min_bounding_box[0]+max_bounding_box[0])/2. verts[:,1] = verts[:,1] - (min_bounding_box[1]+max_bounding_box[1])/2. verts[:,2] = verts[:,2] - (min_bounding_box[2]+max_bounding_box[2])/2. if target_point is not None: verts[:,0] = verts[:,0] - target_point[0] verts[:,1] = verts[:,1] - target_point[1] verts[:,2] = verts[:,2] - target_point[2] d = Display(imsize=(im_width,im_width)) d.set_perspective(fov=fov, near_clip=near_clip, far_clip=far_clip) perspectives = np.zeros((points.shape[1],im_width,im_width), dtype='float32') for i in range(points.shape[1]): point = points[:,i] angle = angles[:,i] rot = get_rotation_matrix(point, angle) d.set_camera_position(point, rot, camera_offset) d.set_mesh(verts, faces) depth = d.read_depth() distance = get_distance(depth, near_clip, far_clip) perspectives[i,:,:] = distance d.close() return perspectives def process_directory(obj_dir, data_dir, n): from os import listdir from os.path import isfile, join import time for f in listdir(obj_dir): obj_filename = join(obj_dir, f) if isfile(obj_filename) and f.endswith('.obj'): data_filename = join(data_dir, f[:-4] + '.pkl') if isfile(data_filename): print('Skipping ' + f) else: print('Processing ' + f) start_time = time.time() points = get_random_points(n, .15) angles = get_random_angles(n, std=0) print(angles) perspectives = get_perspectives(obj_filename, points, angles) f = open(data_filename, 'wb') cPickle.dump((points, angles, perspectives), f) f.close() print(' ' + str(time.time()-start_time) + 's') def process_eye_directory(obj_dir, data_dir, n): #TODO: save image files here to allow random ordering during training from os import listdir from os.path import isfile, join import time for f in listdir(obj_dir): obj_filename = join(obj_dir, f) if isfile(obj_filename) and f.endswith('.obj'): data_filename = join(data_dir, f[:-4] + '.pkl') if isfile(data_filename): print('Skipping ' + f) else: print('Processing ' + f) start_time = time.time() points = get_random_points(n, .35, surface=True) #.75m with offset angles = np.zeros_like(points) # Set camera-up to vertical via third angle (angle needed is always # 3pi/4, but we'll find it numerically in case other parts of code # change while we're not looking). for i in range(n): angles[2,i] = find_vertical(points[:,i]) perspectives = get_perspectives(obj_filename, points, angles, near_clip=.4, fov=30) f = open(data_filename, 'wb') cPickle.dump((points, angles, perspectives), f) f.close() print(' ' + str(time.time()-start_time) + 's') def check_maps(data_dir): """ Checks pkl files in given directory to see if any of the depth maps they contain are empty. """ from os import listdir from os.path import isfile, join for f in listdir(data_dir): data_filename = join(data_dir, f) if isfile(data_filename) and f.endswith('.pkl'): print('Checking ' + f) f = open(data_filename, 'rb') (points, angles, perspectives) = cPickle.load(f) f.close() for i in range(perspectives.shape[0]): sd = np.std(perspectives[i,:,:].flatten()) if sd < 1e-3: print(' map ' + str(i) + ' is empty') def calculate_metrics(perspectives, im_width=80, fov=45.0, camera_offset=.45): """ :param perspectives: numpy array of depth images of object from gripper perspective """ asymmetry_scale = 13.0 #TODO: calculate from camera params (13 pixels is ~5cm with default params) from heuristic import finger_path_template, calculate_grip_metrics finger_path = finger_path_template(fov*np.pi/180., im_width, camera_offset) collision_template = np.zeros_like(finger_path) collision_template[finger_path > 0] = camera_offset + 0.033 # print(np.max(collision_template)) # print(np.max(finger_path)) # plt.imshow(collision_template) # plt.show() metrics = [] collisions = [] for perspective in perspectives: intersections, qualities = calculate_grip_metrics(perspective, finger_path) q1 = qualities[0] q2 = qualities[1] q3 = qualities[2] if intersections[0] is None or intersections[2] is None: a1 = 1 else: a1 = ((intersections[0]-intersections[2])/asymmetry_scale)**2 if intersections[1] is None or intersections[2] is None: a2 = 1 else: a2 = ((intersections[1]-intersections[2])/asymmetry_scale)**2 m = np.minimum((q1+q2)/1.5, q3) / (1 + (q1*a1+q2*a2) / (q1+q2+1e-6)) collision = np.max(collision_template - perspective) > 0 collisions.append(collision) # if collision: # m = 0 metrics.append(m) # plt.subplot(1,2,1) # plt.imshow(perspective) # plt.subplot(1,2,2) # plt.imshow(np.maximum(0, finger_path-perspective)) # print(collision) # print((a1,a2)) # print(intersections) # print(qualities) # print('metric: ' + str(m)) # plt.show() # print((intersections, qualities)) return metrics, collisions def get_quaternion_distance(points, angles): """ Get new representation of camera/gripper configurations as rotation quaternions and distances from origin, rather than 3D points and rotations about axis pointing to origin. """ # print(points) # print(angles) quaternions = [] distances = [] for point, angle in zip(points.T, angles.T): distances.append(np.linalg.norm(point)) quaternions.append(to_quaternion(get_rotation_matrix(point, angle))) return np.array(quaternions), np.array(distances) def smooth_metrics(quaternions, distances, metrics): from interpolate import interpolate smoothed = [] for i in range(len(metrics)): # print(i) interpolated = interpolate(quaternions[i], distances[i], quaternions, distances, metrics, sigma_d=.02, sigma_a=(16*np.pi/180)) smoothed.append(interpolated) # print(interpolated - metrics[one]) return smoothed def load_target_points(filename): objects = [] indices = [] points = [] for line in open(filename, "r"): vals = line.translate(None, '"\n').split(',') assert len(vals) == 5 objects.append(vals[0]) indices.append(int(vals[1])) points.append([float(vals[2]), float(vals[3]), float(vals[4])]) return objects, indices, points def get_target_points_for_object(objects, indices, points, object): indices_for_object = [] points_for_object = [] for o, i, p in zip(objects, indices, points): if o == object: indices_for_object.append(i) points_for_object.append(p) return np.array(indices_for_object), np.array(points_for_object) def check_target_points(): objects, indices, points = load_target_points('../../grasp-conv/data/obj-points.csv') print(objects) print(indices) print(points) indices, points = get_target_points_for_object(objects, indices, points, '28_Spatula_final-11-Nov-2015-14-22-01.obj') print(indices) print(points) def check_metrics(): # points, angles, metrics, collisions = calculate_metrics('../../grasp-conv/data/perspectives/28_Spatula_final-11-Nov-2015-14-22-01.pkl') # with open('spatula-perspectives.pkl', 'wb') as f: # cPickle.dump((points, angles, metrics, collisions), f) with open('spatula-perspectives.pkl', 'rb') as f: (points, angles, metrics, collisions) = cPickle.load(f) metrics = np.array(metrics) smoothed = smooth_metrics(points, angles, metrics) with open('spatula-perspectives-smoothed.pkl', 'wb') as f: cPickle.dump((points, angles, metrics, collisions, smoothed), f) plt.hist(metrics, bins=50) plt.show() def make_grip_perspective_depths(obj_dir, data_dir, target_points_file, n=1000): objects, indices, points = load_target_points(target_points_file) for f in listdir(obj_dir): obj_filename = join(obj_dir, f) if isfile(obj_filename) and f.endswith('.obj'): data_filename = join(data_dir, f[:-4] + '.pkl') if isfile(data_filename): print('Skipping ' + f) else: print('Processing ' + f) target_indices, target_points = get_target_points_for_object(objects, indices, points, f) start_time = time.time() #TODO: is there any reason to make points & angles these the same or different across targets? gripper_points = get_random_points(n, .15) gripper_angles = get_random_angles(n, std=0) perspectives = [] for target_point in target_points: print(' ' + str(target_point)) p = get_perspectives(obj_filename, gripper_points, gripper_angles, target_point=target_point) perspectives.append(p) f = open(data_filename, 'wb') cPickle.dump((gripper_points, gripper_angles, target_indices, target_points, perspectives), f) f.close() print(' ' + str(time.time()-start_time) + 's') def make_metrics(perspective_dir, metric_dir): """ We'll store in separate pkl files per object to allow incremental processing, even through results won't take much memory. """ for f in listdir(perspective_dir): perspective_filename = join(perspective_dir, f) if isfile(perspective_filename) and f.endswith('.pkl'): metric_filename = join(metric_dir, f[:-4] + '-metrics.pkl') if isfile(metric_filename): print('Skipping ' + f) else: print('Processing ' + f) start_time = time.time() with open(perspective_filename) as perspective_file: gripper_points, gripper_angles, target_indices, target_points, perspectives = cPickle.load(perspective_file) print('unpickle: ' + str(time.time() - start_time)) quaternions, distances = get_quaternion_distance(gripper_points, gripper_angles) collisions = [] free_smoothed = [] coll_smoothed = [] for p in perspectives: # one per target point fm, c = calculate_metrics(p) fm = np.array(fm) c = np.array(c) fs = smooth_metrics(quaternions, distances, fm) cm = fm * (1-c) cs = smooth_metrics(quaternions, distances, cm) collisions.append(c) free_smoothed.append(fs) coll_smoothed.append(cs) f = open(metric_filename, 'wb') cPickle.dump((gripper_points, gripper_angles, target_indices, target_points, collisions, free_smoothed, coll_smoothed), f) f.close() def make_eye_perspective_depths(obj_dir, data_dir, target_points_file, n=20): all_objects, all_target_indices, all_target_points = load_target_points(target_points_file) camera_offset=.45 near_clip=.6 far_clip=1.0 eye_points = [] eye_angles = [] objects = [] target_indices = [] target_points = [] for f in listdir(obj_dir): obj_filename = join(obj_dir, f) if isfile(obj_filename) and f.endswith('.obj'): #and int(f[0]) >= 0: #TODO: set f[0] range here print('Processing ' + f) ti, tp= get_target_points_for_object(all_objects, all_target_indices, all_target_points, f) objects.append(f) target_indices.append(ti) target_points.append(tp) start_time = time.time() points = get_random_points(n, .35, surface=True) #.8m with offset # points = np.array([[ 0.00001], [0.35], [0.00001]]) # TODO: bug with x=0 and with z=0 print(points) angles = np.zeros_like(points) eye_points.append(points) eye_angles.append(angles) # Set camera-up to vertical via third angle (angle needed is always # 3pi/4, but we'll find it numerically in case other parts of code # change while we're not looking). for i in range(n): angles[2,i] = find_vertical(points[:,i]) perspectives = [] for target_index, target_point in zip(ti, tp): print(' ' + str(target_point)) perspectives = get_perspectives(obj_filename, points, angles, near_clip=near_clip, far_clip=far_clip, camera_offset=camera_offset, fov=30, target_point=target_point) for i in range(len(perspectives)): distance = perspectives[i] rescaled_distance = np.maximum(0, (distance-camera_offset)/(far_clip-camera_offset)) imfile = data_dir + f[:-4] + '-' + str(target_index) + '-' + str(i) + '.png' Image.fromarray((255.0*rescaled_distance).astype('uint8')).save(imfile) print(' ' + str(time.time()-start_time) + 's') data_filename = join(data_dir, 'eye-perspectives-murata.pkl') f = open(data_filename, 'wb') cPickle.dump((objects, target_indices, target_points, eye_points, eye_angles), f) f.close() def merge_eye_perspectives(data_dir): # make_eye_perspective_depths mysteriously does not run all the way through, so I've # done it in two parts which are merged here: files = ['eye-perspectives1.pkl', 'eye-perspectives2.pkl'] objects = [] target_indices = [] target_points = [] eye_points = [] eye_angles = [] for file in files: with open(join(data_dir, file), 'rb') as f: o, ti, tp, ep, ea = cPickle.load(f) objects.extend(o) target_indices.extend(ti) target_points.extend(tp) eye_points.extend(ep) eye_angles.extend(ea) with open(join(data_dir, 'eye-perspectives.pkl'),'wb') as f: cPickle.dump((objects, target_indices, target_points, eye_points, eye_angles), f) def export_neuron_perspectives(): import csv with open('../data/neuron-points.pkl', 'rb') as f: neuron_points, neuron_angles = cPickle.load(f) with open('neuron-perspectives.csv', 'wb') as csvfile: writer = csv.writer(csvfile, delimiter=',') for point, angle in zip(neuron_points.T, neuron_angles.T): R = get_rotation_matrix(point, angle) row = list(point) row.extend(R.flatten()) writer.writerow(row) def export_eye_perspectives(eye_perspectives_file): import csv with open(eye_perspectives_file) as f: objects, target_indices, target_points, eye_points, eye_angles = cPickle.load(f) with open('eye-perspectives.csv', 'wb') as csvfile: writer = csv.writer(csvfile, delimiter=',') for object, ep, ea, tp in zip(objects, eye_points, eye_angles, target_points): print('Processing ' + object) for target_point in tp: for eye_point, eye_angle in zip(ep.T, ea.T): eye_R = get_rotation_matrix(eye_point, eye_angle) # row = [object] row = [] row.extend(target_point) row.extend(eye_point) row.extend(eye_R.flatten()) writer.writerow(row) def make_relative_metrics(eye_perspectives_file, metrics_dir, result_dir, n=500, neuron_points=None, neuron_angles=None): from quaternion import difference_between_quaternions from interpolate import interpolate # each of these points/angles will correspond to an output neuron ... if neuron_points is None or neuron_angles is None: neuron_points = get_random_points(n, .15) neuron_angles = get_random_angles(n, std=0) with open(join(result_dir, 'neuron-points.pkl'), 'wb') as f: cPickle.dump((neuron_points, neuron_angles), f) neuron_quaternions, neuron_distances = get_quaternion_distance(neuron_points, neuron_angles) with open(eye_perspectives_file) as f: objects, target_indices, target_points, eye_points, eye_angles = cPickle.load(f) for object, object_eye_points, object_eye_angles in zip(objects, eye_points, eye_angles): print('Processing ' + object) start_time = time.time() eye_quaternions, eye_distances = get_quaternion_distance(object_eye_points, object_eye_angles) metrics_file = join(metrics_dir, object[:-4] + '-metrics.pkl') with open(metrics_file) as f: gripper_points, gripper_angles, target_indices, target_points, collisions, free_smoothed, coll_smoothed = cPickle.load(f) gripper_quaternions, gripper_distances = get_quaternion_distance(gripper_points, gripper_angles) # note that for each object, gripper configs are the same relative to each target point #TODO: do we want coll_smoothed instead / as well? metrics = free_smoothed # interpolate relative to each eye point neuron_metrics_for_object = [] for target_index, target_metrics in zip(target_indices, metrics): print(' target ' + str(target_index)) neuron_metrics_for_target = [] for eye_quaternion in eye_quaternions: rel_quaternions = [] for gripper_quaternion in gripper_quaternions: rel_quaternions.append(difference_between_quaternions(eye_quaternion, gripper_quaternion)) rel_quaternions = np.array(rel_quaternions) #interpolate ... neuron_metrics = [] for neuron_quaternion, neuron_distance in zip(neuron_quaternions, neuron_distances): interpolated = interpolate(neuron_quaternion, neuron_distance, rel_quaternions, gripper_distances, target_metrics, sigma_d=.02, sigma_a=(16*np.pi/180)) neuron_metrics.append(interpolated) neuron_metrics_for_target.append(neuron_metrics) neuron_metrics_for_object.append(neuron_metrics_for_target) neuron_metrics_for_object = np.array(neuron_metrics_for_object) result_file = join(result_dir, object[:-4] + '-neuron.pkl') with open(result_file, 'wb') as f: cPickle.dump((target_indices, target_points, object_eye_points, object_eye_angles, neuron_metrics_for_object), f) print(' ' + str(time.time() - start_time) + 's') def make_XY(): eye_image_files = [] metrics = [] return eye_image_files, metrics if __name__ == '__main__': # check_rotation_matrix(scatter=True) # check_depth_from_random_perspective() # plot_random_samples() # check_find_vertical() # check_target_points() # check_metrics() # make_grip_perspective_depths('../../grasp-conv/data/obj_tmp/', # '../../grasp-conv/data/perspectives/', # '../../grasp-conv/data/obj-points.csv') # make_grip_perspective_depths('../../grasp-conv/data/obj_files/', # '/Volumes/TrainingData/grasp-conv/data/perspectives/', # '../../grasp-conv/data/obj-points.csv') # make_eye_perspective_depths('../../grasp-conv/data/obj_tmp/', # '../../grasp-conv/data/eye-tmp/', # '../../grasp-conv/data/obj-points.csv') make_eye_perspective_depths('../../grasp-conv/data/obj_files_murata/', '../../grasp-conv/data/eye-perspectives-murata/', '../../grasp-conv/data/obj-points-murata.csv', n=1) # make_eye_perspective_depths('../../grasp-conv/data/obj_files/', # '/Volumes/TrainingData/grasp-conv/data/eye-perspectives/', # '../../grasp-conv/data/obj-points.csv') # merge_eye_perspectives('/Volumes/TrainingData/grasp-conv/data/eye-perspectives/') # with open('/Volumes/TrainingData/grasp-conv/data/eye-perspectives/eye-perspectives.pkl','rb') as f: # objects, target_indices, target_points, eye_points, eye_angles = cPickle.load(f) # print(objects) # print(target_indices) # print(target_points) # print(eye_angles) # make_relative_metrics('/Volumes/TrainingData/grasp-conv/data/eye-perspectives/eye-perspectives.pkl', # '/Volumes/TrainingData/grasp-conv/data/metrics/', # '/Volumes/TrainingData/grasp-conv/data/relative/') # export_neuron_perspectives() # export_eye_perspectives('/Volumes/TrainingData/grasp-conv/data/eye-perspectives/eye-perspectives.pkl') # import scipy # image = scipy.misc.imread('../../grasp-conv/data/eye-tmp/1_Coffeecup_final-03-Mar-2016-18-50-40-0-7.png') # plt.imshow(image) # plt.show() # with open('../../grasp-conv/data/eye-tmp/eye-perspectives.pkl') as f: # objects, target_indices, target_points, eye_points, eye_angles = cPickle.load(f) # print(objects) # print(target_indices) # print(target_points) # print(np.array(eye_points)) # print(np.array(eye_angles)) # with open('spatula-perspectives.pkl', 'rb') as f: # gripper_points, gripper_angles, target_indices, target_points, perspectives = cPickle.load(f) # make_metrics('../../grasp-conv/data/perspectives/', '../../grasp-conv/data/metrics/') # make_relative_metrics('../../grasp-conv/data/eye-tmp/eye-perspectives.pkl', # '../../grasp-conv/data/metrics/', # '../../grasp-conv/data/relative/') # checking files look OK ... # with open('../../grasp-conv/data/relative/neuron-points.pkl', 'rb') as f: # neuron_points, neuron_angles = cPickle.load(f) # print(neuron_angles.shape) # with open('../../grasp-conv/data/relative/1_Coffeecup_final-03-Mar-2016-18-50-40-neuron.pkl', 'rb') as f: # target_indices, target_points, object_eye_points, object_eye_angles, neuron_metrics_for_object = cPickle.load(f) # print(neuron_metrics_for_object.shape) # print(np.min(neuron_metrics_for_object)) # print(np.max(neuron_metrics_for_object)) # print(np.std(neuron_metrics_for_object)) # make_metrics('/Volumes/TrainingData/grasp-conv/data/perspectives/', # '/Volumes/TrainingData/grasp-conv/data/metrics/') # process_eye_directory('../../grasp-conv/data/obj_tmp/', '../../grasp-conv/data/eye-perspectives-tmp/', 100) # process_directory('../data/obj_files/', '../data/perspectives/', 10) # process_directory('../../grasp-conv/data/obj_tmp/', '../../grasp-conv/data/perspectives/', 5000) # check_maps('../../grasp-conv/data/perspectives/')
bptripp/grasp-convnet
py/perspective.py
Python
mit
30,382
[ "NEURON" ]
6ec0c97e0ac0dd0c323f847c8d0601fdb13550231748c4a1d878544bc3b99b63
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.views.generic import TemplateView from django.views import defaults as default_views from findyour3d.contact.views import contact urlpatterns = [ url(r'^$', TemplateView.as_view(template_name='pages/home.html'), name='home'), # url(r'^about/$', TemplateView.as_view(template_name='pages/about.html'), name='about'), url(r'^about/$', contact, name='about'), url(r'^business/$', TemplateView.as_view(template_name='pages/business.html'), name='business'), # Django Admin, use {% url 'admin:index' %} url(settings.ADMIN_URL, admin.site.urls), # User management url(r'^users/', include('findyour3d.users.urls', namespace='users')), url(r'^accounts/', include('allauth.urls')), # Your stuff: custom urls includes go here url(r'^customers/', include('findyour3d.customer.urls', namespace='customers')), url(r'^company/', include('findyour3d.company.urls', namespace='company')), url(r'^contact/', include('findyour3d.contact.urls', namespace='contact')), url(r'^find/', include('findyour3d.dashboard.urls', namespace='dashboard')), url(r'^quote/', include('findyour3d.quote.urls', namespace='quote')), url(r'^payments/', include('findyour3d.payment.urls', namespace='payments')), url(r'^ratings/', include('star_ratings.urls', namespace='ratings', app_name='ratings')), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.DEBUG: # This allows the error pages to be debugged during development, just visit # these url in browser to see how these error pages look like. urlpatterns += [ url(r'^400/$', default_views.bad_request, kwargs={'exception': Exception('Bad Request!')}), url(r'^403/$', default_views.permission_denied, kwargs={'exception': Exception('Permission Denied')}), url(r'^404/$', default_views.page_not_found, kwargs={'exception': Exception('Page not Found')}), url(r'^500/$', default_views.server_error), ] if 'debug_toolbar' in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [ url(r'^__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
hqpr/findyour3d
config/urls.py
Python
mit
2,600
[ "VisIt" ]
13bba454297a5f3daff33d500c9edb7dae7193388898942c8060c7906b375d0f
from __future__ import annotations import math import pickle import random from scitbx import matrix from dials.model.data import Shoebox def random_shoeboxes(num, mask=False): for i in range(num): x0 = random.randint(0, 100) y0 = random.randint(0, 100) z0 = random.randint(0, 100) x1 = random.randint(x0 + 5, x0 + 20) y1 = random.randint(y0 + 5, y0 + 20) z1 = random.randint(z0 + 5, z0 + 20) bbox = (x0, x1, y0, y1, z0, z1) xc0 = (x1 + x0) / 2.0 yc0 = (y1 + y0) / 2.0 zc0 = (z1 + z0) / 2.0 xc = random.uniform(xc0 - 1, xc0 + 1) yc = random.uniform(yc0 - 1, yc0 + 1) zc = random.uniform(zc0 - 1, zc0 + 1) centre = (xc, yc, zc) intensity = random.randint(10, 10000) shoebox = generate_shoebox(bbox, centre, intensity, mask=mask) yield (shoebox, (centre, intensity)) def generate_shoebox(bbox, centre, intensity, mask=False): from dials.algorithms.shoebox import MaskCode shoebox = Shoebox() shoebox.bbox = bbox shoebox.allocate() for i in range(len(shoebox.mask)): shoebox.mask[i] = MaskCode.Valid | MaskCode.Foreground shoebox.data = gaussian( shoebox.size(), 1.0, [c - o for c, o in zip(centre[::-1], shoebox.offset())], [s / 8.0 for s in shoebox.size()], ) if mask: shoebox.mask = create_mask( shoebox.size(), [c - o for c, o in zip(centre[::-1], shoebox.offset())], MaskCode.Valid | MaskCode.Foreground, ) tot = 0 mask_code = MaskCode.Valid | MaskCode.Foreground for i in range(len(shoebox.data)): if shoebox.mask[i] & mask_code == mask_code: tot += shoebox.data[i] if tot > 0: shoebox.data *= intensity / tot return shoebox def create_mask(size, x0, value): from scitbx.array_family import flex mask = flex.int(flex.grid(size), 0) rad = min(s - c for s, c in zip(size, x0)) for k in range(size[0]): for j in range(size[1]): for i in range(size[2]): d = math.sqrt((j - x0[1]) ** 2 + (i - x0[2]) ** 2) if d < rad: mask[k, j, i] = value return mask def evaluate_gaussian(x, a, x0, sx): assert len(x) == len(x0) assert len(x) == len(sx) g = 0.0 for xi, x0i, sxi in zip(x, x0, sx): g += (xi - x0i) ** 2 / (2.0 * sxi**2) return a * math.exp(-g) def gaussian(size, a, x0, sx): from dials.array_family import flex result = flex.real(flex.grid(size)) index = [0] * len(size) while True: result[index] = evaluate_gaussian(index, a, x0, sx) for j in range(len(size)): index[j] += 1 if index[j] < size[j]: break index[j] = 0 if j == len(size) - 1: return result def test_allocate(): for i in range(10): x0 = random.randint(0, 1000) y0 = random.randint(0, 1000) z0 = random.randint(0, 1000) x1 = random.randint(1, 10) + x0 y1 = random.randint(1, 10) + y0 z1 = random.randint(1, 10) + z0 shoebox = Shoebox((x0, x1, y0, y1, z0, z1)) shoebox.allocate() assert shoebox.data.all() == (z1 - z0, y1 - y0, x1 - x0) assert shoebox.mask.all() == (z1 - z0, y1 - y0, x1 - x0) shoebox.deallocate() assert shoebox.data.all() == (0, 0, 0) assert shoebox.mask.all() == (0, 0, 0) def test_offset(): for i in range(10): x0 = random.randint(0, 1000) y0 = random.randint(0, 1000) z0 = random.randint(0, 1000) x1 = random.randint(1, 10) + x0 y1 = random.randint(1, 10) + y0 z1 = random.randint(1, 10) + z0 shoebox = Shoebox((x0, x1, y0, y1, z0, z1)) assert shoebox.xoffset() == x0 assert shoebox.yoffset() == y0 assert shoebox.zoffset() == z0 assert shoebox.offset() == (z0, y0, x0) def test_size(): for i in range(10): x0 = random.randint(0, 1000) y0 = random.randint(0, 1000) z0 = random.randint(0, 1000) x1 = random.randint(1, 10) + x0 y1 = random.randint(1, 10) + y0 z1 = random.randint(1, 10) + z0 shoebox = Shoebox((x0, x1, y0, y1, z0, z1)) assert shoebox.xsize() == x1 - x0 assert shoebox.ysize() == y1 - y0 assert shoebox.zsize() == z1 - z0 assert shoebox.size() == (z1 - z0, y1 - y0, x1 - x0) def test_consistent(): from dials.array_family import flex for i in range(1000): x0 = random.randint(0, 1000) y0 = random.randint(0, 1000) z0 = random.randint(0, 1000) x1 = random.randint(1, 10) + x0 y1 = random.randint(1, 10) + y0 z1 = random.randint(1, 10) + z0 try: shoebox = Shoebox((x0, x1, y0, y1, z0, z1)) assert not shoebox.is_consistent() shoebox.allocate() assert shoebox.is_consistent() shoebox.data = flex.real(flex.grid(20, 20, 20)) assert not shoebox.is_consistent() shoebox.deallocate() assert not shoebox.is_consistent() except Exception: print(x0, y0, z0, x1, y1, z1) raise def test_is_bbox_within_image_volume(): isize = (1000, 1000) srange = (0, 100) shoebox = Shoebox((10, 20, 10, 20, 10, 20)) assert shoebox.is_bbox_within_image_volume(isize, srange) shoebox = Shoebox((-10, 20, 10, 20, 10, 20)) assert not shoebox.is_bbox_within_image_volume(isize, srange) shoebox = Shoebox((10, 20, -10, 20, 10, 20)) assert not shoebox.is_bbox_within_image_volume(isize, srange) shoebox = Shoebox((10, 20, 10, 20, -10, 20)) assert not shoebox.is_bbox_within_image_volume(isize, srange) shoebox = Shoebox((10, 1020, 10, 20, 10, 20)) assert not shoebox.is_bbox_within_image_volume(isize, srange) shoebox = Shoebox((10, 20, 10, 1020, 10, 20)) assert not shoebox.is_bbox_within_image_volume(isize, srange) shoebox = Shoebox((10, 20, 10, 20, 10, 1020)) assert not shoebox.is_bbox_within_image_volume(isize, srange) def test_does_bbox_contain_bad_pixels(): from scitbx.array_family import flex mask = flex.bool(flex.grid(100, 100), True) for j in range(100): for i in range(40, 60): mask[j, i] = False mask[i, j] = False for i in range(1000): x0 = random.randint(0, 90) y0 = random.randint(0, 90) z0 = random.randint(0, 90) x1 = random.randint(1, 10) + x0 y1 = random.randint(1, 10) + y0 z1 = random.randint(1, 10) + z0 shoebox = Shoebox((x0, x1, y0, y1, z0, z1)) res1 = shoebox.does_bbox_contain_bad_pixels(mask) res2 = False if x0 >= 40 and x0 < 60: res2 = True if x1 > 40 and x1 <= 60: res2 = True if y0 >= 40 and y0 < 60: res2 = True if y1 > 40 and y1 <= 60: res2 = True assert res1 == res2 def test_count_mask_values(): for i in range(10): x0 = random.randint(0, 90) y0 = random.randint(0, 90) z0 = random.randint(0, 90) x1 = random.randint(1, 10) + x0 y1 = random.randint(1, 10) + y0 z1 = random.randint(1, 10) + z0 shoebox = Shoebox((x0, x1, y0, y1, z0, z1)) shoebox.allocate() maxnum = len(shoebox.mask) num = random.randint(1, maxnum) indices = random.sample(list(range(maxnum)), num) value = 1 << 2 for i in indices: shoebox.mask[i] = value assert shoebox.count_mask_values(value) == num def test_centroid_all(): for shoebox, (XC, I) in random_shoeboxes(10): centroid = shoebox.centroid_all() assert shoebox.is_consistent() assert abs(matrix.col(centroid.px.position) - matrix.col(XC)) < 1.0 def test_centroid_masked(): for shoebox, (XC, I) in random_shoeboxes(10): centroid = shoebox.centroid_masked(1 << 0) assert shoebox.is_consistent() assert abs(matrix.col(centroid.px.position) - matrix.col(XC)) < 1.0 def test_summed_intensity(): for shoebox, (XC, I) in random_shoeboxes(10): intensity = shoebox.summed_intensity() assert shoebox.is_consistent() assert abs(intensity.observed.value - I) < 1e-1 def test_flatten(): from dials.algorithms.shoebox import MaskCode from dials.array_family import flex for shoebox, (XC, I) in random_shoeboxes(10, mask=True): assert not shoebox.flat zs = shoebox.zsize() ys = shoebox.ysize() xs = shoebox.xsize() expected_data = flex.real(flex.grid(1, ys, xs), 0) expected_mask = flex.int(flex.grid(1, ys, xs), 0) for k in range(zs): for j in range(ys): for i in range(xs): expected_data[0, j, i] += shoebox.data[k, j, i] expected_mask[0, j, i] |= shoebox.mask[k, j, i] if not (expected_mask[0, j, i] & MaskCode.Valid) or not ( shoebox.mask[k, j, i] & MaskCode.Valid ): expected_mask[0, j, i] &= ~MaskCode.Valid shoebox.flatten() diff = expected_data.as_double() - shoebox.data.as_double() max_diff = flex.max(flex.abs(diff)) assert max_diff < 1e-7 assert expected_mask.all_eq(shoebox.mask) assert shoebox.flat assert shoebox.is_consistent() def test_all_foreground_valid(): from dials.tests.model.data.all_foreground_valid_data import data shoeboxes = pickle.loads(bytes(data, encoding="latin-1"), encoding="bytes") for i, shoebox in enumerate(shoeboxes): if i < 4: assert not shoebox.all_foreground_valid() else: assert shoebox.all_foreground_valid()
dials/dials
tests/model/data/test_shoebox.py
Python
bsd-3-clause
9,971
[ "Gaussian" ]
438b5147b5c86c35ceef42893341f3a0bba87eec90cc2d44f91a3bce93352859
from validate_app import validateApp import os from distutils import spawn import sys from parse_files import parseOut, bringTogether from bashSub import bashSub def checkPreprocessApplications(): applications = ["super_deduper", "sickle", "flash2", "bowtie2"] source = ["https://github.com/dstreett/Super-Deduper", "https://github.com/dstreett/sickle", "https://github.com/dstreett/FLASH2", "http://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.6/", "https://github.com/najoshi/scythe"] i = 0; for app in applications: if spawn.find_executable(app) is None: sys.stderr.write("It doesn't look like you have app - " + app + "\n" ) sys.stderr.write("You can download it here - " + source[i] + "\n"); exit(0) else: sys.stderr.write(app + " found\n") i += 1 def returnReads(dictSampleSeqFiles): SE = "" PE1 = "" PE2 = "" #data struct # { (sampleKey, seqKey) : [[SE], [SE], [PE1, PE2], [PE1, PE2]] } #diving into each of the sub lists in the dictionary value key for e in dictSampleSeqFiles: #if sublist only has one elment then it is SE read if len(e) == 1: if SE == "": SE = e[0] else: SE += "," + e[0] else: if PE1 == "": PE1 = e[0] PE2 = e[1] else: PE1 += "," + e[0] PE2 += "," + e[1] return [SE, PE1, PE2] def check_dir(Dir): if not os.path.exists(Dir): os.mkdir(Dir) class preprocessCMD: def __init__(self): self.metaDataFolder = "MetaData" def execute(self, args): logFiles = [] time = 0 checkPreprocessApplications() validate = validateApp() validate.setValidation(True) dictSampleSeqFiles = validate.validateSampleSheet(args.samplesDirectory, args.finalDir, args.samplesFile, args.force, False) for key in dictSampleSeqFiles: check_dir(args.finalDir) check_dir(key) meta = key SEandPE = returnReads(dictSampleSeqFiles[key]) #screening python scripts created in virtual enviroment extract_unmapped = "python " + os.path.join(os.path.dirname(os.path.realpath(__file__)), "extract_unmapped_reads.py") screen = "python " + os.path.join(os.path.dirname(os.path.realpath(__file__)), "screen.py") contArgsBaseline = " -t " + args.threads finalClean = "python " + os.path.join(os.path.dirname(os.path.realpath(__file__)), "cleanupWrapper.py") if SEandPE[0] != "": terminalString = [] if args.contaminantsFolder != "": contArgsBaseline = "-c " + args.contaminantsFolder + contArgsBaseline terminalString.append(bashSub(screen, [SEandPE[0]], ['-U'], contArgsBaseline , os.path.join(meta, "SE_preproc_mapping.log"))) terminalString.append(bashSub(extract_unmapped, terminalString[-1].processSub(), [''], " -o stdout" , os.path.join(meta, "SE_filter_info.log"))) if args.skipDup == False: terminalString.append(bashSub("super_deduper", terminalString[-1].processSub(), ['-U'], "-s 5 -l 15 -p stdout", os.path.join(meta, "SE_deduper_info.log"))) sickleArgs = " -o stdout -t sanger -l " + args.minLength + " -T " if args.polyTrim: sickleArgs += " -a " terminalString.append(bashSub("scythe", [args.adapter], ["-a"], terminalString[-1].processSub()[0] + " -q sanger", os.path.join(meta, "SE_scythe_info.log"))) terminalString.append(bashSub("sickle se", terminalString[-1].processSub(), ['-f'], sickleArgs, os.path.join(meta, "SE_sickle_info.log"))) terminalString.append(bashSub(finalClean, terminalString[-1].processSub(), [''], " " + str(int(args.polyTrim)) + " " + str(int(args.forceSplit)) + " " + args.minLength + " " + os.path.join(key, key.split('/')[1]), "")) print "___ SE COMMANDS ____" print terminalString[-1].getCommand() terminalString[-1].runCmd("") time += terminalString[-1].returnTime() if SEandPE[1] != "": terminalString = [] if args.contaminantsFolder != "": if os.path.exists(args.contaminantsFolder): contArgsBaseline = "-c " + args.contaminantsFolder + contArgsBaseline terminalString.append(bashSub(screen, [SEandPE[1], SEandPE[2]], ['-1', '-2'], contArgsBaseline, os.path.join(meta, "PE_preproc_mapping.log"))) terminalString.append(bashSub(extract_unmapped, terminalString[-1].processSub(), [''], " -o stdout" , os.path.join(meta, "PE_filter_info.log"))) if args.skipDup == False: terminalString.append(bashSub("super_deduper", terminalString[-1].processSub(), ['-i'], "-s 5 -l 15 -p stdout", os.path.join(meta, "PE_deduper_info.log"))) sickleArgs = " -m stdout -s /dev/null -t sanger -T " if args.polyTrim: sickleArgs += " -a " terminalString.append(bashSub("sickle pe", terminalString[-1].processSub(), ['-c'], sickleArgs , os.path.join(meta, "PE_sickle_info.log"))) if args.skipFlash == False: terminalString.append(bashSub("flash2", terminalString[-1].processSub(), ['-Ti'], " -M " + args.overlapFlash + " --allow-outies -o " + key.split('/')[1] + " -d " + key + " -To -c ", os.path.join(meta, "flash_info.log"))) terminalString.append(bashSub(finalClean, terminalString[-1].processSub(), [''], " " + str(int(args.polyTrim)) + " " + str(int(args.forceSplit)) + " " + args.minLength + " " + os.path.join(key, key.split('/')[1]), "")) print "___ PE COMMANDS ___" print terminalString[-1].getCommand() terminalString[-1].runCmd("") sys.stderr.flush() time += terminalString[-1].returnTime() logFiles.append(parseOut(key, key.split("/")[-1])) bringTogether(logFiles, os.path.join(args.finalDir, "Preprocessing_Summary.log")) print "Total amount of seconds to run all samples" print "Seconds: " + str(time) #self.clean() def clean(self): import glob for f in glob.glob(".screening_cont*"): os.remove(f)
msettles/expHTS
expHTS/preprocessCMD.py
Python
apache-2.0
7,647
[ "Bowtie" ]
c948ca01dd5e567792280beed205525c0515533700d4551305aa0030dbaec87c
# Copyright (c) 2017 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2007 The Regents of The University of Michigan # Copyright (c) 2010 The Hewlett-Packard Development Company # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nathan Binkert # Andreas Sandberg import m5 import _m5.stats from m5.objects import Root from m5.util import attrdict, fatal # Stat exports from _m5.stats import schedStatEvent as schedEvent from _m5.stats import periodicStatDump outputList = [] def _url_factory(func): """Wrap a plain Python function with URL parsing helpers Wrap a plain Python function f(fn, **kwargs) to expect a URL that has been split using urlparse.urlsplit. First positional argument is assumed to be a filename, this is created as the concatenation of the netloc (~hostname) and path in the parsed URL. Keyword arguments are derived from the query values in the URL. For example: wrapped_f(urlparse.urlsplit("text://stats.txt?desc=False")) -> f("stats.txt", desc=False) """ from functools import wraps @wraps(func) def wrapper(url): from urlparse import parse_qs from ast import literal_eval qs = parse_qs(url.query, keep_blank_values=True) # parse_qs returns a list of values for each parameter. Only # use the last value since kwargs don't allow multiple values # per parameter. Use literal_eval to transform string param # values into proper Python types. def parse_value(key, values): if len(values) == 0 or (len(values) == 1 and not values[0]): fatal("%s: '%s' doesn't have a value." % (url.geturl(), key)) elif len(values) > 1: fatal("%s: '%s' has multiple values." % (url.geturl(), key)) else: try: return key, literal_eval(values[0]) except ValueError: fatal("%s: %s isn't a valid Python literal" \ % (url.geturl(), values[0])) kwargs = dict([ parse_value(k, v) for k, v in qs.items() ]) try: return func("%s%s" % (url.netloc, url.path), **kwargs) except TypeError: fatal("Illegal stat visitor parameter specified") return wrapper @_url_factory def _textFactory(fn, desc=True): """Output stats in text format. Text stat files contain one stat per line with an optional description. The description is enabled by default, but can be disabled by setting the desc parameter to False. Example: text://stats.txt?desc=False """ return _m5.stats.initText(fn, desc) factories = { # Default to the text factory if we're given a naked path "" : _textFactory, "file" : _textFactory, "text" : _textFactory, } def addStatVisitor(url): """Add a stat visitor specified using a URL string Stat visitors are specified using URLs on the following format: format://path[?param=value[;param=value]] The available formats are listed in the factories list. Factories are called with the path as the first positional parameter and the parameters are keyword arguments. Parameter values must be valid Python literals. """ from urlparse import urlsplit parsed = urlsplit(url) try: factory = factories[parsed.scheme] except KeyError: fatal("Illegal stat file type specified.") outputList.append(factory(parsed)) def initSimStats(): _m5.stats.initSimStats() _m5.stats.registerPythonStatsHandlers() names = [] stats_dict = {} stats_list = [] def enable(): '''Enable the statistics package. Before the statistics package is enabled, all statistics must be created and initialized and once the package is enabled, no more statistics can be created.''' global stats_list stats_list = list(_m5.stats.statsList()) for stat in stats_list: if not stat.check() or not stat.baseCheck(): fatal("statistic '%s' (%d) was not properly initialized " \ "by a regStats() function\n", stat.name, stat.id) if not (stat.flags & flags.display): stat.name = "__Stat%06d" % stat.id def less(stat1, stat2): v1 = stat1.name.split('.') v2 = stat2.name.split('.') return v1 < v2 stats_list.sort(less) for stat in stats_list: stats_dict[stat.name] = stat stat.enable() _m5.stats.enable(); def prepare(): '''Prepare all stats for data access. This must be done before dumping and serialization.''' for stat in stats_list: stat.prepare() lastDump = 0 def dump(): '''Dump all statistics data to the registered outputs''' curTick = m5.curTick() global lastDump assert lastDump <= curTick if lastDump == curTick: return lastDump = curTick _m5.stats.processDumpQueue() prepare() for output in outputList: if output.valid(): output.begin() for stat in stats_list: stat.visit(output) output.end() def reset(): '''Reset all statistics to the base state''' # call reset stats on all SimObjects root = Root.getInstance() if root: for obj in root.descendants(): obj.resetStats() # call any other registered stats reset callbacks for stat in stats_list: stat.reset() _m5.stats.processResetQueue() flags = attrdict({ 'none' : 0x0000, 'init' : 0x0001, 'display' : 0x0002, 'total' : 0x0010, 'pdf' : 0x0020, 'cdf' : 0x0040, 'dist' : 0x0080, 'nozero' : 0x0100, 'nonan' : 0x0200, })
HwisooSo/gemV-update
src/python/m5/stats/__init__.py
Python
bsd-3-clause
7,711
[ "VisIt" ]
da34aa352b1383cb9dae36af5c8ac2cdf08c1192f48bd45aa5990a51243a6a15
#!/usr/bin/env python import sys import os import vtk import numpy from siconos.io.mechanics_hdf5 import MechanicsHdf5 ## the best way to dump all data # $ h5dump toto.hdf5 > toto.txt import h5py import getopt def usage(): """ {0} <hdf5 file> """.format(sys.argv[0]) print '{0}: Usage'.format(sys.argv[0]) print """ {0} [--help] [--output_frequency=n] [--output_filename=] <hdf5 file> """ try: opts, args = getopt.gnu_getopt(sys.argv[1:], '', ['output_frequency=', 'output_filename=', 'cf-scale=']) except getopt.GetoptError, err: sys.stderr.write('{0}\n'.format(str(err))) usage() exit(2) min_time = None max_time = None scale_factor = 1 output_frequency=10 output_filename=None for o, a in opts: if o == '--help': usage() exit(0) elif o == '--output_frequency': output_frequency = float(a) elif o == '--output_filename': out_filename=a elif o == '--cf-scale': scale_factor = float(a) if len(args) > 0: io_filename = args[0] if output_filename == None: out_filename=''.join(io_filename.rsplit('.')[:-1])+'-filtered.hdf5' else: usage() exit(1) with MechanicsHdf5(io_filename=io_filename, mode='r') as io: with MechanicsHdf5(io_filename=out_filename, mode='w') as out: hdf1 = io._out hdf2 = out._out # copy /data/input hdf2.__delitem__('data/input') h5py.h5o.copy(hdf1.id, "data/input", hdf2.id, "data/input") # copy /data/nslaws hdf2.__delitem__('data/nslaws') h5py.h5o.copy(hdf1.id, "data/nslaws", hdf2.id, "data/nslaws") # copy /data/ref hdf2.__delitem__('data/ref') h5py.h5o.copy(hdf1.id, "data/ref", hdf2.id, "data/ref") print('***************************************************** ') print('************ Parsing simulation data ****************') print('***************************************************** ') def load(): ispos_data = io.static_data() idpos_data = io.dynamic_data() icf_data = io.contact_forces_data()[:] isolv_data = io.solver_data() return ispos_data, idpos_data, icf_data, isolv_data spos_data, dpos_data, cf_data, solv_data = load() #print('io._data',io._data) #print('static position data : spos_data',spos_data) #print('spos_data.value',spos_data.value) #print('dynamic position data : dpos_data',dpos_data) print('dpos_data.value',dpos_data.value) print('cf_data',cf_data) #print('solv_data',solv_data) times = list(set(dpos_data[:, 0])) times.sort() print('len(times)',len(times)) if (len(times) ==0 ): print('no results in the hdf5 file') else: print('Results for ',len(times),' steps in the hdf5 file') #ndyna = len(numpy.where(dpos_data[:, 0] == times[0])) does not work ndyna = len(dpos_data[:, 0])/len(times) print('ndyna =', ndyna) if len(spos_data) > 0: nstatic = len(numpy.where(spos_data[:, 0] == times[0])) nstatic = spos_data.shape[0] else: nstatic = 0 print('nstatic =', nstatic) # instances = set(dpos_data[:, 1]) # filtering p=0 current_line=0 for k in range(len(times)): #print(times[k]) if (k+1 < len(times) ): time_step=times[k+1]-times[k] #print('time_step',time_step) if (k%output_frequency==0): if k==0 : print('filter for k',k,'at times', times[k], 'p', p) out._dynamic_data.resize((p+1)*ndyna,0) out._dynamic_data[p*ndyna:(p+1)*ndyna,:] = numpy.array(dpos_data[k*ndyna:(k+1)*ndyna,:]) #print('times',dpos_data[k*ndyna:(k+1)*ndyna,0]) out._static_data.resize((p+1)*nstatic,0) out._static_data[p*nstatic:(p+1)*nstatic,:] = numpy.array(spos_data[0:nstatic,:]) out._solv_data.resize((p+1),0) out._solv_data[p:(p+1),:] = numpy.array(solv_data[0:1,:]) id_f = numpy.where(abs(cf_data[:, 0] - times[k]) < time_step*1e-5)[0] if len(id_f) == 0: print('no contact data at time',times[k]) else: #print('index of contact :', min(id_f), max(id_f)) out._cf_data.resize(max(id_f)+1,0) out._cf_data[min(id_f):max(id_f),:] = numpy.array(cf_data[min(id_f):max(id_f),:]) current_line = max(id_f) else: print('filter for k',k,'at times', times[k], 'p', p) out._dynamic_data.resize((p+1)*ndyna,0) #print( dpos_data[k*ndyna:(k+1)*ndyna,:]) #print('times',dpos_data[(k+1)*ndyna:(k+2)*ndyna,0]) out._dynamic_data[p*ndyna:(p+1)*ndyna,:] = dpos_data[(k+1)*ndyna:(k+2)*ndyna,:] # out._static_data.resize((p+1)*nstatic,0) # #print( dpos_data[k*nstatic:(k+1)*nstatic,:]) # out._static_data[p*nstatic:(p+1)*nstatic,:] = spos_data[k*nstatic:(k+1)*nstatic,:] out._solv_data.resize((p+1),0) out._solv_data[p:(p+1),:] = numpy.array(solv_data[k:k+1,:]) id_f = numpy.where(abs(cf_data[:, 0] - times[k]) < time_step*1e-5)[0] if len(id_f) == 0: print('no contact data at time',times[k]) else: #print('index of contact :', min(id_f), max(id_f)) new_line = current_line+max(id_f)-min(id_f)+1 #print('new_line',new_line) #print('current_line',current_line) #print('size of contact data', max(id_f)-min(id_f)+1) out._cf_data.resize(new_line,0) #print('fill out._cf_data indices', current_line, new_line-1) out._cf_data[current_line:new_line,:] = numpy.array(cf_data[min(id_f):max(id_f)+1,:]) current_line=new_line #print('current_line',current_line) p = p+1 #print(dpos_data) print(out._dynamic_data.shape) print(out._static_data.shape) print(out.static_data().value) print(out._cf_data.shape) print(out._solv_data.shape)
radarsat1/siconos
io/swig/io/filter_output_frequency.py
Python
apache-2.0
6,832
[ "VTK" ]
b2f51bfc03c1b421ece1a35c12479a438c53d51e6df745735a08b4836eec0ba5
#!/usr/bin/python # -*- encoding: utf-8; py-indent-offset: 4 -*- # +------------------------------------------------------------------+ # | ____ _ _ __ __ _ __ | # | / ___| |__ ___ ___| | __ | \/ | |/ / | # | | | | '_ \ / _ \/ __| |/ / | |\/| | ' / | # | | |___| | | | __/ (__| < | | | | . \ | # | \____|_| |_|\___|\___|_|\_\___|_| |_|_|\_\ | # | | # | Copyright Mathias Kettner 2014 [email protected] | # +------------------------------------------------------------------+ # # This file is part of Check_MK. # The official homepage is at http://mathias-kettner.de/check_mk. # # check_mk is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation in version 2. check_mk is distributed # in the hope that it will be useful, but WITHOUT ANY WARRANTY; with- # out even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the GNU General Public License for more de- # tails. You should have received a copy of the GNU General Public # License along with GNU Make; see the file COPYING. If not, write # to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, # Boston, MA 02110-1301 USA. import config, hooks from lib import * import time, os, pprint, shutil, traceback from valuespec import * import cmk.paths # Datastructures and functions needed before plugins can be loaded loaded_with_language = False # Custom user attributes user_attributes = {} builtin_user_attribute_names = [] # Connection configuration connection_dict = {} # Connection object dictionary g_connections = {} # Load all userdb plugins def load_plugins(force): global user_attributes global multisite_user_connectors global builtin_user_attribute_names # Do not cache the custom user attributes. They can be created by the user # during runtime, means they need to be loaded during each page request. # But delete the old definitions before to also apply removals of attributes if user_attributes: for attr_name in user_attributes.keys(): if attr_name not in builtin_user_attribute_names: del user_attributes[attr_name] declare_custom_user_attrs() connection_dict.clear() for connection in config.user_connections: connection_dict[connection['id']] = connection # Cleanup eventual still open connections if g_connections: g_connections.clear() global loaded_with_language if loaded_with_language == current_language and not force: return # declare & initialize global vars user_attributes = {} multisite_user_connectors = {} load_web_plugins("userdb", globals()) builtin_user_attribute_names = user_attributes.keys() declare_custom_user_attrs() # Connectors have the option to perform migration of configuration options # while the initial loading is performed for connector_class in multisite_user_connectors.values(): connector_class.migrate_config() # This must be set after plugin loading to make broken plugins raise # exceptions all the time and not only the first time (when the plugins # are loaded). loaded_with_language = current_language # Cleans up at the end of a request: Cleanup eventual open connections def finalize(): if g_connections: g_connections.clear() # Returns a list of two part tuples where the first element is the unique # connection id and the second element the connector specification dict def get_connections(only_enabled=False): connections = [] for connector_id, connector_class in multisite_user_connectors.items(): if connector_id == 'htpasswd': # htpasswd connector is enabled by default and always executed first connections.insert(0, ('htpasswd', connector_class({}))) else: for connection_config in config.user_connections: if only_enabled and connection_config.get('disabled'): continue connection = connector_class(connection_config) if only_enabled and not connection.is_enabled(): continue connections.append((connection_config['id'], connection)) return connections def active_connections(): return get_connections(only_enabled=True) def connection_choices(): return sorted([ (cid, "%s (%s)" % (cid, c.type())) for cid, c in get_connections(only_enabled=False) if c.type() == "ldap" ], key=lambda (x, y): y) # When at least one LDAP connection is defined and active a sync is possible def sync_possible(): for connection_id, connection in active_connections(): if connection.type() == "ldap": return True return False def cleanup_connection_id(connection_id): if connection_id is None: connection_id = 'htpasswd' # Old Check_MK used a static "ldap" connector id for all LDAP users. # Since Check_MK now supports multiple LDAP connections, the ID has # been changed to "default". But only transform this when there is # no connection existing with the id LDAP. if connection_id == 'ldap' and not get_connection('ldap'): connection_id = 'default' return connection_id # Returns the connection object of the requested connection id. This function # maintains a cache that for a single connection_id only one object per request # is created. def get_connection(connection_id): if connection_id in g_connections: return g_connections[connection_id] connection = dict(get_connections()).get(connection_id) if connection: g_connections[connection_id] = connection return connection # Returns a list of connection specific locked attributes def locked_attributes(connection_id): return get_attributes(connection_id, "locked_attributes") # Returns a list of connection specific multisite attributes def multisite_attributes(connection_id): return get_attributes(connection_id, "multisite_attributes") # Returns a list of connection specific non contact attributes def non_contact_attributes(connection_id): return get_attributes(connection_id, "non_contact_attributes") def get_attributes(connection_id, what): connection = get_connection(connection_id) if connection: return getattr(connection, what)() else: return [] def new_user_template(connection_id): new_user = { 'serial': 0, 'connector': connection_id, } # Apply the default user profile new_user.update(config.default_user_profile) return new_user def create_non_existing_user(connection_id, username): users = load_users(lock = True) if username in users: return # User exists. Nothing to do... users[username] = new_user_template(connection_id) save_users(users) # Call the sync function for this new user hook_sync(connection_id = connection_id, only_username = username) # This function is called very often during regular page loads so it has to be efficient # even when having a lot of users. # # When using the multisite authentication with just by WATO created users it would be # easy, but we also need to deal with users which are only existant in the htpasswd # file and don't have a profile directory yet. def user_exists(username): if _user_exists_according_to_profile(username): return True return _user_exists_htpasswd(username) def _user_exists_according_to_profile(username): base_path = config.config_dir + "/" + username.encode("utf-8") + "/" return os.path.exists(base_path + "transids.mk") \ or os.path.exists(base_path + "serial.mk") def _user_exists_htpasswd(username): for line in open(cmk.paths.htpasswd_file): l = line.decode("utf-8") if l.startswith("%s:" % username): return True return False def user_locked(username): users = load_users() return users[username].get('locked', False) def login_timed_out(username, last_activity): idle_timeout = load_custom_attr(username, "idle_timeout", convert_idle_timeout, None) if idle_timeout == None: idle_timeout = config.user_idle_timeout if idle_timeout in [ None, False ]: return False # no timeout activated at all timed_out = (time.time() - last_activity) > idle_timeout # TODO: uncomment this once log level can be configured #if timed_out: # logger(LOG_DEBUG, "%s login timed out (Inactive for %d seconds)" % # (username, time.time() - last_activity)) return timed_out def update_user_access_time(username): if not config.save_user_access_times: return save_custom_attr(username, 'last_seen', repr(time.time())) def on_succeeded_login(username): num_failed_logins = load_custom_attr(username, 'num_failed_logins', saveint) if num_failed_logins != None and num_failed_logins != 0: save_custom_attr(username, 'num_failed_logins', '0') update_user_access_time(username) # userdb.need_to_change_pw returns either False or the reason description why the # password needs to be changed def need_to_change_pw(username): if load_custom_attr(username, 'enforce_pw_change', saveint) == 1: return 'enforced' last_pw_change = load_custom_attr(username, 'last_pw_change', saveint) max_pw_age = config.password_policy.get('max_age') if max_pw_age: if not last_pw_change: # The age of the password is unknown. Assume the user has just set # the password to have the first access after enabling password aging # as starting point for the password period. This bewares all users # from needing to set a new password after enabling aging. save_custom_attr(username, 'last_pw_change', str(int(time.time()))) return False elif time.time() - last_pw_change > max_pw_age: return 'expired' return False def on_failed_login(username): users = load_users(lock = True) if username in users: if "num_failed_logins" in users[username]: users[username]["num_failed_logins"] += 1 else: users[username]["num_failed_logins"] = 1 if config.lock_on_logon_failures: if users[username]["num_failed_logins"] >= config.lock_on_logon_failures: users[username]["locked"] = True save_users(users) root_dir = cmk.paths.check_mk_config_dir + "/wato/" multisite_dir = cmk.paths.default_config_dir + "/multisite.d/wato/" # Old vs: #ListChoice( # title = _('Automatic User Synchronization'), # help = _('By default the users are synchronized automatically in several situations. ' # 'The sync is started when opening the "Users" page in configuration and ' # 'during each page rendering. Each connector can then specify if it wants to perform ' # 'any actions. For example the LDAP connector will start the sync once the cached user ' # 'information are too old.'), # default_value = [ 'wato_users', 'page', 'wato_pre_activate_changes', 'wato_snapshot_pushed' ], # choices = [ # ('page', _('During regular page processing')), # ('wato_users', _('When opening the users\' configuration page')), # ('wato_pre_activate_changes', _('Before activating the changed configuration')), # ('wato_snapshot_pushed', _('On a remote site, when it receives a new configuration')), # ], # allow_empty = True, #), def transform_userdb_automatic_sync(val): if val == []: # legacy compat - disabled return None elif type(val) == list and val: # legacy compat - all connections return "all" else: return val #. # .--User Session--------------------------------------------------------. # | _ _ ____ _ | # | | | | |___ ___ _ __ / ___| ___ ___ ___(_) ___ _ __ | # | | | | / __|/ _ \ '__| \___ \ / _ \/ __/ __| |/ _ \| '_ \ | # | | |_| \__ \ __/ | ___) | __/\__ \__ \ | (_) | | | | | # | \___/|___/\___|_| |____/ \___||___/___/_|\___/|_| |_| | # | | # +----------------------------------------------------------------------+ # | When single users sessions are activated, a user an only login once | # | a time. In case a user tries to login a second time, an error is | # | shown to the later login. | # | | # | To make this feature possible a session ID is computed during login, | # | saved in the users cookie and stored in the user profile together | # | with the current time as "last activity" timestamp. This timestamp | # | is updated during each user activity in the GUI. | # | | # | Once a user logs out or the "last activity" is older than the | # | configured session timeout, the session is invalidated. The user | # | can then login again from the same client or another one. | # '----------------------------------------------------------------------' def is_valid_user_session(username, session_id): if config.single_user_session == None: return True # No login session limitation enabled, no validation session_info = load_session_info(username) if session_info == None: return False # no session active else: active_session_id, last_activity = session_info if session_id == active_session_id: return True # Current session. Fine. # TODO: uncomment this once log level can be configured #logger(LOG_DEBUG, "%s session_id not valid (timed out?) (Inactive for %d seconds)" % # (username, time.time() - last_activity)) return False def ensure_user_can_init_session(username): if config.single_user_session == None: return True # No login session limitation enabled, no validation session_timeout = config.single_user_session session_info = load_session_info(username) if session_info == None: return True # No session active last_activity = session_info[1] if (time.time() - last_activity) > session_timeout: return True # Former active session timed out # TODO: uncomment this once log level can be configured #logger(LOG_DEBUG, "%s another session is active (inactive for: %d seconds)" % # (username, time.time() - last_activity)) raise MKUserError(None, _("Another session is active")) # Creates a new user login session (if single user session mode is enabled) and # returns the session_id of the new session. def initialize_session(username): if not config.single_user_session: return "" session_id = create_session_id() save_session_info(username, session_id) return session_id # Creates a random session id for the user and returns it. def create_session_id(): return gen_id() # Updates the current session of the user and returns the session_id or only # returns an empty string when single user session mode is not enabled. def refresh_session(username): if not config.single_user_session: return "" session_info = load_session_info(username) if session_info == None: return # Don't refresh. Session is not valid anymore session_id = session_info[0] save_session_info(username, session_id) def invalidate_session(username): remove_custom_attr(username, "session_info") # Saves the current session_id and the current time (last activity) def save_session_info(username, session_id): save_custom_attr(username, "session_info", "%s|%s" % (session_id, int(time.time()))) # Returns either None (when no session_id available) or a two element # tuple where the first element is the sesssion_id and the second the # timestamp of the last activity. def load_session_info(username): return load_custom_attr(username, "session_info", convert_session_info) def convert_session_info(value): if value == "": return None else: session_id, last_activity = value.split("|", 1) return session_id, int(last_activity) #. # .-Users----------------------------------------------------------------. # | _ _ | # | | | | |___ ___ _ __ ___ | # | | | | / __|/ _ \ '__/ __| | # | | |_| \__ \ __/ | \__ \ | # | \___/|___/\___|_| |___/ | # | | # +----------------------------------------------------------------------+ def declare_user_attribute(name, vs, user_editable = True, permission = None, show_in_table = False, topic = None, add_custom_macro = False, domain = "multisite"): user_attributes[name] = { 'valuespec' : vs, 'user_editable' : user_editable, 'show_in_table' : show_in_table, 'topic' : topic and topic or 'personal', 'add_custom_macro' : add_custom_macro, 'domain' : domain, } # Permission needed for editing this attribute if permission: user_attributes[name]["permission"] = permission def get_user_attributes(): return user_attributes.items() def load_users(lock = False): filename = root_dir + "contacts.mk" if lock: # Make sure that the file exists without modifying it, *if* it exists # to be able to lock and realease the file properly. # Note: the lock will be released on next save_users() call or at # end of page request automatically. file(filename, "a") aquire_lock(filename) if html.is_cached('users'): return html.get_cached('users') # First load monitoring contacts from Check_MK's world. If this is # the first time, then the file will be empty, which is no problem. # Execfile will the simply leave contacts = {} unchanged. try: vars = { "contacts" : {} } execfile(filename, vars, vars) contacts = vars["contacts"] except IOError: contacts = {} # a not existing file is ok, start with empty data except Exception, e: if config.debug: raise MKGeneralException(_("Cannot read configuration file %s: %s") % (filename, e)) else: logger(LOG_ERR, 'load_users: Problem while loading contacts (%s - %s). ' 'Initializing structure...' % (filename, e)) contacts = {} # Now add information about users from the Web world filename = multisite_dir + "users.mk" try: vars = { "multisite_users" : {} } execfile(filename, vars, vars) users = vars["multisite_users"] except IOError: users = {} # not existing is ok -> empty structure except Exception, e: if config.debug: raise MKGeneralException(_("Cannot read configuration file %s: %s") % (filename, e)) else: logger(LOG_ERR, 'load_users: Problem while loading users (%s - %s). ' 'Initializing structure...' % (filename, e)) users = {} # Merge them together. Monitoring users not known to Multisite # will be added later as normal users. result = {} for id, user in users.items(): profile = contacts.get(id, {}) profile.update(user) result[id] = profile # Convert non unicode mail addresses if type(profile.get("email")) == str: profile["email"] = profile["email"].decode("utf-8") # This loop is only neccessary if someone has edited # contacts.mk manually. But we want to support that as # far as possible. for id, contact in contacts.items(): if id not in result: result[id] = contact result[id]["roles"] = [ "user" ] result[id]["locked"] = True result[id]["password"] = "" # Passwords are read directly from the apache htpasswd-file. # That way heroes of the command line will still be able to # change passwords with htpasswd. Users *only* appearing # in htpasswd will also be loaded and assigned to the role # they are getting according to the multisite old-style # configuration variables. def readlines(f): try: return file(f) except IOError: return [] # FIXME TODO: Consolidate with htpasswd user connector filename = cmk.paths.htpasswd_file for line in readlines(filename): line = line.strip() if ':' in line: id, password = line.strip().split(":")[:2] id = id.decode("utf-8") if password.startswith("!"): locked = True password = password[1:] else: locked = False if id in result: result[id]["password"] = password result[id]["locked"] = locked else: # Create entry if this is an admin user new_user = { "roles" : config.roles_of_user(id), "password" : password, "locked" : False, } result[id] = new_user # Make sure that the user has an alias result[id].setdefault("alias", id) # Other unknown entries will silently be dropped. Sorry... # Now read the serials, only process for existing users serials_file = '%s/auth.serials' % os.path.dirname(cmk.paths.htpasswd_file) for line in readlines(serials_file): line = line.strip() if ':' in line: user_id, serial = line.split(':')[:2] user_id = user_id.decode("utf-8") if user_id in result: result[user_id]['serial'] = saveint(serial) # Now read the user specific files dir = cmk.paths.var_dir + "/web/" for d in os.listdir(dir): if d[0] != '.': id = d.decode("utf-8") # read special values from own files if id in result: for attr, conv_func in [ ('num_failed_logins', saveint), ('last_pw_change', saveint), ('last_seen', savefloat), ('enforce_pw_change', lambda x: bool(saveint(x))), ('idle_timeout', convert_idle_timeout), ('session_id', convert_session_info), ]: val = load_custom_attr(id, attr, conv_func) if val != None: result[id][attr] = val # read automation secrets and add them to existing # users or create new users automatically try: secret = file(dir + d + "/automation.secret").read().strip() except IOError: secret = None if secret: if id in result: result[id]["automation_secret"] = secret else: result[id] = { "roles" : ["guest"], "automation_secret" : secret, } # populate the users cache html.set_cache('users', result) return result def custom_attr_path(userid, key): return cmk.paths.var_dir + "/web/" + make_utf8(userid) + "/" + key + ".mk" def load_custom_attr(userid, key, conv_func, default = None): path = custom_attr_path(userid, key) try: return conv_func(file(path).read().strip()) except IOError: return default def save_custom_attr(userid, key, val): path = custom_attr_path(userid, key) make_nagios_directory(os.path.dirname(path)) create_user_file(path, 'w').write('%s\n' % val) def remove_custom_attr(userid, key): try: os.unlink(custom_attr_path(userid, key)) except OSError: pass # Ignore non existing files def get_online_user_ids(): online_threshold = time.time() - config.user_online_maxage users = [] for user_id, user in load_users(lock = False).items(): if user.get('last_seen', 0) >= online_threshold: users.append(user_id) return users def split_dict(d, keylist, positive): return dict([(k,v) for (k,v) in d.items() if (k in keylist) == positive]) def save_users(profiles): # Add custom macros core_custom_macros = [ k for k,o in user_attributes.items() if o.get('add_custom_macro') ] for user in profiles.keys(): for macro in core_custom_macros: if macro in profiles[user]: profiles[user]['_'+macro] = profiles[user][macro] multisite_custom_values = [ k for k,v in user_attributes.items() if v["domain"] == "multisite" ] # Keys not to put into contact definitions for Check_MK non_contact_keys = [ "roles", "password", "locked", "automation_secret", "language", "serial", "connector", "num_failed_logins", "enforce_pw_change", "last_pw_change", "last_seen", "idle_timeout", ] + multisite_custom_values # Keys to put into multisite configuration multisite_keys = [ "roles", "locked", "automation_secret", "alias", "language", "connector", ] + multisite_custom_values # Remove multisite keys in contacts. contacts = dict( e for e in [ (id, split_dict(user, non_contact_keys + non_contact_attributes(user.get('connector')), False)) for (id, user) in profiles.items() ]) # Only allow explicitely defined attributes to be written to multisite config users = {} for uid, profile in profiles.items(): users[uid] = dict([ (p, val) for p, val in profile.items() if p in multisite_keys + multisite_attributes(profile.get('connector'))]) # Check_MK's monitoring contacts filename = root_dir + "contacts.mk.new" out = create_user_file(filename, "w") out.write("# Written by Multisite UserDB\n# encoding: utf-8\n\n") out.write("contacts.update(\n%s\n)\n" % pprint.pformat(contacts)) out.close() os.rename(filename, filename[:-4]) # Users with passwords for Multisite filename = multisite_dir + "users.mk.new" make_nagios_directory(multisite_dir) out = create_user_file(filename, "w") out.write("# Written by Multisite UserDB\n# encoding: utf-8\n\n") out.write("multisite_users = \\\n%s\n" % pprint.pformat(users)) out.close() os.rename(filename, filename[:-4]) # Execute user connector save hooks hook_save(profiles) # Write out the users serials serials_file = '%s/auth.serials.new' % os.path.dirname(cmk.paths.htpasswd_file) rename_file = True try: out = create_user_file(serials_file, "w") except: rename_file = False out = create_user_file(serials_file[:-4], "w") for user_id, user in profiles.items(): out.write('%s:%d\n' % (make_utf8(user_id), user.get('serial', 0))) out.close() if rename_file: os.rename(serials_file, serials_file[:-4]) # Write user specific files for user_id, user in profiles.items(): user_dir = cmk.paths.var_dir + "/web/" + user_id make_nagios_directory(user_dir) # authentication secret for local processes auth_file = user_dir + "/automation.secret" if "automation_secret" in user: create_user_file(auth_file, "w").write("%s\n" % user["automation_secret"]) else: remove_user_file(auth_file) # Write out user attributes which are written to dedicated files in the user # profile directory. The primary reason to have separate files, is to reduce # the amount of data to be loaded during regular page processing save_custom_attr(user_id, 'serial', str(user.get('serial', 0))) save_custom_attr(user_id, 'num_failed_logins', str(user.get('num_failed_logins', 0))) save_custom_attr(user_id, 'enforce_pw_change', str(int(user.get('enforce_pw_change', False)))) save_custom_attr(user_id, 'last_pw_change', str(user.get('last_pw_change', int(time.time())))) if "idle_timeout" in user: save_custom_attr(user_id, "idle_timeout", user["idle_timeout"]) else: remove_custom_attr(user_id, "idle_timeout") # Write out the last seent time if 'last_seen' in user: save_custom_attr(user_id, 'last_seen', repr(user['last_seen'])) save_cached_profile(user_id, user, multisite_keys, non_contact_keys) # During deletion of users we don't delete files which might contain user settings # and e.g. customized views which are not easy to reproduce. We want to keep the # files which are the result of a lot of work even when e.g. the LDAP sync deletes # a user by accident. But for some internal files it is ok to delete them. # # Be aware: The user_exists() function relies on these files to be deleted. profile_files_to_delete = [ "automation.secret", "transids.mk", "serial.mk", ] dir = cmk.paths.var_dir + "/web" for user_dir in os.listdir(cmk.paths.var_dir + "/web"): if user_dir not in ['.', '..'] and user_dir.decode("utf-8") not in profiles: entry = dir + "/" + user_dir if not os.path.isdir(entry): continue for to_delete in profile_files_to_delete: if os.path.exists(entry + '/' + to_delete): os.unlink(entry + '/' + to_delete) # Release the lock to make other threads access possible again asap # This lock is set by load_users() only in the case something is expected # to be written (like during user syncs, wato, ...) release_lock(root_dir + "contacts.mk") # populate the users cache html.set_cache('users', profiles) # Call the users_saved hook hooks.call("users-saved", profiles) def rewrite_users(): users = load_users(lock=True) save_users(users) def create_cmk_automation_user(): secret = gen_id() users = load_users(lock=True) users["automation"] = { 'alias' : u"Check_MK Automation - used for calling web services", 'contactgroups' : [], 'automation_secret' : secret, 'password' : encrypt_password(secret), 'roles' : ['admin'], 'locked' : False, 'serial' : 0, 'email' : '', 'pager' : '', 'notifications_enabled' : False, } save_users(users) def save_cached_profile(user_id, user, multisite_keys, non_contact_keys): # Only save contact AND multisite attributes to the profile. Not the # infos that are stored in the custom attribute files. cache = {} for key in user.keys(): if key in multisite_keys or key not in non_contact_keys: cache[key] = user[key] config.save_user_file("cached_profile", cache, user=user_id) def load_cached_profile(): return config.user.load_file("cached_profile", None) def contactgroups_of_user(user_id): user = load_cached_profile() if user == None: # No cached profile present. Load all users to get the users data user = load_users(lock=False)[user_id] return user.get("contactgroups", []) def convert_idle_timeout(value): return value != "False" and int(value) or False #. # .-Roles----------------------------------------------------------------. # | ____ _ | # | | _ \ ___ | | ___ ___ | # | | |_) / _ \| |/ _ \/ __| | # | | _ < (_) | | __/\__ \ | # | |_| \_\___/|_|\___||___/ | # | | # +----------------------------------------------------------------------+ def load_roles(): # Fake builtin roles into user roles. builtin_role_names = { # Default names for builtin roles "admin" : _("Administrator"), "user" : _("Normal monitoring user"), "guest" : _("Guest user"), } roles = dict([(id, { "alias" : builtin_role_names.get(id, id), "permissions" : {}, # use default everywhere "builtin": True}) for id in config.builtin_role_ids ]) filename = multisite_dir + "roles.mk" try: vars = { "roles" : roles } execfile(filename, vars, vars) # Make sure that "general." is prefixed to the general permissions # (due to a code change that converted "use" into "general.use", etc. for role in roles.values(): for pname, pvalue in role["permissions"].items(): if "." not in pname: del role["permissions"][pname] role["permissions"]["general." + pname] = pvalue # Reflect the data in the roles dict kept in the config module needed # for instant changes in current page while saving modified roles. # Otherwise the hooks would work with old data when using helper # functions from the config module config.roles.update(vars['roles']) return vars["roles"] except IOError: return roles # Use empty structure, not existing file is ok! except Exception, e: if config.debug: raise MKGeneralException(_("Cannot read configuration file %s: %s") % (filename, e)) else: logger(LOG_ERR, 'load_roles: Problem while loading roles (%s - %s). ' 'Initializing structure...' % (filename, e)) return roles #. # .-Groups---------------------------------------------------------------. # | ____ | # | / ___|_ __ ___ _ _ _ __ ___ | # | | | _| '__/ _ \| | | | '_ \/ __| | # | | |_| | | | (_) | |_| | |_) \__ \ | # | \____|_| \___/ \__,_| .__/|___/ | # | |_| | # +----------------------------------------------------------------------+ # TODO: Contact groups are fine here, but service / host groups? def load_group_information(): try: # Load group information from Check_MK world vars = {} for what in ["host", "service", "contact" ]: vars["define_%sgroups" % what] = {} filename = root_dir + "groups.mk" try: execfile(filename, vars, vars) except IOError: return {} # skip on not existing file # Now load information from the Web world multisite_vars = {} for what in ["host", "service", "contact" ]: multisite_vars["multisite_%sgroups" % what] = {} filename = multisite_dir + "groups.mk" try: execfile(filename, multisite_vars, multisite_vars) except IOError: pass # Merge information from Check_MK and Multisite worlds together groups = {} for what in ["host", "service", "contact" ]: groups[what] = {} for id, alias in vars['define_%sgroups' % what].items(): groups[what][id] = { 'alias': alias } if id in multisite_vars['multisite_%sgroups' % what]: groups[what][id].update(multisite_vars['multisite_%sgroups' % what][id]) return groups except Exception, e: if config.debug: raise MKGeneralException(_("Cannot read configuration file %s: %s") % (filename, e)) else: logger(LOG_ERR, 'load_group_information: Problem while loading groups (%s - %s). ' 'Initializing structure...' % (filename, e)) return {} class GroupChoice(DualListChoice): def __init__(self, what, **kwargs): DualListChoice.__init__(self, **kwargs) self.what = what self._choices = lambda: self.load_groups() def load_groups(self): all_groups = load_group_information() this_group = all_groups.get(self.what, {}) return [ (k, t['alias'] and t['alias'] or k) for (k, t) in this_group.items() ] #. # .-Custom-Attrs.--------------------------------------------------------. # | ____ _ _ _ _ | # | / ___| _ ___| |_ ___ _ __ ___ / \ | |_| |_ _ __ ___ | # | | | | | | / __| __/ _ \| '_ ` _ \ _____ / _ \| __| __| '__/ __| | # | | |__| |_| \__ \ || (_) | | | | | |_____/ ___ \ |_| |_| | \__ \_ | # | \____\__,_|___/\__\___/|_| |_| |_| /_/ \_\__|\__|_| |___(_) | # | | # +----------------------------------------------------------------------+ # | Mange custom attributes of users (in future hosts etc.) | # '----------------------------------------------------------------------' # TODO: userdb is a bad place for this when it manages user and host attributes! # Maybe move to own module? def load_custom_attrs(): try: filename = multisite_dir + "custom_attrs.mk" if not os.path.exists(filename): return {} vars = { 'wato_user_attrs': [], 'wato_host_attrs': [], } execfile(filename, vars, vars) attrs = {} for what in [ "user", "host" ]: attrs[what] = vars.get("wato_%s_attrs" % what, []) return attrs except Exception, e: if config.debug: raise raise MKGeneralException(_("Cannot read configuration file %s: %s") % (filename, e)) def declare_custom_user_attrs(): all_attrs = load_custom_attrs() attrs = all_attrs.setdefault('user', []) for attr in attrs: vs = globals()[attr['type']](title = attr['title'], help = attr['help']) declare_user_attribute(attr['name'], vs, user_editable = attr['user_editable'], show_in_table = attr.get('show_in_table', False), topic = attr.get('topic', 'personal'), add_custom_macro = attr.get('add_custom_macro', False ) ) #. # .--ConnectorCfg--------------------------------------------------------. # | ____ _ ____ __ | # | / ___|___ _ __ _ __ ___ ___| |_ ___ _ __ / ___|/ _| __ _ | # | | | / _ \| '_ \| '_ \ / _ \/ __| __/ _ \| '__| | | |_ / _` | | # | | |__| (_) | | | | | | | __/ (__| || (_) | | | |___| _| (_| | | # | \____\___/|_| |_|_| |_|\___|\___|\__\___/|_| \____|_| \__, | | # | |___/ | # +----------------------------------------------------------------------+ # | The user can enable and configure a list of user connectors which | # | are then used by the userdb to fetch user / group information from | # | external sources like LDAP servers. | # '----------------------------------------------------------------------' def load_connection_config(): user_connections = [] filename = multisite_dir + "user_connections.mk" if not os.path.exists(filename): return user_connections try: context = { "user_connections": user_connections, } execfile(filename, context, context) return context["user_connections"] except Exception, e: if config.debug: raise MKGeneralException(_("Cannot read configuration file %s: %s") % (filename, e)) return user_connections def save_connection_config(connections): make_nagios_directory(multisite_dir) out = create_user_file(multisite_dir + "user_connections.mk", "w") out.write("# Written by Multisite UserDB\n# encoding: utf-8\n\n") out.write("user_connections = \\\n%s\n\n" % pprint.pformat(connections)) #. # .--ConnectorAPI--------------------------------------------------------. # | ____ _ _ ____ ___ | # | / ___|___ _ __ _ __ ___ ___| |_ ___ _ __ / \ | _ \_ _| | # | | | / _ \| '_ \| '_ \ / _ \/ __| __/ _ \| '__/ _ \ | |_) | | | # | | |__| (_) | | | | | | | __/ (__| || (_) | | / ___ \| __/| | | # | \____\___/|_| |_|_| |_|\___|\___|\__\___/|_|/_/ \_\_| |___| | # | | # +----------------------------------------------------------------------+ # | Implements the base class for User Connector classes. It implements | # | basic mechanisms and default methods which might/should be | # | overridden by the specific connector classes. | # '----------------------------------------------------------------------' # FIXME: How to declare methods/attributes forced to be overridden? class UserConnector(object): def __init__(self, config): super(UserConnector, self).__init__() self._config = config @classmethod def type(self): return None # The string representing this connector to humans @classmethod def title(self): return None @classmethod def short_title(self): return _('htpasswd') # # USERDB API METHODS # @classmethod def migrate_config(self): pass # Optional: Hook function can be registered here to be executed # to validate a login issued by a user. # Gets parameters: username, password # Has to return either: # '<user_id>' -> Login succeeded # False -> Login failed # None -> Unknown user def check_credentials(self, user_id, password): return None # Optional: Hook function can be registered here to be executed # to synchronize all users. def do_sync(self, add_to_changelog, only_username): pass # Optional: Tells whether or not the given user is currently # locked which would mean that he is not allowed to login. def is_locked(self, user_id): return False # Optional: Hook function can be registered here to be executed # on each call to the multisite cron job page which is normally # executed once a minute. def on_cron_job(self): pass # Optional: Hook function can be registered here to be xecuted # to save all users. def save_users(self, users): pass # List of user attributes locked for all users attached to this # connection. Those locked attributes are read-only in WATO. def locked_attributes(self): return [] def multisite_attributes(self): return [] def non_contact_attributes(self): return [] #. # .-Hooks----------------------------------------------------------------. # | _ _ _ | # | | | | | ___ ___ | | _____ | # | | |_| |/ _ \ / _ \| |/ / __| | # | | _ | (_) | (_) | <\__ \ | # | |_| |_|\___/ \___/|_|\_\___/ | # | | # +----------------------------------------------------------------------+ # This hook is called to validate the login credentials provided by a user def hook_login(username, password): for connection_id, connection in active_connections(): result = connection.check_credentials(username, password) # None -> User unknown, means continue with other connectors # '<user_id>' -> success # False -> failed if result not in [ False, None ]: username = result if type(username) not in [ str, unicode ]: raise MKInternalError(_("The username returned by the %s " "connector is not of type string (%r).") % (connection_id, username)) # Check wether or not the user exists (and maybe create it) create_non_existing_user(connection_id, username) # Now, after successfull login (and optional user account # creation), check wether or not the user is locked. # In e.g. htpasswd connector this is checked by validating the # password against the hash in the htpasswd file prefixed with # a "!". But when using other conectors it might be neccessary # to validate the user "locked" attribute. if connection.is_locked(username): return False # The account is locked return result elif result == False: return result def show_exception(connection_id, title, e, debug=True): html.show_error( "<b>" + connection_id + ' - ' + title + "</b>" "<pre>%s</pre>" % (debug and traceback.format_exc() or e) ) # Hook function can be registered here to be executed to synchronize all users. # Is called on: # a) before rendering the user management page in WATO # b) a user is created during login (only for this user) # c) Before activating the changes in WATO def hook_sync(connection_id = None, add_to_changelog = False, only_username = None, raise_exc = False): if connection_id: connections = [ (connection_id, get_connection(connection_id)) ] else: connections = active_connections() no_errors = True for connection_id, connection in connections: try: connection.do_sync(add_to_changelog, only_username) except MKLDAPException, e: if raise_exc: raise show_exception(connection_id, _("Error during sync"), e, debug=config.debug) no_errors = False except Exception, e: if raise_exc: raise show_exception(connection_id, _("Error during sync"), e) no_errors = False return no_errors # Hook function can be registered here to be executed during saving of the # new user construct def hook_save(users): for connection_id, connection in active_connections(): try: connection.save_users(users) except Exception, e: if config.debug: raise else: show_exception(connection_id, _("Error during saving"), e) # This function registers general stuff, which is independet of the single # connectors to each page load. It is exectued AFTER all other connections jobs. def general_userdb_job(): # Working around the problem that the auth.php file needed for multisite based # authorization of external addons might not exist when setting up a new installation # We assume: Each user must visit this login page before using the multisite based # authorization. So we can easily create the file here if it is missing. # This is a good place to replace old api based files in the future. auth_php = cmk.paths.var_dir + '/wato/auth/auth.php' if not os.path.exists(auth_php) or os.path.getsize(auth_php) == 0: create_auth_file("page_hook", load_users()) # Create initial auth.serials file, same issue as auth.php above serials_file = '%s/auth.serials' % os.path.dirname(cmk.paths.htpasswd_file) if not os.path.exists(serials_file) or os.path.getsize(serials_file) == 0: save_users(load_users(lock = True)) # Hook function can be registered here to execute actions on a "regular" base without # user triggered action. This hook is called on each page load. # Catch all exceptions and log them to apache error log. Let exceptions raise trough # when debug mode is enabled. def execute_userdb_job(): if not userdb_sync_job_enabled(): return for connection_id, connection in active_connections(): try: connection.on_cron_job() except: if config.debug: raise else: logger(LOG_ERR, 'Exception (%s, userdb_job): %s' % (connection_id, traceback.format_exc())) general_userdb_job() # Legacy option config.userdb_automatic_sync defaulted to "master". # Can be: None: (no sync), "all": all sites sync, "master": only master site sync # Take that option into account for compatibility reasons. # For remote sites in distributed setups, the default is to do no sync. def user_sync_default_config(site_name): global_user_sync = transform_userdb_automatic_sync(config.userdb_automatic_sync) if global_user_sync == "master": import wato # FIXME: Cleanup! if config.site_is_local(site_name) and not wato.is_wato_slave_site(): user_sync_default = "all" else: user_sync_default = None else: user_sync_default = global_user_sync return user_sync_default def user_sync_config(): # use global option as default for reading legacy options and on remote site # for reading the value set by the WATO master site default_cfg = user_sync_default_config(config.omd_site()) return config.site(config.omd_site()).get("user_sync", default_cfg) def userdb_sync_job_enabled(): cfg = user_sync_config() if cfg == None: return False # not enabled at all import wato # FIXME: Cleanup! if cfg == "master" and wato.is_wato_slave_site(): return False return True def ajax_sync(): try: hook_sync(add_to_changelog = False, raise_exc = True) html.write('OK\n') except Exception, e: if config.debug: raise else: html.write('ERROR %s\n' % e)
ypid-bot/check_mk
web/htdocs/userdb.py
Python
gpl-2.0
51,514
[ "VisIt" ]
213eeffa017a6fe59fc929750d95511ae609e43bc47b1d1ae21a9fa4d269a268
""" Seismic wavelets. :copyright: 2021 Agile Geoscience :license: Apache 2.0 """ import warnings from collections import namedtuple import numpy as np import scipy.signal import matplotlib.pyplot as plt from bruges.util import deprecated def _get_time(duration, dt, sym=True): """ Make a time vector. If `sym` is `True`, the time vector will have an odd number of samples, and will be symmetric about 0. If it's False, and the number of samples is even (e.g. duration = 0.016, dt = 0.004), then 0 will bot be center. """ # This business is to avoid some of the issues with `np.arange`: # (1) unpredictable length and (2) floating point weirdness, like # 1.234e-17 instead of 0. Not using `linspace` because figuring out # the length and offset gave me even more of a headache than this. n = int(duration / dt) odd = n % 2 k = int(10**-np.floor(np.log10(dt))) dti = int(k * dt) # integer dt if (odd and sym): t = np.arange(n) elif (not odd and sym): t = np.arange(n + 1) elif (odd and not sym): t = np.arange(n) elif (not odd and not sym): t = np.arange(n) - 1 t -= t[-1] // 2 return dti * t / k def _generic(func, duration, dt, f, t=None, return_t=True, taper='blackman', sym=True): """ Generic wavelet generator: applies a window to a continuous function. Args: func (function): The continuous function, taking t, f as arguments. duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (often one of 0.001, 0.002, or 0.004). f (array-like): Dominant frequency of the wavelet in Hz. If a sequence is passed, you will get a 2D array in return, one row per frequency. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. taper (str or function): The window or tapering function to apply. To use one of NumPy's functions, pass 'bartlett', 'blackman' (the default), 'hamming', or 'hanning'; to apply no tapering, pass 'none'. To apply your own function, pass a function taking only the length of the window and returning the window function. sym (bool): If True (default behaviour before v0.5) then the wavelet is forced to have an odd number of samples and the central sample is at 0 time. Returns: ndarray. wavelet(s) with centre frequency f sampled on t. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if not return_t: m = "return_t is deprecated. In future releases, return_t will always be True." warnings.warn(m, DeprecationWarning, stacklevel=2) f = np.asanyarray(f).reshape(-1, 1) # Compute time domain response. if t is None: t = _get_time(duration, dt, sym=sym) else: if (duration is not None) or (dt is not None): m = "`duration` and `dt` are ignored when `t` is passed." warnings.warn(m, UserWarning, stacklevel=2) t = np.array(t) t[t == 0] = 1e-12 # Avoid division by zero. f[f == 0] = 1e-12 # Avoid division by zero. w = np.squeeze(func(t, f)) if taper is not None: tapers = { 'bartlett': np.bartlett, 'blackman': np.blackman, 'hamming': np.hamming, 'hanning': np.hanning, 'none': lambda _: 1, } taper = tapers.get(taper, taper) w *= taper(t.size) if return_t: Wavelet = namedtuple('Wavelet', ['amplitude', 'time']) return Wavelet(w, t) else: return w def sinc(duration, dt, f, t=None, return_t=True, taper='blackman', sym=True): """ sinc function centered on t=0, with a dominant frequency of f Hz. If you pass a 1D array of frequencies, you get a wavelet bank in return. .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.sinc(0.256, 0.002, 40) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (often one of 0.001, 0.002, or 0.004). f (array-like): Dominant frequency of the wavelet in Hz. If a sequence is passed, you will get a 2D array in return, one row per frequency. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. taper (str or function): The window or tapering function to apply. To use one of NumPy's functions, pass 'bartlett', 'blackman' (the default), 'hamming', or 'hanning'; to apply no tapering, pass 'none'. To apply your own function, pass a function taking only the length of the window and returning the window function. Returns: ndarray. sinc wavelet(s) with centre frequency f sampled on t. If you passed `return_t = True` then a tuple of (wavelet, t) is returned. """ def func(t_, f_): return np.sin(2*np.pi*f_*t_) / (2*np.pi*f_*t_) return _generic(func, duration, dt, f, t, return_t, taper, sym=sym) def cosine(duration, dt, f, t=None, return_t=True, taper='gaussian', sigma=None, sym=True): """ With the default Gaussian window, equivalent to a 'modified Morlet' also sometimes called a 'Gabor' wavelet. The `bruges.filters.gabor` function returns a similar shape, but with a higher mean frequancy, somewhere between a Ricker and a cosine (pure tone). If you pass a 1D array of frequencies, you get a wavelet bank in return. .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.cosine(0.256, 0.002, 40) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (often one of 0.001, 0.002, or 0.004). f (array-like): Dominant frequency of the wavelet in Hz. If a sequence is passed, you will get a 2D array in return, one row per frequency. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. taper (str or function): The window or tapering function to apply. To use one of NumPy's functions, pass 'bartlett', 'blackman' (the default), 'hamming', or 'hanning'; to apply no tapering, pass 'none'. To apply your own function, pass a function taking only the length of the window and returning the window function. sigma (float): Width of the default Gaussian window, in seconds. Defaults to 1/8 of the duration. Returns: ndarray. sinc wavelet(s) with centre frequency f sampled on t. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if sigma is None: sigma = duration / 8 def func(t_, f_): return np.cos(2 * np.pi * f_ * t_) def taper(length): return scipy.signal.gaussian(length, sigma/dt) return _generic(func, duration, dt, f, t, return_t, taper, sym=sym) def gabor(duration, dt, f, t=None, return_t=True, sym=True): """ Generates a Gabor wavelet with a peak frequency f0 at time t. https://en.wikipedia.org/wiki/Gabor_wavelet If you pass a 1D array of frequencies, you get a wavelet bank in return. .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.gabor(0.256, 0.002, 40) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (often one of 0.001, 0.002, or 0.004). f (array-like): Centre frequency of the wavelet in Hz. If a sequence is passed, you will get a 2D array in return, one row per frequency. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. Returns: ndarray. Gabor wavelet(s) with centre frequency f sampled on t. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ def func(t_, f_): return np.exp(-2 * f_**2 * t_**2) * np.cos(2 * np.pi * f_ * t_) return _generic(func, duration, dt, f, t, return_t, sym=sym) def ricker(duration, dt, f, t=None, return_t=True, sym=True): """ Also known as the mexican hat wavelet, models the function: .. math:: A = (1 - 2 \pi^2 f^2 t^2) e^{-\pi^2 f^2 t^2} If you pass a 1D array of frequencies, you get a wavelet bank in return. .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.ricker(0.256, 0.002, 40) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (often one of 0.001, 0.002, or 0.004). f (array-like): Centre frequency of the wavelet in Hz. If a sequence is passed, you will get a 2D array in return, one row per frequency. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. sym (bool): If True (default behaviour before v0.5) then the wavelet is forced to have an odd number of samples and the central sample is at 0 time. Returns: ndarray. Ricker wavelet(s) with centre frequency f sampled on t. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if not return_t: m = "return_t is deprecated. In future releases, return_t will always be True." warnings.warn(m, DeprecationWarning, stacklevel=2) f = np.asanyarray(f).reshape(-1, 1) if t is None: t = _get_time(duration, dt, sym=sym) else: if (duration is not None) or (dt is not None): m = "`duration` and `dt` are ignored when `t` is passed." warnings.warn(m, UserWarning, stacklevel=2) pft2 = (np.pi * f * t)**2 w = np.squeeze((1 - (2 * pft2)) * np.exp(-pft2)) if return_t: RickerWavelet = namedtuple('RickerWavelet', ['amplitude', 'time']) return RickerWavelet(w, t) else: return w def klauder(duration, dt, f, autocorrelate=True, t=None, return_t=True, taper='blackman', sym=True, **kwargs): """ By default, gives the autocorrelation of a linear frequency modulated wavelet (sweep). Uses scipy.signal.chirp, adding dimensions as necessary. .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.klauder(0.256, 0.002, [12, 48]) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): is the sample interval in seconds (usually 0.001, 0.002, or 0.004) f (array-like): Upper and lower frequencies. Any sequence like (f1, f2). A list of lists will create a wavelet bank. autocorrelate (bool): Whether to autocorrelate the sweep(s) to create a wavelet. Default is `True`. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. taper (str or function): The window or tapering function to apply. To use one of NumPy's functions, pass 'bartlett', 'blackman' (the default), 'hamming', or 'hanning'; to apply no tapering, pass 'none'. To apply your own function, pass a function taking only the length of the window and returning the window function. sym (bool): If True (default behaviour before v0.5) then the wavelet is forced to have an odd number of samples and the central sample is at 0 time. **kwargs: Further arguments are passed to scipy.signal.chirp. They are `method` ('linear','quadratic','logarithmic'), `phi` (phase offset in degrees), and `vertex_zero`. Returns: ndarray: The waveform. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if not return_t: m = "return_t is deprecated. In future releases, return_t will always be True." warnings.warn(m, DeprecationWarning, stacklevel=2) if t is None: t = _get_time(duration, dt, sym=sym) else: if (duration is not None) or (dt is not None): m = "`duration` and `dt` are ignored when `t` is passed. " m += "Pass None to suppress this warning." warnings.warn(m, UserWarning, stacklevel=2) t0, t1 = -duration/2, duration/2 f = np.asanyarray(f).reshape(2, -1) f1, f2 = f c = [scipy.signal.chirp(t, f1_+(f2_-f1_)/2., t1, f2_, **kwargs) for f1_, f2_ in zip(f1, f2)] if autocorrelate: w = [np.correlate(c_, c_, mode='same') for c_ in c] w = np.squeeze(w) / np.amax(w) if taper: funcs = { 'bartlett': np.bartlett, 'blackman': np.blackman, 'hamming': np.hamming, 'hanning': np.hanning, 'none': lambda x: x, } func = funcs.get(taper, taper) w *= func(t.size) if return_t: Sweep = namedtuple('Sweep', ['amplitude', 'time']) return Sweep(w, t) else: return w sweep = klauder def _ormsby(t, f1, f2, f3, f4): """ Compute a single Ormsby wavelet. Private function. """ def numerator(f, t): """The numerator in the Ormsby equation.""" return (np.sinc(f * t)**2) * ((np.pi * f) ** 2) pf43 = (np.pi * f4) - (np.pi * f3) pf21 = (np.pi * f2) - (np.pi * f1) w = ((numerator(f4, t)/pf43) - (numerator(f3, t)/pf43) - (numerator(f2, t)/pf21) + (numerator(f1, t)/pf21)) return np.squeeze(w) / np.amax(w) def ormsby(duration, dt, f, t=None, return_t=True, sym=True): """ The Ormsby wavelet requires four frequencies which together define a trapezoid shape in the spectrum. The Ormsby wavelet has several sidelobes, unlike Ricker wavelets. .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.ormsby(0.256, 0.002, [5, 10, 40, 80]) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (usually 0.001, 0.002, or 0.004). f (array-like): Sequence of form (f1, f2, f3, f4), or list of lists of frequencies, which will return a 2D wavelet bank. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. sym (bool): If True (default behaviour before v0.5) then the wavelet is forced to have an odd number of samples and the central sample is at 0 time. Returns: ndarray: A vector containing the Ormsby wavelet, or a bank of them. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if not return_t: m = "return_t is deprecated. In future releases, return_t will always be True." warnings.warn(m, DeprecationWarning, stacklevel=2) try: f = np.atleast_2d(f).reshape(-1, 4) except ValueError as e: raise ValueError("The last dimension of the frequency array must be of size 4.") if t is None: t = _get_time(duration, dt, sym=sym) else: if (duration is not None) or (dt is not None): m = "`duration` and `dt` are ignored when `t` is passed." warnings.warn(m, UserWarning, stacklevel=2) w = np.squeeze([_ormsby(t, *fs) for fs in f]) if return_t: OrmsbyWavelet = namedtuple('OrmsbyWavelet', ['amplitude', 'time']) return OrmsbyWavelet(w, t) else: return w def _ormsby_fft(duration, dt, f, P, sym): fs = 1 / dt fN = fs // 2 n = int(duration / dt) a = map(lambda p: 10**(p/20), P) # Linear interpolation of points. x = np.linspace(0, int(fN), int(10*n)) xp = [ 0.] + list(f) + [fN] fp = [0., 0.] + list(a) + [0., 0.] W = np.interp(x, xp, fp) # Compute inverse FFT. w_ = np.fft.fftshift(np.fft.irfft(W)) L = int(w_.size // 2) normalize = lambda d: d / np.max(abs(d)) return normalize(w_[L-n//2:L+n//2+sym]) def ormsby_fft(duration, dt, f, P=(0, 0), return_t=True, sym=True): """ Non-white Ormsby, with arbitary amplitudes. Can use as many points as you like. The power of f1 and f4 is assumed to be 0, so you only need to provide p2 and p3 (the corners). (You can actually provide as many f points as you like, as long as there are n - 2 matching p points.) .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.ormsby(0.256, 0.002, [5, 10, 40, 80]) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (usually 0.001, 0.002, or 0.004). f (array-like): Sequence of form (f1, f2, f3, f4), or list of lists of frequencies, which will return a 2D wavelet bank. P (tuple): The power of the f2 and f3 frequencies, in relative dB. (The magnitudes of f1 and f4 are assumed to be -∞ dB, i.e. a magnitude of 0.) The default power values of (0, 0) results in a trapezoidal spectrum and a conventional Ormsby wavelet. Pass, e.g. (0, -15) for a 'pink' wavelet, with more energy in the lower frequencies. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. sym (bool): If True (default behaviour before v0.5) then the wavelet is forced to have an odd number of samples and the central sample is at 0 time. Returns: ndarray: A vector containing the Ormsby wavelet, or a bank of them. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if not return_t: m = "return_t is deprecated. In future releases, return_t will always be True." warnings.warn(m, DeprecationWarning, stacklevel=2) try: f = np.atleast_2d(f).reshape(-1, 4) except ValueError as e: raise ValueError("The last dimension of the frequency array must be of size 4.") w = np.squeeze([_ormsby_fft(duration, dt, fs, P, sym) for fs in f]) t = _get_time(duration, dt, sym=sym) if return_t: OrmsbyWavelet = namedtuple('OrmsbyWavelet', ['amplitude', 'time']) return OrmsbyWavelet(w, t) else: return w def berlage(duration, dt, f, n=2, alpha=180, phi=-np.pi/2, t=None, return_t=True, sym=True): r""" Generates a Berlage wavelet with a peak frequency f. Implements .. math:: w(t) = AH(t) t^n \mathrm{e}^{- \alpha t} \cos(2 \pi f_0 t + \phi_0) as described in Aldridge, DF (1990), The Berlage wavelet, GEOPHYSICS 55 (11), p 1508-1511. Berlage wavelets are causal, minimum phase and useful for modeling marine airgun sources. If you pass a 1D array of frequencies, you get a wavelet bank in return. .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.berlage(0.256, 0.002, 40) plt.plot(t, w) Args: duration (float): The length in seconds of the wavelet. dt (float): The sample interval in seconds (often one of 0.001, 0.002, or 0.004). f (array-like): Centre frequency of the wavelet in Hz. If a sequence is passed, you will get a 2D array in return, one row per frequency. n (float): The time exponent; non-negative and real. alpha(float): The exponential decay factor; non-negative and real. phi (float): The phase. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): If True, then the function returns a tuple of wavelet, time-basis. sym (bool): If True (default behaviour before v0.5) then the wavelet is forced to have an odd number of samples and the central sample is at 0 time. Returns: ndarray. Berlage wavelet(s) with centre frequency f sampled on t. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if not return_t: m = "return_t is deprecated. In future releases, return_t will always be True." warnings.warn(m, DeprecationWarning, stacklevel=2) f = np.asanyarray(f).reshape(-1, 1) if t is None: t = _get_time(duration, dt, sym=sym) else: if (duration is not None) or (dt is not None): m = "`duration` and `dt` are ignored when `t` is passed." warnings.warn(m, UserWarning, stacklevel=2) H = np.heaviside(t, 0) w = H * t**n * np.exp(-alpha * t) * np.cos(2 * np.pi * f * t + phi) w = np.squeeze(w) / np.max(np.abs(w)) if return_t: BerlageWavelet = namedtuple('BerlageWavelet', ['amplitude', 'time']) return BerlageWavelet(w, t) else: return w def generalized(duration, dt, f, u=2, t=None, return_t=True, imag=False, sym=True): """ Wang's generalized wavelet, of which the Ricker is a special case where u = 2. The parameter u is the order of the time-domain derivative, which can be a fractional derivative. As given by Wang (2015), Generalized seismic wavelets. GJI 203, p 1172-78. DOI: https://doi.org/10.1093/gji/ggv346. I am using the (more accurate) frequency domain method (eq 4 in that paper). .. plot:: import matplotlib.pyplot as plt import bruges w, t = bruges.filters.generalized(0.256, 0.002, 40, u=1.0) plt.plot(t, w) Args: duration (float): The length of the wavelet, in s. dt (float): The time sample interval in s. f (float or array-like): The frequency or frequencies, in Hertz. u (float or array-like): The fractional derivative parameter u. t (array-like): The time series to evaluate at, if you don't want one to be computed. If you pass `t` then `duration` and `dt` will be ignored, so we recommend passing `None` for those arguments. return_t (bool): Whether to return the time basis array. center (bool): Whether to center the wavelet on time 0. imag (bool): Whether to return the imaginary component as well. sym (bool): If True (default behaviour before v0.5) then the wavelet is forced to have an odd number of samples and the central sample is at 0 time. Returns: ndarray. If f and u are floats, the resulting wavelet has duration/dt = A samples. If you give f as an array of length M and u as an array of length N, then the resulting wavelet bank will have shape (M, N, A). If f or u are floats, their size will be 1, and they will be squeezed out: the bank is always squeezed to its minimum number of dimensions. If you passed `return_t=True` then a tuple of (wavelet, t) is returned. """ if not return_t: m = "return_t is deprecated. In future releases, return_t will always be True." warnings.warn(m, DeprecationWarning, stacklevel=2) # Make sure we can do banks. f = np.asanyarray(f).reshape(-1, 1) u = np.asanyarray(u).reshape(-1, 1, 1) # Compute time domain response. if t is None: t = _get_time(duration, dt, sym=sym) else: if (duration is not None) or (dt is not None): m = "`duration` and `dt` are ignored when `t` is passed." warnings.warn(m, UserWarning, stacklevel=2) dt = t[1] - t[0] duration = len(t) * dt # Basics. om0 = f * 2 * np.pi u2 = u / 2 df = 1 / duration nyquist = (1 / dt) / 2 nf = 1 + nyquist / df t0 = duration / 2 om = 2 * np.pi * np.arange(0, nyquist, df) # Compute the spectrum from Wang's eq 4. exp1 = np.exp((-om**2 / om0**2) + u2) exp2 = np.exp(-1j*om*t0 + 1j*np.pi * (1 + u2)) W = (u2**(-u2)) * (om**u / om0**u) * exp1 * exp2 w = np.fft.ifft(W, t.size) if not imag: w = w.real # At this point the wavelet bank has the shape (u, f, a), # where u is the size of u, f is the size of f, and a is # the number of amplitude samples we generated. w_max = np.max(np.abs(w), axis=-1)[:, :, None] w = np.squeeze(w / w_max) if return_t: GeneralizedWavelet = namedtuple('GeneralizedWavelet', ['amplitude', 'time']) return GeneralizedWavelet(w, t) else: return w
agile-geoscience/bruges
bruges/filters/wavelets.py
Python
apache-2.0
26,725
[ "Gaussian" ]
86c684bd23d4d0ca0e6d4c7a48d93575dbe8818d694bbdd05899a31ba32718be
#!/usr/bin/env python __author__ = 'waroquiers' import unittest from pymatgen.util.testing import PymatgenTest from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import DistanceCutoffFloat from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import AngleCutoffFloat from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import CSMFloat from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import AdditionalConditionInt from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import SimplestChemenvStrategy class StrategyOptionsTest(PymatgenTest): def test_options(self): # DistanceCutoffFloat with self.assertRaises(ValueError) as cm: DistanceCutoffFloat(0.5) self.assertEqual(str(cm.exception), 'Distance cutoff should be between 1.0 and +infinity') dc1 = DistanceCutoffFloat(1.2) dc1_dict = dc1.as_dict() dc2 = DistanceCutoffFloat.from_dict(dc1_dict) self.assertEqual(dc1, dc2) # AngleCutoffFloat with self.assertRaises(ValueError) as cm: AngleCutoffFloat(1.2) self.assertEqual(str(cm.exception), 'Angle cutoff should be between 0.0 and 1.0') ac1 = AngleCutoffFloat(0.3) ac1_dict = ac1.as_dict() ac2 = AngleCutoffFloat.from_dict(ac1_dict) self.assertEqual(ac1, ac2) # CSMFloat with self.assertRaises(ValueError) as cm: CSMFloat(100.1) self.assertEqual(str(cm.exception), 'Continuous symmetry measure limits should be between 0.0 and 100.0') csm1 = CSMFloat(0.458) csm1_dict = csm1.as_dict() csm2 = CSMFloat.from_dict(csm1_dict) self.assertEqual(csm1, csm2) # AdditionalConditions with self.assertRaises(ValueError) as cm: AdditionalConditionInt(5) self.assertEqual(str(cm.exception), 'Additional condition 5 is not allowed') with self.assertRaises(ValueError) as cm: AdditionalConditionInt(0.458) self.assertEqual(str(cm.exception), 'Additional condition 0.458 is not an integer') acd1 = AdditionalConditionInt(3) acd1_dict = acd1.as_dict() acd2 = AdditionalConditionInt.from_dict(acd1_dict) self.assertEqual(acd1, acd2) def test_strategies(self): simplest_strategy = SimplestChemenvStrategy() self.assertTrue(simplest_strategy.uniquely_determines_coordination_environments) self.assertAlmostEqual(simplest_strategy.continuous_symmetry_measure_cutoff, 10.0) self.assertAlmostEqual(simplest_strategy.distance_cutoff, 1.4) self.assertAlmostEqual(simplest_strategy.angle_cutoff, 0.3) simplest_strategy = SimplestChemenvStrategy(distance_cutoff=1.3, angle_cutoff=0.45, continuous_symmetry_measure_cutoff=8.26) self.assertAlmostEqual(simplest_strategy.continuous_symmetry_measure_cutoff, 8.26) self.assertAlmostEqual(simplest_strategy.distance_cutoff, 1.3) self.assertAlmostEqual(simplest_strategy.angle_cutoff, 0.45) simplest_strategy.set_option('distance_cutoff', 1.5) self.assertAlmostEqual(simplest_strategy.distance_cutoff, 1.5) with self.assertRaises(ValueError) as cm: simplest_strategy.set_option('distance_cutoff', 0.5) self.assertEqual(str(cm.exception), 'Distance cutoff should be between 1.0 and +infinity') simplest_strategy.set_option('angle_cutoff', 0.2) self.assertAlmostEqual(simplest_strategy.angle_cutoff, 0.2) with self.assertRaises(ValueError) as cm: simplest_strategy.set_option('angle_cutoff', 1.5) self.assertEqual(str(cm.exception), 'Angle cutoff should be between 0.0 and 1.0') simplest_strategy.setup_options({'distance_cutoff': 1.4, 'additional_condition': 3, 'continuous_symmetry_measure_cutoff': 8.5}) self.assertAlmostEqual(simplest_strategy.distance_cutoff, 1.4) self.assertAlmostEqual(simplest_strategy.continuous_symmetry_measure_cutoff, 8.5) self.assertEqual(simplest_strategy.additional_condition, 3) with self.assertRaises(ValueError) as cm: simplest_strategy.setup_options({'continuous_symmetry_measure_cutoff': -0.1}) self.assertEqual(str(cm.exception), 'Continuous symmetry measure limits should be between 0.0 and 100.0') with self.assertRaises(ValueError) as cm: simplest_strategy.setup_options({'continuous_symmetry_measure_cutoff': 100.1}) self.assertEqual(str(cm.exception), 'Continuous symmetry measure limits should be between 0.0 and 100.0') if __name__ == "__main__": unittest.main()
Bismarrck/pymatgen
pymatgen/analysis/chemenv/coordination_environments/tests/test_chemenv_strategies.py
Python
mit
4,858
[ "pymatgen" ]
0dcc599097c3873eafcb1143aaf6c9c4819346d2942991d1d66669f7682c7c8e
# Copyright 2014 NeuroData (http://neurodata.io) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import urllib2 import h5py import tempfile import random import numpy as np from PIL import Image from StringIO import StringIO import makeunitdb from ndlib.ndtype import IMAGE, UINT8, UINT16 from params import Params from postmethods import postNPZ, getNPZ, getHDF5, postHDF5, getURL, postBlosc, getBlosc from postmethods import putAnnotation, getAnnotation, getURL, postURL from ramonmethods import H5AnnotationFile, getH5id, makeAnno, getId, getField, setField from test_settings import * # Test Image # Test_Image_Slice # 1 - test_xy # 2 - test_yz # 3 - test_xz # 4 - test_xy_incorrect # Test_Image_Post # 1 - test_npz # 2 - test_npz_incorrect_region # 3 - test_npz_incorrect_datatype # 4 - test_hdf5 # 5 - test_hdf5_incorrect_region # 6 - test_hdf5_incorrect_datatype # 7 - test_npz_incorrect_channel # 8 - test_hdf5_incorrect_channel p = Params() p.token = 'unittest' p.resolution = 0 p.channels = ['unit_anno'] @pytest.mark.skipif(KV_ENGINE == REDIS, reason='Annotation not supported in Redis') class Test_Neuron: def setup_class(self): """Create the unittest database""" makeunitdb.createTestDB(p.token, readonly=0) def teardown_class (self): """Destroy the unittest database""" makeunitdb.deleteTestDB(p.token) def test_neuron (self): """Make a multiple segments that overlap and then query them as a neuron""" # create neuron makeAnno(p,5) neuronid = p.annoid # create annotations for i in range(0,3): # create annotations makeAnno(p,4) f = setField(p,'neuron',neuronid) # add data p.args = (3000,3100,4000,4100,100+2*i,100+2*i+3) image_data = np.ones( [1,3,100,100], dtype=np.uint32 ) * p.annoid response = postNPZ(p, image_data) # get the neuron annotation p.annoid = neuronid p.field = 'tight_cutout' h5ret = getAnnotation(p) idgrp = h5ret.get(str(p.annoid)) # count the voxels to make sure they remapped correctly assert ( np.unique(np.array(idgrp['CUTOUT'][:,:,:])) == [0,neuronid] ).all() assert ( len(np.nonzero(np.array(idgrp['CUTOUT'][:,:,:]))[0]) == 70000 )
neurodata/ndstore
test/test_neuron.py
Python
apache-2.0
2,722
[ "NEURON" ]
2d7832d68eb7f87fe2f7dff2db7aa025b048d0d17c46e6c3fa9cb2689cc11ab0
# -*- coding: utf-8 -*- import os import tempfile import types import json from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.constants from appvalidator.errorbundle import ErrorBundle from appvalidator.specs.webapps import WebappSpec import appvalidator.webapp class TestWebappAccessories(TestCase): """ Test that helper functions for webapp manifests work as they are intended to. """ def test_path(self): """Test that paths are tested properly for allowances.""" s = WebappSpec("{}", ErrorBundle()) eq_(s._path_valid("*"), False) eq_(s._path_valid("*", can_be_asterisk=True), True) eq_(s._path_valid("/foo/bar"), False) eq_(s._path_valid("/foo/bar", can_be_absolute=True), True) eq_(s._path_valid("//foo/bar"), False) eq_(s._path_valid("//foo/bar", can_be_absolute=True), False) eq_(s._path_valid("//foo/bar", can_be_relative=True), False) eq_(s._path_valid("http://asdf/"), False) eq_(s._path_valid("https://asdf/"), False) eq_(s._path_valid("ftp://asdf/"), False) eq_(s._path_valid("http://asdf/", can_have_protocol=True), True) eq_(s._path_valid("https://asdf/", can_have_protocol=True), True) # No FTP for you! eq_(s._path_valid("ftp://asdf/", can_have_protocol=True), False) eq_(s._path_valid("data:asdf"), False) eq_(s._path_valid("data:asdf", can_be_data=True), True) class WebappBaseTestCase(TestCase): def setUp(self): super(WebappBaseTestCase, self).setUp() self.listed = False descr = "Exciting Open Web development action!" descr += (1024 - len(descr)) * "_" self.data = { "version": "1.0", "name": "MozBall", "description": descr, "icons": { "32": "/img/icon-32.png", "128": "/img/icon-128.png", }, "developer": { "name": "Mozilla Labs", "url": "http://mozillalabs.com" }, "installs_allowed_from": [ "https://appstore.mozillalabs.com", "HTTP://mozilla.com/AppStore" ], "launch_path": "/index.html", "locales": { "es": { "name": "Foo Bar", "description": "¡Acción abierta emocionante del desarrollo", "developer": { "url": "http://es.mozillalabs.com/" } }, "it": { "description": "Azione aperta emozionante di sviluppo di!", "developer": { "url": "http://it.mozillalabs.com/" } } }, "default_locale": "en", "screen_size": { "min_width": "600", "min_height": "300" }, "required_features": [ "touch", "geolocation", "webgl" ], "orientation": "landscape", "fullscreen": "true", "type": "web", "precompile": [ "game.js", "database.js" ], } self.resources = [("app_type", "web")] def make_privileged(self): self.resources = [("app_type", "privileged"), ("packaged", True)] self.data["type"] = "privileged" def analyze(self): """Run the webapp tests on the file.""" self.detected_type = appvalidator.constants.PACKAGE_WEBAPP self.setup_err() for resource, value in self.resources: self.err.save_resource(resource, value) with tempfile.NamedTemporaryFile(delete=False) as t: if isinstance(self.data, types.StringTypes): t.write(self.data) else: t.write(json.dumps(self.data)) name = t.name appvalidator.webapp.detect_webapp(self.err, name) os.unlink(name) class TestWebapps(WebappBaseTestCase): def test_pass(self): """Test that a bland webapp file throws no errors.""" self.analyze() self.assert_silent() output = json.loads(self.err.render_json()) assert "manifest" in output and output["manifest"] def test_bom(self): """Test that a plain webapp with a BOM won't throw errors.""" self.setup_err() appvalidator.webapp.detect_webapp( self.err, "tests/resources/unicodehelper/utf8_webapp.json") self.assert_silent() def test_fail_parse(self): """Test that invalid JSON is reported.""" self.data = "}{" self.analyze() self.assert_failed(with_errors=True) def test_missing_required(self): """Test that missing the name element is a bad thing.""" del self.data["name"] self.analyze() self.assert_failed(with_errors=True) def test_invalid_name(self): """Test that the name element is a string.""" self.data["name"] = ["foo", "bar"] self.analyze() self.assert_failed(with_errors=True) def test_long_name(self): """Test that long names are flagged for truncation in Gaia.""" self.data["name"] = "This is a long name." self.analyze() self.assert_failed(with_warnings=True) def test_long_name_with_locale(self): """Test that long localized names are flagged for truncation in Gaia.""" self.data["locales"]["es"]["name"] = "This is a long name." self.analyze() self.assert_failed(with_warnings=True) def test_role(self): """Test that app may contain role element.""" self.data["role"] = "input" self.analyze() self.assert_silent() def test_langpack_role_need_languages_target(self): """Test that a language-target is needed for langpacks.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "missing_req_cond", )) def test_langpack_invalid_languages_target_type(self): """Test language-target type.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, "languages-target": ["2.2"], # Wrong type. }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "bad_type", )) def test_langpack_invalid_languages_target_wrong_version_type(self): """Test that language-target version number has the correct type.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": 2.2 # Wrong type. }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "bad_type", )) def test_langpack_invalid_languages_target_wrong_version_value(self): """Test that language-target version number has the correct value.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.3" # Wrong value. }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "bad_value", )) def test_langpack_invalid_languages_target(self): """Test that language-target manifest has the correct value.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://my.manifest.webapp": "2.2" # Manifest is incorrect. }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "not_allowed", )) def test_langpack_role_need_languages_provided(self): """Test that a language-provided is needed for langpacks.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "missing_req_cond", )) def test_langpack_invalid_languages_provided_should_not_be_empty(self): """Test that language-provided is not empty.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": {} }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "empty", )) def test_langpack_invalid_languages_provided_language_should_be_dict(self): """Test that language-provided children are dicts.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": { "de": [] }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "bad_type", )) def test_langpack_invalid_languages_provided_need_revision(self): """Test that language-provided revision is present.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": { "de": { "name": "Deutsch", "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "missing_req", )) def test_langpack_invalid_languages_provided_need_apps(self): """Test that language-provided apps is present.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "missing_req", )) def test_langpack_invalid_languages_provided_apps(self): """Test that language-provided apps should be a dict.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": ["app://blah.gaiamobile.org/manifest.webapp"] } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "bad_type", )) def test_langpack_invalid_languages_provided_apps_empty(self): """Test that language-provided apps should be non-empty dict.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "empty", )) def test_langpack_invalid_languages_provided_revision(self): """Test that language-provided revision should be an int.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": { "de": { "name": "Deutsch", "revision": "201411051234", # Wrong type, should be a int. "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "iterate", "bad_type", )) def test_valid_langpack(self): """Test that a valid langpack passes validation.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_silent() def test_valid_langpack_30(self): """Test that a valid langpack for FxOS 3.0 passes validation.""" self.resources.append(('packaged', True)) self.data.update({ "role": "langpack", "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "3.0" }, "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_silent() def test_languages_target_invalid_for_webapps(self): """Test that language-target is invalid for non-langpack webapps.""" self.data.update({ "languages-target": { "app://*.gaiamobile.org/manifest.webapp": "2.2" }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid( ("spec", "webapp", "languages_target_langpacks", )) def test_languages_provided_invalid_for_webapps(self): """Test that language-provided is invalid for non-langpack webapps.""" self.data.update({ "languages-provided": { "de": { "name": "Deutsch", "revision": 201411051234, "apps": { "app://blah.gaiamobile.org/manifest.webapp": "/de/blah", "app://email.gaiamobile.org/manifest.webapp": "/de/email" } } }, }) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid( ("spec", "webapp", "languages_provided_langpacks", )) def test_invalid_role(self): """Test that app may not contain invalid role element.""" self.data["role"] = "hello" self.analyze() self.assert_failed(with_errors=True) def test_empty_name(self): """Test that empty names are not allowed""" self.data["name"] = None self.analyze() self.assert_failed(with_errors=True) def test_maxlengths(self): """Test that certain elements are capped in length.""" self.data["name"] = "%" * 129 self.analyze() self.assert_failed(with_errors=True) def test_invalid_keys(self): """Test that unknown elements are flagged""" self.data["foobar"] = "hello" self.analyze() self.assert_failed(with_warnings=True) def test_warn_extra_keys(self): """Test that extra keys are flagged.""" self.data["locales"]["es"]["foo"] = "hello" self.analyze() self.assert_failed(with_warnings=True) def test_icons_not_dict(self): """Test that the icons property is a dictionary.""" self.data["icons"] = ["data:foo/bar.png"] self.analyze() self.assert_failed(with_errors=True) def test_icons_empty(self): """Test that no icons doesn't cause a traceback.""" self.data["icons"] = {} self.analyze() def test_icons_size(self): """Test that webapp icon sizes must be integers.""" self.data["icons"]["foo"] = "/foo.png" self.analyze() self.assert_failed(with_errors=True) def test_icons_data_url(self): """Test that webapp icons can be data URLs.""" self.data["icons"]["128"] = "data:foo/bar.png" self.analyze() self.assert_silent() def test_icons_relative_url(self): """Test that webapp icons cannot be relative URLs.""" self.data["icons"]["128"] = "foo/bar" self.analyze() self.assert_silent() def test_icons_absolute_url(self): """Test that webapp icons can be absolute URLs.""" def test_icon(self, icon): self.setUp() self.data["icons"]["128"] = icon self.analyze() self.assert_silent() for icon in ['/foo/bar', 'http://foo.com/bar', 'https://foo.com/bar']: yield test_icon, self, icon def test_icons_has_min_selfhosted(self): del self.data["icons"]["128"] self.analyze() self.assert_silent() def test_icons_has_min_listed(self): self.listed = True self.data["installs_allowed_from"] = \ appvalidator.constants.DEFAULT_WEBAPP_MRKT_URLS del self.data["icons"]["128"] self.analyze() self.assert_failed(with_errors=True) def test_no_locales(self): """Test that locales are not required.""" del self.data["locales"] self.analyze() self.assert_silent() def test_no_default_locale_no_locales(self): """Test that locales are not required if no default_locale.""" del self.data["default_locale"] del self.data["locales"] self.analyze() self.assert_silent() def test_no_default_locale(self): """Test that locales require default_locale.""" del self.data["default_locale"] self.analyze() self.assert_failed(with_errors=True) def test_invalid_locale_keys(self): """Test that locales only contain valid keys.""" # Banned locale element. self.data["locales"]["es"]["default_locale"] = "foo" self.analyze() self.assert_failed(with_warnings=True) def test_invalid_locale_keys_missing(self): """Test that locales aren't missing any required elements.""" del self.data["locales"]["es"]["name"] self.analyze() self.assert_silent() def test_installs_allowed_from_not_list(self): """Test that the installs_allowed_from path is a list.""" self.data["installs_allowed_from"] = "foobar" self.analyze() self.assert_failed(with_errors=True) def test_bad_installs_allowed_from_path(self): """Test that the installs_allowed_from path is valid.""" self.data["installs_allowed_from"].append("foo/bar") self.analyze() self.assert_failed(with_errors=True) def test_no_amo_installs_allowed_from(self): """Test that installs_allowed_from should include Marketplace.""" # self.data does not include a marketplace URL by default. self.listed = True self.analyze() self.assert_failed(with_errors=True) def test_amo_iaf(self): """Test that the various Marketplace URLs work.""" # Test that the Marketplace production URL is acceptable. self.setUp() orig_iaf = self.data["installs_allowed_from"] def test_iaf(self, iaf, url): self.setUp() self.data["installs_allowed_from"] = iaf + [url] self.analyze() self.assert_silent() for url in appvalidator.constants.DEFAULT_WEBAPP_MRKT_URLS: yield test_iaf, self, orig_iaf, url def test_iaf_wildcard(self): """Test that installs_allowed_from can contain a wildcard.""" self.listed = True self.data["installs_allowed_from"].append("*") self.analyze() self.assert_silent() def test_installs_allowed_from_protocol(self): """ Test that if the developer includes a URL in the `installs_allowed_from` parameter that is a valid Marketplace URL but uses HTTP instead of HTTPS, we flag it as using the wrong protocol and not as an invalid URL. """ self.listed = True bad_url = appvalidator.constants.DEFAULT_WEBAPP_MRKT_URLS[0].replace( "https", "http") self.data["installs_allowed_from"] = (bad_url, ) self.analyze() self.assert_failed(with_errors=True) self.assert_got_errid(("spec", "webapp", "iaf_bad_mrkt_protocol", )) def test_launch_path_packaged(self): """Test that the launch path is present in a packaged app.""" del self.data["launch_path"] self.resources.append(('packaged', True)) self.analyze() self.assert_failed(with_errors=True) def test_launch_path_not_string(self): """Test that the launch path is a string.""" self.data["launch_path"] = [123] self.analyze() self.assert_failed(with_errors=True) def test_bad_launch_path(self): """Test that the launch path is valid.""" self.data["launch_path"] = "data:asdf" self.analyze() self.assert_failed(with_errors=True) def test_bad_launch_path_protocol(self): """Test that the launch path cannot have a protocol.""" self.data["launch_path"] = "http://foo.com/bar" self.analyze() self.assert_failed(with_errors=True) def test_bad_launch_path_absolute(self): """Test that the launch path is absolute.""" self.data["launch_path"] = "/foo/bar" self.analyze() self.assert_silent() def test_widget_deprecated(self): """Test that the widget property is deprecated.""" self.data["widget"] = { "path": "/butts.html", "width": 100, "height": 200 } self.analyze() self.assert_failed(with_errors=True) def test_dev_missing(self): """Test that the developer property cannot be absent.""" del self.data["developer"] self.analyze() self.assert_failed(with_errors=True) def test_dev_not_dict(self): """Test that the developer property must be a dict.""" self.data["developer"] = "foo" self.analyze() self.assert_failed(with_errors=True) def test_bad_dev_keys(self): """Test that the developer keys are present.""" del self.data["developer"]["name"] self.analyze() self.assert_failed(with_errors=True) def test_bad_dev_url(self): """Test that the developer keys are correct.""" self.data["developer"]["url"] = "foo" self.analyze() self.assert_failed(with_errors=True) def test_screen_size_missing(self): """Test that the 'screen_size' property can be absent.""" del self.data["screen_size"] self.analyze() self.assert_silent() def test_screen_size_is_dict(self): """Test that the 'screen_size' property must be a dict.""" self.data["screen_size"] = "foo" self.analyze() self.assert_failed(with_errors=True) def test_screen_size_contains_pair(self): """Test that 'screen_size' must contain at least one key/value pair.""" self.data["screen_size"] = {} self.analyze() self.assert_failed(with_errors=True) def test_bad_screen_size_key(self): """Test that the 'screen_size' keys are correct.""" self.data["screen_size"]["max_width"] = "500" self.analyze() self.assert_failed(with_warnings=True) def test_bad_screen_size_value(self): """Test that the 'screen_size' keys are correct.""" self.data["screen_size"]["min_width"] = "500px" self.analyze() self.assert_failed(with_errors=True) def test_required_screen_size_missing(self): """Test that the 'screen_size' property can be absent.""" del self.data["screen_size"] self.analyze() self.assert_silent() def test_required_features_is_list(self): """Test that the 'required_features' property must be a list.""" self.data["required_features"] = "fart" self.analyze() self.assert_failed(with_errors=True) def test_required_features_missing(self): """Test that 'required_features' can be absent.""" del self.data["required_features"] self.analyze() self.assert_silent() def test_required_features_empty(self): """Test that 'required_features' can be an empty list.""" self.data["required_features"] = [] self.analyze() self.assert_silent() def test_orientation_missing(self): """Test that the 'orientation' property can be absent.""" del self.data["orientation"] self.analyze() self.assert_silent() def test_orientation_list(self): """Test that the 'orientation' property can be absent.""" self.data["orientation"] = ["portrait", "portrait-secondary"] self.analyze() self.assert_silent() def test_orientation_is_string(self): """Test that the 'orientation' property must be a string.""" self.data["orientation"] = {} self.analyze() self.assert_failed(with_errors=True) def test_orientation_cannot_be_empty(self): """Test that 'orientation' cannot be an empty string.""" self.data["orientation"] = "" self.analyze() self.assert_failed(with_errors=True) def test_orientation_valid_value(self): """Test that 'orientation' must have a valid value.""" def test_orientation(self, orientation): self.setUp() self.data["orientation"] = orientation self.analyze() self.assert_silent() for key in ("portrait", "landscape", "portrait-secondary", "landscape-secondary", "portrait-primary", "landscape-primary"): yield test_orientation, self, key def test_orientation_bad_value(self): """Test that 'orientation' cannot have an invalid value.""" self.data["orientation"] = "fart" self.analyze() self.assert_failed(with_errors=True) def test_orientation_empty_list(self): """Test that 'orientation' cannot be an empty list.""" self.data["orientation"] = [] self.analyze() self.assert_failed(with_errors=True) def test_orientation_list_invalid(self): """Test that 'orientation' cannot be a list with invalid values.""" self.data["orientation"] = ["fart"] self.analyze() self.assert_failed(with_errors=True) def test_orientation_list_mixed(self): """Test that 'orientation' cannot be a list with mixed values.""" self.data["orientation"] = ["portrait", "fart", "landscape"] self.analyze() self.assert_failed(with_errors=True) def test_orientation_list_type(self): """Test that 'orientation' cannot be a list with non-strings.""" self.data["orientation"] = ["portrait", 4] self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_valid(self): """Test with 'inputs' entries throw no errors.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'description': 'Symbols Virtual Keyboard', 'launch_path': '/input1.html', 'types': ['text'] }, 'siri': { 'name': 'Voice Control', 'description': 'Voice Control Input', 'launch_path': '/vc.html', 'types': ['text', 'url'] } } self.analyze() self.assert_silent() def test_inputs_dict_empty(self): """Test that 'inputs' may not be empty dict.""" self.data['inputs'] = {} self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_entry_missing_name(self): """Test that 'inputs' with an entry missing 'name'.""" self.data['inputs'] = { 'input1': { 'description': 'Symbols Virtual Keyboard', 'launch_path': '/input1.html', 'types': ['text'] } } self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_entry_missing_description(self): """Test that 'inputs' with an entry missing 'description'.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'launch_path': '/input1.html', 'types': ['text'] } } self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_entry_missing_launch_path(self): """Test that 'inputs' with an entry missing 'launch_path'.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'description': 'Symbols Virtual Keyboard', 'types': ['text'] } } self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_entry_missing_types(self): """Test that 'inputs' with an entry missing 'types'.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'description': 'Symbols Virtual Keyboard', 'launch_path': '/input1.html' } } self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_entry_empty_types(self): """Test that 'inputs' with an entry with empty 'types'.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'description': 'Symbols Virtual Keyboard', 'launch_path': '/input1.html', 'types': [] } } self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_entry_invalid_types(self): """Test that 'inputs' with an entry with invalid 'types'.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'description': 'Symbols Virtual Keyboard', 'launch_path': '/input1.html', 'types': ['foo'] } } self.analyze() self.assert_failed(with_errors=True) def test_inputs_dict_entry_locales(self): """Test that 'inputs' with an localized entry.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'description': 'Symbols Virtual Keyboard', 'launch_path': '/input1.html', 'types': ['text'], 'locales': { 'es': { 'name': 'foo', 'description': 'bar' } } } } self.analyze() self.assert_silent() def test_inputs_dict_entry_invalid_locales(self): """Test that 'inputs' with an localized entry but contain invalid element.""" self.data['inputs'] = { 'input1': { 'name': 'Symbols', 'description': 'Symbols Virtual Keyboard', 'launch_path': '/input1.html', 'types': ['text'], 'locales': { 'es': { 'name': 'foo', 'description': 'bar', 'foo': 'bar2' } } } } self.analyze() self.assert_failed(with_warnings=True) def test_fullscreen_missing(self): """Test that the 'fullscreen' property can be absent.""" del self.data["fullscreen"] self.analyze() self.assert_silent() def test_fullscreen_is_string(self): """Test that the 'fullscreen' property must be a string.""" self.data["fullscreen"] = {} self.analyze() self.assert_failed(with_errors=True) def test_fullscreen_cannot_be_empty(self): """Test that 'fullscreen' cannot be an empty string.""" self.data["fullscreen"] = "" self.analyze() self.assert_failed(with_errors=True) def test_fullscreen_valid_value(self): """Test that 'fullscreen' must have a valid value.""" def test_fullscreen(self, value): self.setUp() self.data["fullscreen"] = key self.analyze() self.assert_silent() for key in ("true", "false", ): yield test_fullscreen, self, key def test_fullscreen_bad_value(self): """Test that 'fullscreen' cannot have an invalid value.""" self.data["fullscreen"] = "fart" self.analyze() self.assert_failed(with_errors=True) def test_type_failed(self): """Test that the `type` element must be a recognized value.""" self.data["type"] = "foo" self.analyze() self.assert_failed(with_errors=True) def test_type_valid(self): """Test that the `type` element doesn't fail with valid values.""" def wrap(self, value): self.setUp() self.resources.append(("packaged", value != "web")) self.data["type"] = value self.analyze() self.assert_silent() for key in ("web", "privileged", "certified", ): yield wrap, self, key def test_type_not_certified(self): """Test that certified apps cannot be listed in the marketplace.""" self.listed = True self.data["type"] = "certified" self.analyze() self.assert_failed(with_errors=True) def test_type_web_priv_fail(self): """Test that web apps cannot be privileged or certified.""" self.data["type"] = "web" self.resources.append(("packaged", False)) self.analyze() self.assert_silent() def test_type_packaged_priv_fail(self): """Test that web apps cannot be privileged or certified.""" self.data["type"] = "privileged" self.resources.append(("packaged", True)) self.analyze() self.assert_silent() ########### # Web activities are tested in tests/test_webapp_activity.py ########### def test_act_root_type(self): """Test that the most basic web activity passes.""" self.data["activities"] = "wrong type" self.analyze() self.assert_failed(with_errors=True) def test_version(self): """Test that the version matches the format that we require.""" def wrap(version, passes): self.setUp() self.data["version"] = version self.analyze() if passes: self.assert_silent() else: self.assert_failed(with_errors=True) yield wrap, "1.0", True yield wrap, "1.0.1", True yield wrap, "Poop", True yield wrap, "1.0b", True yield wrap, "*.*", True yield wrap, "1.5-alpha", True yield wrap, "1.5_windows", True yield wrap, "1.5_windows,x64", True yield wrap, "Mountain Lion", False yield wrap, "", False for char in "`~!@#$%^&()+=/|\\<>": yield wrap, char * 3, False def set_permissions(self): """Fill out the permissions node with every possible permission.""" self.data["permissions"] = {} for perm in appvalidator.constants.ALL_PERMISSIONS: self.data["permissions"][perm] = { "description": "Required to make things good." } if perm in WebappSpec.PERMISSIONS_ACCESS: self.data["permissions"][perm]["access"] = ( WebappSpec.PERMISSIONS_ACCESS[perm][0]) def test_permissions_full(self): self.set_permissions() self.analyze() self.assert_silent() for perm in appvalidator.constants.ALL_PERMISSIONS: self.assert_has_permission(perm) def test_permissions_extra_invalid(self): self.set_permissions() self.data["permissions"]["foo"] = {"description": "lol"} self.analyze() self.assert_failed(with_errors=True) assert 'foo' not in self.err.get_resource("permissions") for perm in appvalidator.constants.ALL_PERMISSIONS: self.assert_has_permission(perm) def test_permissions_missing_desc(self): self.set_permissions() self.data["permissions"]["alarm"] = {} self.analyze() self.assert_failed(with_errors=True) def test_permissions_missing_access(self): self.set_permissions() del self.data["permissions"]["contacts"]["access"] self.analyze() self.assert_failed(with_errors=True) def test_permissions_invalid_access(self): self.set_permissions() self.data["permissions"]["contacts"]["access"] = "asdf" self.analyze() self.assert_failed(with_errors=True) def test_permissions_wrong_access(self): self.set_permissions() # This access type isn't available for the `settings` permission. self.data["permissions"]["settings"]["access"] = "createonly" self.analyze() self.assert_failed(with_errors=True) def test_permissions_mobileid(self): self.set_permissions() self.data["permissions"]["mobileid"] = {"description": "cause"} self.analyze() self.assert_silent() def test_csp(self): self.data['csp'] = 'this is the csp policy. it can be a string.' self.analyze() self.assert_silent() def test_description_long(self): self.data['description'] = 'x' * 1025 self.analyze() self.assert_failed(with_errors=True) def test_locale_description_long(self): self.data['locales']['es']['description'] = u'×' * 1025 self.analyze() self.assert_failed(with_errors=True) assert 'locales > es > description' in ( self.err.errors[0]['description'][-1]) def test_appcache_path_packaged(self): self.data["appcache_path"] = '/foo.bar' self.analyze() self.assert_silent() self.resources.append(("packaged", True)) self.analyze() self.assert_failed(with_errors=True) def test_messages_not_list(self): self.data['messages'] = "foo" self.analyze() self.assert_failed(with_errors=True) def test_messages_obj_not_obj(self): self.data['messages'] = ["foo"] self.analyze() self.assert_failed(with_errors=True) def test_messages_multiple_keys(self): self.data['messages'] = [{"a": "1", "b": "2"}] self.analyze() self.assert_failed(with_errors=True) def test_messages_pass(self): self.data['messages'] = [{"key": "val"}, {"key": "val"}] self.analyze() self.assert_silent() def test_redirects_pass(self): self.data['redirects'] = [ {"to": "asdf", "from": "qwer"}, {"to": "asdf", "from": "qwer"}, ] self.analyze() self.assert_silent() def test_redirects_type(self): self.data['redirects'] = 'asdf' self.analyze() self.assert_failed(with_errors=True) def test_redirects_subtype(self): self.data['redirects'] = [ 'asdf', {"to": "asdf", "from": "qwer"}, ] self.analyze() self.assert_failed(with_errors=True) def test_redirects_required_nodes(self): self.data['redirects'] = [ {"bar": "asdf", "foo": "qwer"}, {"to": "asdf", "from": "qwer"}, ] self.analyze() self.assert_failed(with_errors=True) def test_redirects_missing_nodes(self): self.data['redirects'] = [ {"to": "asdf"}, {"to": "asdf", "from": "qwer"}, ] self.analyze() self.assert_failed(with_errors=True) def test_origin_unprivileged(self): self.data['origin'] = 'app://domain.com' self.analyze() self.assert_failed(with_errors=True) def test_origin_must_be_lowercase(self): self.make_privileged() self.data['origin'] = 'app://DOMAIN.com' self.analyze() self.assert_failed(with_errors=True) def test_arbitrary_origin(self): self.make_privileged() self.data['origin'] = 'app://just-some-identifier-string' self.analyze() self.assert_silent() def test_uuid_origin(self): self.make_privileged() self.data['origin'] = 'app://878a1076-130e-46fc-a73f-634394166d14' self.analyze() self.assert_silent() def test_origin_pass(self): self.make_privileged() self.data['origin'] = 'app://domain.com' self.analyze() self.assert_silent() def test_origin_dashes(self): self.make_privileged() self.data["origin"] = "app://my-domain.com" self.analyze() self.assert_silent() def test_origin_subdomains(self): self.make_privileged() self.data["origin"] = "app://sub.domain.com" self.analyze() self.assert_silent() def test_origin_non_fqdn(self): self.make_privileged() self.data["origin"] = "app://hello" self.analyze() self.assert_silent() def test_origin_type(self): self.make_privileged() self.data["origin"] = 123 self.analyze() self.assert_failed(with_errors=True) def test_origin_cannot_have_spaces(self): self.make_privileged() self.data["origin"] = "app://origin with spaces" self.analyze() self.assert_failed(with_errors=True) def test_origin_must_be_web_safe(self): self.make_privileged() self.data["origin"] = "app://control\tchars\ndisallowed" self.analyze() self.assert_failed(with_errors=True) def test_origin_must_have_app_protocol(self): self.make_privileged() self.data["origin"] = "random-identifier-without-protocol" self.analyze() self.assert_failed(with_errors=True) def test_origin_cannot_contain_path(self): self.make_privileged() self.data["origin"] = "app://domain.com/path" self.analyze() self.assert_failed(with_errors=True) def test_origin_cannot_end_in_trailing_slash(self): self.make_privileged() self.data["origin"] = "app://domain.com/" self.analyze() self.assert_failed(with_errors=True) def test_origin_allowed(self): for origin in ("app://marketplace.firefox.com", "app://gamescentre.mozilla.com", "app://mozilla.org", "app://system.gaiamobile.org"): self.make_privileged() self.data["origin"] = origin self.analyze() self.assert_silent() @patch("appvalidator.specs.webapps.BANNED_ORIGINS", [ "gamescentre.mozilla.com", "firefox.com", ]) def test_origin_banned(self): self.make_privileged() for origin in ("app://gamescentre.mozilla.com", "app://theconsoleisdead.firefox.com"): self.data["origin"] = origin self.analyze() self.assert_failed(with_errors=True) def test_chrome(self): self.data["chrome"] = {"navigation": True} self.analyze() self.assert_silent() def test_chrome_alt(self): self.data["chrome"] = {"navigation": False} self.analyze() self.assert_silent() def test_chrome_bad_navigation(self): self.data["chrome"] = {"navigation": 123} self.analyze() self.assert_failed(with_errors=True) def test_chrome_bad_keys(self): self.data["chrome"] = {"haldo": 123} self.analyze() self.assert_failed(with_errors=True) def test_chrome_bad_type(self): self.data["chrome"] = [] self.analyze() self.assert_failed(with_errors=True) def test_precompile_wrong_format(self): # "precompile" should be list of files not this weird dict. self.data["precompile"] = {"foo.js": True} self.analyze() self.assert_failed(with_errors=True) def test_precompile_feature(self): self.analyze() self.assert_silent() self.assert_has_feature('PRECOMPILE_ASMJS')
stasm/app-validator
tests/test_webapp.py
Python
bsd-3-clause
48,765
[ "exciting" ]
3652827949f41bc33a16855c4d3bc2f5fe3c7c4b394dfafbdf72e6b775143070
""" Functions to spot hemy regions """ import os.path as op import datetime from collections import defaultdict, Counter from tabulate import tabulate from scipy import stats import numpy as np import pybedtools import pysam import vcf from bcbio.distributed.transaction import file_transaction from bcbio.provenance import do from bcbio.utils import append_stem, file_exists, splitext_plus, safe_makedir from bcbio.variation.vcfutils import bgzip_and_index def is_good_cpg(frmt, record): alt_depth = sum(map(int, frmt['DP4'].split(','))[2:]) ref_depth = sum(map(int, frmt['DP4'].split(','))[:2]) if record[6] != "PASS": return False if int(ref_depth) > 3 and int(alt_depth) > 3: return True def _genotype(alleles): if alleles[0] == alleles[1]: return "homoz" else: return "heteroz" def is_good_het(frmt, record): depth = sum(map(int, frmt['DP4'].split(','))[2:]) # if _genotype(frmt['GT'].split("/")) == "heteroz" and int(frmt['DP']) > 3 and depth > 3 and record[6] == "PASS": if _genotype(frmt['GT'].split("/")) == "heteroz" and int(frmt['DP']) > 3: return True def _get_strand(record): return record[7].split(";")[0].split("=")[1] def _snp_veracity_both_strand(sense, anti): """ Only if SNPs is detected in both strand with two alleles """ gen_plus = sense.keys() gen_minus = anti.keys() allels1 = [g.split(":")[0].split("/")[0] for g in gen_plus] allels2 = [g.split(":")[0] for g in gen_minus] if len(allels1) == len(allels2): return True def _read_pairs(gt): # print "read_pairs %s" % gt gt1 = gt.split(":")[0].split("/")[0] if gt.find("/") > -1: gt2 = gt.split(":")[0].split("/")[1] return (gt1, gt2) def _get_total(gts, total): return [total[_read_pairs(gts[0][1])[0]], total[_read_pairs(gts[1][1])[0]]] def _top_gt(gts): total = Counter() first = _read_pairs(gts[0][1]) top = None for gt in gts: pair = _read_pairs(gt[1]) if pair: if pair[0] != first[0] and pair[1] != first[1]: top = [gts[0], gt] total[pair[0]] += gt[0] if top: total = _get_total(top, total) return top, total return False, False def _above_prop(x, s, p=0.8): pvals = [] for p in [0.8, 0.9, 1.0]: pvals.append(stats.binom_test(x, s, p)) return max(pvals) > 0.70 def _prop(gt): sense_sorted = sorted(zip(gt.values(), gt.keys()), reverse=True) top_2, total = _top_gt(sense_sorted) # print "top_2 %s totla %s" % (top_2, total) if top_2: gt2_prop = float(top_2[1][0]) / total[1] gt1_prop = float(top_2[0][0]) / total[0] table = np.array([[top_2[1][0], total[1] - top_2[1][0]], [total[0] - top_2[0][0], top_2[0][0]]]) # print "table\n%s\ntotals %s %s" % (table, gt1_prop, gt2_prop) # print stats.fisher_exact(table) if stats.fisher_exact(table)[1] < 0.05 and _above_prop(top_2[0][0], total[0]) and _above_prop(top_2[1][0], total[1]): return True return False def _valid_test(link, link_as): """ Only if top2 associated nt are equally represented """ # print "link %s %s" % (link, link_as) if len(link) > 1: sense_pval = _prop(link) else: sense_pval = False # if len(link_as) > 1: # anti_pval = _prop(link_as) # else: # anti_pval = True if sense_pval: return True return False def _valid(link, link_as): """ Only if one snp allele is associated with the Cu/Cm """ if len(link) == 2: gen = link.keys() allels1 = gen[0].split(":")[0].split("/") allels2 = gen[1].split(":")[0].split("/") if allels1[0] != allels2[0] and allels1[1] != allels2[1] and _snp_veracity(link, link_as): return True def _format(link): """ Give nice format to dict with alleles and reads supporting """ cell = '' for allele in link: cell += "%s=%s;" % (allele, link[allele]) return cell def _change_to_cpg(line, tag): return line.replace(tag, "CpG%s" % tag).strip() def _change_to_snp(line, tag): return line.replace(tag, "SNP%s" % tag).strip() def _create_vcf_header(vcf_file, out_handle): """ Create header for final vcf """ print >>out_handle, "##fileformat=VCFv4.1" print >>out_handle, "##fileData=%s" % datetime.date.today().strftime('%y%m%d') with open(vcf_file) as in_handle: for line in in_handle: if line.startswith("##reference"): print >>out_handle, line.strip() if line.startswith("##contig"): print >>out_handle, line.strip() if line.startswith("#CHROM"): print >>out_handle, line.strip() if line.startswith("##BisSNP"): print >>out_handle, line.strip() if line.startswith("##FILTER"): print >>out_handle, line.strip() if line.startswith("##FORMAT=<ID=GT"): print >>out_handle, line.strip() if line.startswith("##INFO=<ID=DP"): print >>out_handle, line.strip() if line.startswith("##FORMAT=<ID=BRC6"): print >>out_handle, _change_to_cpg(line, 'BRC6') print >>out_handle, _change_to_snp(line, 'BRC6') if line.startswith("##FORMAT=<ID=CM"): print >>out_handle, _change_to_cpg(line, 'CM') print >>out_handle, _change_to_snp(line, 'CM') if line.startswith("##FORMAT=<ID=CU"): print >>out_handle, _change_to_cpg(line, 'CU') print >>out_handle, _change_to_snp(line, 'CU') if line.startswith("##FORMAT=<ID=CP"): print >>out_handle, _change_to_cpg(line, 'CP') print >>out_handle, _change_to_snp(line, 'CP') if line.startswith("##FORMAT=<ID=DP"): print >>out_handle, _change_to_cpg(line, 'DP') print >>out_handle, _change_to_snp(line, 'DP') if line.startswith("##INFO=<ID=CS"): print >>out_handle, line.strip() def _get_info(info, tag): """ get value from info vcf field """ return next((value.split("=")[1] for value in info.split(";") if value.startswith(tag)), None) def _get_format(header, frmt): """ get format field in dict instance """ frmt = dict(zip(header.split(":"), frmt.split(':'))) return frmt def _format_vcf_value(frmt1, frmt2, tag): return {_change_to_cpg(tag, tag): frmt1[tag], _change_to_snp(tag, tag): frmt2[tag]} def _get_vcf_line(record): """ create new vcf file with CpG and SNP information """ frmt = {} cs = _get_info(record[7], "CS") ref = "%s%s" % ("C", record[13]) alt = "%s%s" % ("C", record[14]) qual = (float(record[5]) + float(record[15])) / 2 filter = "LowQual" dp = int(_get_info(record[7], "DP")) + int(_get_info(record[17], "DP")) info = ";".join(["DP=%s" % dp, "CS=%s" % cs]) cpg = _get_format(record[8], record[9]) snp = _get_format(record[18], record[19]) for value in ["BRC6", "CM", "CU", "CP", "DP"]: frmt.update(_format_vcf_value(cpg, snp, value)) format = "GT:" + ":".join(frmt.keys()) sample = snp["GT"] + ":" + ":".join(frmt.values()) return record[0], record[11], ref, alt, qual, filter, info, format, sample def _correct_vcf(vcf_file): """ sort by genome/position, bgzip and index """ vcf_sort = append_stem(vcf_file, "_sort") + ".gz" if not file_exists(vcf_sort): with file_transaction(vcf_sort) as tx_out: cmd = "cat {vcf_file} |vcf-sort | bgzip > {tx_out}" do.run(cmd.format(**locals()), "sort %s" % vcf_file) do.run("tabix -f {0}".format(tx_out), "") return vcf_sort def cpg_het_pairs(cpgvcf, snpvcf, bam_file, out_file, workdir): """ Detect het close to hemi-met sites """ out_vcf = splitext_plus(out_file)[0] + ".vcf" cpg_filter = op.join(workdir, op.basename(append_stem(cpgvcf, "_filtered"))) snp_filter = op.join(workdir, op.basename(append_stem(snpvcf, "_filtered"))) if not file_exists(cpg_filter): with open(cpg_filter, 'w') as out_handle: with open(cpgvcf) as in_handle: for line in in_handle: if line.startswith("#"): continue record = line.strip().split("\t") # print record header, frmt = record[8], record[9] frmt = dict(zip(header.split(":"), frmt.split(':'))) if is_good_cpg(frmt, record): print >>out_handle, line if not file_exists(snp_filter): with open(snp_filter, 'w') as out_handle: with open(snpvcf) as in_handle: for line in in_handle: if line.startswith("#"): continue record = line.strip().split("\t") header, frmt = record[8], record[9] frmt = dict(zip(header.split(":"), frmt.split(':'))) if is_good_het(frmt, record): print >>out_handle, line if not file_exists(out_vcf): res = pybedtools.BedTool(cpg_filter).window(snp_filter, w=75) with open(out_file, 'w') as out_handle, open(out_vcf, 'w') as vcf_handle: _create_vcf_header(cpgvcf, vcf_handle) print >>out_handle, "chrom\tCpG_pos\tCpG_nt\tSNP_pos\tAlleles\tassociation_plus\tSNP_reads_minus" for record in res: if record[1] != record[11]: # if record[1] == "19889634": link, link_as, align = _make_linkage(bam_file, record[0], int(record[1]), int(record[11]), _get_strand(record)) res = "%s\t%s\t%s\t%s\t%s/%s\t%s\t%s" % (record[0], record[1], record[3], record[11], record[13], record[14], _format(link), _format(link_as)) chrom, pos, ref, alt, qual, filt, info, frmt, sample = _get_vcf_line(record) # print res if _valid_test(link, link_as): filt = "PASS" print >>out_handle, res # print res # print >>out_handle, '\n'.join(align) vcf_res = "{chrom}\t{pos}\t.\t{ref}\t{alt}\t{qual}\t{filt}\t{info}\t{frmt}\t{sample}".format(**locals()) print >>vcf_handle, vcf_res return _correct_vcf(out_vcf) def _complement(nt): if nt == 'a': return 't' elif nt == 't': return 'a' elif nt == 'c': return 'g' elif nt == 'g': return 'c' def _model(pileup, snp, cpg_st): c_pos = v_pos = [] for read in pileup: if len(pileup[read].keys()) == 1: continue info_snp = pileup[read]['snp'].split(":") info_cpg = pileup[read]['cpg'].split(":") if info_cpg[1] == cpg_st: if cpg_st == "+": c_pos.append(info_cpg[0].lower()) v_pos.append(info_snp[0].lower()) else: c_pos.append(_complement(info_cpg[0].lower())) v_pos.append(_complement(info_snp[0].lower())) else: if info_snp[1] == "+": v_pos.append(info_snp[0].lower()) else: v_pos.append(_complement(info_snp[0].lower())) def _make_linkage(bam_file, chrom, cpg, snp, cpg_st): start, end = [cpg-1, snp-1] if cpg-1 < snp-1 else [snp-1, cpg-1] pairs = _pairs_matrix(bam_file, [chrom, start, end], cpg-1, snp-1) link = Counter() link_as = Counter() align = [] for pair in pairs: if len(pairs[pair].keys()) == 1: continue nts = [pairs[pair]['cpg'].split(":")[0], pairs[pair]['snp'].split(":")[0]] align.append("-".join(nts) if cpg < snp else "-".join(nts[::-1])) info_snp = pairs[pair]['snp'].split(":") # if info_snp[1] == cpg_st: # print pairs[pair] if pairs[pair]['cpg']: info_cpg = pairs[pair]['cpg'].split(":") if info_cpg[1] == info_snp[1] and info_cpg[1] == cpg_st: link["v%s/c%s:%s" % (info_snp[0], info_cpg[0], cpg_st)] += 1 # else: # link_as["v%s:%s" % (info_snp[0], info_snp[1])] += 1 # print "LINK\n%s\n" % link return link, link_as, align def _pairs_matrix(bam_file, region, cpg, snp): """ Get reads from the cpg region and pairs cpg nt with snp nt """ pileup = defaultdict(dict) c, s, e = region samfile = pysam.AlignmentFile(bam_file, "rb") for pileupcolumn in samfile.pileup(c, s, e): if pileupcolumn.pos == cpg or pileupcolumn.pos == snp: # print ("\ncoverage at base %s = %s" % (pileupcolumn.pos, pileupcolumn.n)) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip: # query position is None if is_del or is_refskip is set. strand = "-" if pileupread.alignment.is_reverse else "+" tag = "cpg" if pileupcolumn.pos == cpg else "snp" nt = pileupread.alignment.query_sequence[pileupread.query_position] nt = nt.lower() if strand == "-" else nt pileup[pileupread.alignment.query_name].update({tag: nt + ":%s" % strand}) return pileup def get_het(in_vcf, region, sample, out_file): res = pybedtools.BedTool(in_vcf).intersect(b=region, wo=True) with file_transaction(out_file) as tx_out: with open(tx_out, 'w') as out_handle: # print >> out_handle, "chrom\tstart\tend\tgen\dp4\tstrand\tgene\tsample" for record in res: gene = record[-2] chrom, pos, info, header, frmt = record[0], int(record[1]), record[7], record[8], record[9] # cs = info.split(';')[0].split('=')[1] frmt = dict(zip(header.split(":"), frmt.split(':'))) # if _genotype(frmt['GT'].split("/")) == "heteroz" and int(frmt['DP']) > 10 and int(frmt['DP4']) > 10 and record[6] == "PASS": if is_good_het(frmt, record): tag = "%s-%s-%s-%s" % (frmt['GT'], frmt['DP'], gene, sample) print >> out_handle, "%s\t%s\t%s\t%s\t.\t+" % (chrom, pos, pos + 1, tag ) def post_processing(vcf_res, vcf_merged, out): """ merge list of vcf files and get stats """ if len(vcf_res) == 1: return vcf_res if not file_exists(vcf_merged): cmd = "bcftools merge {0} > {1}".format(" ".join(vcf_res), vcf_merged) do.run(cmd, "merge files") vcf_reader = vcf.Reader(open(vcf_merged, 'r')) samples = vcf_reader.samples num_call = Counter() num_call_sample = Counter() for record in vcf_reader: if not record.FILTER: num_call[record.num_called] += 1 # print record.num_called for sample in samples: if record.genotype(sample)['GT'] != "./.": # print record.genotype(sample)['GT'] num_call_sample[sample] += 1 with open(out + "_shared_stat.tsv", 'w') as stat_handle: print >>stat_handle, tabulate([[k, v] for k, v in num_call.iteritems()], headers=["# samples", "# of SNPs"]) with open(out + "_stat.tsv", 'w') as stat_handle: print >>stat_handle, tabulate([[k, v] for k, v in num_call_sample.iteritems()], headers=["samples", "# of SNPs"]) def detect_asm(data, args): vcf_res = [] in_vcf = data['fastq'] bam_file = data['bam'] sample = splitext_plus(op.basename(in_vcf))[0].split(".raw")[0].replace(".rawcpg", "") workdir = op.join(args.out, sample) safe_makedir(workdir) snp_file = in_vcf.replace("rawcpg", "rawsnp") assert bam_file, "No bam file associated to vcf %s" % in_vcf out_file = op.join(workdir, sample + "_pairs.tsv") vcf_res = cpg_het_pairs(in_vcf, snp_file, bam_file, out_file, workdir) data['asm'] = vcf_res return data
lpantano/ASMfinder
asm/select.py
Python
mit
16,220
[ "pysam" ]
459cb20dc4d3f339c7c46798b41e4438678d43cda5de3f3be063d27dd7f890dc
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import unicode_literals import textwrap """ This module implements input and output processing from QChem. """ import copy import re import os import numpy as np from string import Template import six from monty.io import zopen from pymatgen.core.operations import SymmOp from pymatgen.core.structure import Molecule from pymatgen.core.units import Energy, FloatWithUnit from monty.json import MSONable from pymatgen.util.coord import get_angle __author__ = "Xiaohui Qu" __copyright__ = "Copyright 2013, The Electrolyte Genome Project" __version__ = "0.1" __maintainer__ = "Xiaohui Qu" __email__ = "[email protected]" __date__ = "11/4/13" class QcTask(MSONable): """ An object representing a QChem input file. Args: molecule: The input molecule. If it is None of string "read", QChem will read geometry from checkpoint file. If it is a Molecule object, QcInput will convert it into Cartesian coordinates. Valid values: pymatgen Molecule object, "read", None Defaults to None. charge (int): Charge of the molecule. If None, charge on molecule is used. Defaults to None. spin_multiplicity (int): Spin multiplicity of molecule. Defaults to None, which means that the spin multiplicity is set to 1 if the molecule has no unpaired electrons and to 2 if there are unpaired electrons. jobtype (str): The type the QChem job. "SP" for Single Point Energy, "opt" for geometry optimization, "freq" for vibrational frequency. title (str): Comments for the job. Defaults to None. Which means the $comment section will be discarded. exchange (str): The exchange methods of the theory. Examples including: "B" (in pure BLYP), "PW91", "PBE", "TPSS". Defaults to "HF". This parameter can also be common names of hybrid functionals, such as B3LYP, TPSSh, XYGJOS. In such cases, the correlation parameter should be left as None. correlation (str): The correlation level of the theory. Example including: "MP2", "RI-MP2", "CCSD(T)", "LYP", "PBE", "TPSS" Defaults to None. basis_set (str/dict): The basis set. If it is a dict, each element can use different basis set. aux_basis_set (str/dict): Auxiliary basis set. For methods, like RI-MP2, XYG3, OXYJ-OS, auxiliary basis set is required. If it is a dict, each element can use different auxiliary basis set. ecp: Effective core potential (ECP) to be used. If it is a dict, each element can use different ECP. rem_params (dict): The parameters supposed to write in the $rem section. Dict of key/value pairs. Example: {"scf_algorithm": "diis_gdm", "scf_max_cycles": 100} optional_params (dict): The parameter for keywords other than $rem section. Dict of key/value pairs. Example: {"basis": {"Li": "cc-PVTZ", "B": "aug-cc-PVTZ", "F": "aug-cc-PVTZ"} "ecp": {"Cd": "srsc", "Br": "srlc"}} ghost_atom (list): List of ghost atoms indices. Indices start from 0. The ghost atom will be represented in of the form of @element_symmbol """ optional_keywords_list = {"basis", "basis2", "ecp", "empirical_dispersion", "external_charges", "force_field_params", "intracule", "isotopes", "aux_basis", "localized_diabatization", "multipole_field", "nbo", "occupied", "swap_occupied_virtual", "opt", "pcm", "pcm_solvent", "solvent", "plots", "qm_atoms", "svp", "svpirf", "van_der_waals", "xc_functional", "cdft", "efp_fragments", "efp_params", "alist", "velocity"} alternative_keys = {"job_type": "jobtype", "symmetry_ignore": "sym_ignore", "scf_max_cycles": "max_scf_cycles"} alternative_values = {"optimization": "opt", "frequency": "freq"} zmat_patt = re.compile(r'^(\w+)*([\s,]+(\w+)[\s,]+(\w+))*[\-\.\s,\w]*$') xyz_patt = re.compile(r'^(\w+)[\s,]+([\d\.eE\-]+)[\s,]+([\d\.eE\-]+)[\s,]+' r'([\d\.eE\-]+)[\-\.\s,\w.]*$') def __init__(self, molecule=None, charge=None, spin_multiplicity=None, jobtype='SP', title=None, exchange="HF", correlation=None, basis_set="6-31+G*", aux_basis_set=None, ecp=None, rem_params=None, optional_params=None, ghost_atoms=None, method=None): self.mol = copy.deepcopy(molecule) if molecule else "read" self.charge = charge self.spin_multiplicity = spin_multiplicity if isinstance(self.mol, six.string_types): self.mol = self.mol.lower() if self.mol != "read": raise ValueError('The only accept text value for mol is "read"') elif isinstance(self.mol, list): for m in self.mol: if not isinstance(m, Molecule): raise ValueError("In case of type list, every element of mol must be a pymatgen Molecule") if self.charge is None or self.spin_multiplicity is None: raise ValueError("For fragments molecule section input, charge and spin_multiplicity " "must be specificed") total_charge = sum([m.charge for m in self.mol]) total_unpaired_electron = sum([m.spin_multiplicity-1 for m in self.mol]) if total_charge != self.charge: raise ValueError("The charge of the molecule doesn't equal to the sum of the fragment charges") if total_unpaired_electron % 2 != (self.spin_multiplicity - 1) % 2: raise ValueError("Spin multiplicity of molecule and fragments doesn't match") elif isinstance(self.mol, Molecule): self.charge = charge if charge is not None else self.mol.charge ghost_nelectrons = 0 if ghost_atoms: for i in ghost_atoms: site = self.mol.sites[i] for sp, amt in site.species_and_occu.items(): ghost_nelectrons += sp.Z * amt nelectrons = self.mol.charge + self.mol.nelectrons - ghost_nelectrons - self.charge if spin_multiplicity is not None: self.spin_multiplicity = spin_multiplicity if (nelectrons + spin_multiplicity) % 2 != 1: raise ValueError("Charge of {} and spin multiplicity of {} " "is not possible for this molecule" .format(self.charge, spin_multiplicity)) else: self.spin_multiplicity = 1 if nelectrons % 2 == 0 else 2 else: raise ValueError("The molecule must be a pymatgen Molecule " "object or read/None or list of pymatgen Molecule") if (self.charge is None) != (self.spin_multiplicity is None): raise ValueError("spin multiplicity must be set together") if self.charge is not None and isinstance(self.mol, Molecule) and not ghost_atoms: self.mol.set_charge_and_spin(self.charge, self.spin_multiplicity) self.params = dict() if title is not None: self.params["comment"] = self._wrap_comment(title) if "rem" not in self.params: self.params["rem"] = dict() if method is None or exchange.lower() != "hf": self.params["rem"]["exchange"] = exchange.lower() if method is not None: self.params["rem"]["method"] = method.lower() available_jobtypes = {"sp", "opt", "ts", "freq", "force", "rpath", "nmr", "bsse", "eda", "pes_scan", "fsm", "aimd", "pimc", "makeefp"} jt = jobtype.lower() if jt in self.alternative_values: jt = self.alternative_values[jt] if jt not in available_jobtypes: raise ValueError("Job type " + jobtype + " is not supported yet") self.params["rem"]["jobtype"] = jobtype.lower() if correlation is not None: self.params["rem"]["correlation"] = correlation.lower() if rem_params is not None: for k, v in rem_params.items(): k = k.lower() if k in self.alternative_keys: k = self.alternative_keys[k] if isinstance(v, six.string_types): v = str(v).lower() if v in self.alternative_values: # noinspection PyTypeChecker v = self.alternative_values[v] self.params["rem"][k] = v elif isinstance(v, int) or isinstance(v, float): self.params["rem"][k] = v else: raise ValueError("The value in $rem can only be Integer " "or string") if optional_params: op_key = set([k.lower() for k in optional_params.keys()]) if len(op_key - self.optional_keywords_list) > 0: invalid_keys = op_key - self.optional_keywords_list raise ValueError(','.join(['$' + k for k in invalid_keys]) + 'is not a valid optional section') self.params.update(optional_params) self.set_basis_set(basis_set) if aux_basis_set is None: if self._aux_basis_required(): if isinstance(self.params["rem"]["basis"], six.string_types): if self.params["rem"]["basis"].startswith("6-31+g"): self.set_auxiliary_basis_set("rimp2-aug-cc-pvdz") elif self.params["rem"]["basis"].startswith("6-311+g"): self.set_auxiliary_basis_set("rimp2-aug-cc-pvtz") if "aux_basis" not in self.params["rem"]: raise ValueError("Auxiliary basis set is missing") else: self.set_auxiliary_basis_set(aux_basis_set) if ecp: self.set_ecp(ecp) self.ghost_atoms = ghost_atoms if self.ghost_atoms: if not isinstance(self.ghost_atoms, list): raise ValueError("ghost_atoms must be a list of integers") for atom in self.ghost_atoms: if not isinstance(atom, int): raise ValueError("Each element of ghost atom list must an integer") def _aux_basis_required(self): if "method" in self.params["rem"]: method = self.params["rem"]["method"] else: method = self.params["rem"]["exchange"] if method in ['xygjos', 'xyg3', 'lxygjos']: return True if 'correlation' in self.params["rem"]: if self.params["rem"]["correlation"].startswith("ri"): return True def set_velocities(self, velocities): """ :param velocities (au): list of list of atom velocities :return: """ assert len(velocities) == len(self.mol) self.params["velocity"] = velocities def set_basis_set(self, basis_set): if isinstance(basis_set, six.string_types): self.params["rem"]["basis"] = str(basis_set).lower() if basis_set.lower() not in ["gen", "mixed"]: self.params.pop("basis", None) elif isinstance(basis_set, dict): self.params["rem"]["basis"] = "gen" bs = dict() for element, basis in basis_set.items(): bs[element.strip().capitalize()] = basis.lower() self.params["basis"] = bs if self.mol: mol_elements = set([site.species_string for site in self.mol.sites]) basis_elements = set(self.params["basis"].keys()) if len(mol_elements - basis_elements) > 0: raise ValueError("The basis set for elements " + ", ".join( list(mol_elements - basis_elements)) + " is missing") if len(basis_elements - mol_elements) > 0: raise ValueError("Basis set error: the molecule " "doesn't contain element " + ", ".join(basis_elements - mol_elements)) elif isinstance(basis_set, list): self.params["rem"]["basis"] = "mixed" bs = [(a[0].capitalize(), a[1].lower()) for a in basis_set] self.params["basis"] = bs if len(self.mol) != len(basis_set): raise ValueError("Must specific a basis set for every atom") mol_elements = [site.species_string for site in self.mol.sites] basis_elements = [a[0] for a in bs] if mol_elements != basis_elements: raise ValueError("Elements in molecule and mixed basis set don't match") else: raise Exception('Can\'t handle type "{}"'.format(type(basis_set))) def set_partial_hessian_atoms(self, alist, phess=1): for a in alist: if not isinstance(a, int): raise ValueError("the parament alist must a list of atom indices") self.params["rem"]["n_sol"] = len(alist) if phess == 1: self.params["rem"]["phess"] = True else: self.params["rem"]["phess"] = phess self.params["rem"]["jobtype"] = "freq" self.params["alist"] = alist def set_basis2(self, basis2_basis_set): if isinstance(basis2_basis_set, six.string_types): self.params["rem"]["basis2"] = basis2_basis_set.lower() if basis2_basis_set.lower() not in ["basis2_gen", "basis2_mixed"]: self.params.pop("basis2", None) elif isinstance(basis2_basis_set, dict): self.params["rem"]["basis2"] = "basis2_gen" bs = dict() for element, basis in basis2_basis_set.items(): bs[element.strip().capitalize()] = basis.lower() self.params["basis2"] = bs if self.mol: mol_elements = set([site.species_string for site in self.mol.sites]) basis_elements = set(self.params["basis2"].keys()) if len(mol_elements - basis_elements) > 0: raise ValueError("The BASIS2 basis set for " "elements " + ", ".join( list(mol_elements - basis_elements)) + " is missing") if len(basis_elements - mol_elements) > 0: raise ValueError("BASIS2 basis set error: the " "molecule doesn't contain element " + ", ".join(basis_elements - mol_elements)) elif isinstance(basis2_basis_set, list): self.params["rem"]["basis2"] = "basis2_mixed" bs = [(a[0].capitalize(), a[1].lower()) for a in basis2_basis_set] self.params["basis2"] = bs if len(self.mol) != len(basis2_basis_set): raise ValueError("Must specific a BASIS2 basis set for every atom") mol_elements = [site.species_string for site in self.mol.sites] basis_elements = [a[0] for a in bs] if mol_elements != basis_elements: raise ValueError("Elements in molecule and mixed basis set don't match") else: raise Exception('Can\'t handle type "{}"'.format(type(basis2_basis_set))) def set_auxiliary_basis_set(self, aux_basis_set): if isinstance(aux_basis_set, six.string_types): self.params["rem"]["aux_basis"] = aux_basis_set.lower() if aux_basis_set.lower() not in ["gen", "mixed"]: self.params.pop("aux_basis", None) elif isinstance(aux_basis_set, dict): self.params["rem"]["aux_basis"] = "gen" bs = dict() for element, basis in aux_basis_set.items(): bs[element.strip().capitalize()] = basis.lower() self.params["aux_basis"] = bs if self.mol: mol_elements = set([site.species_string for site in self.mol.sites]) basis_elements = set(self.params["aux_basis"].keys()) if len(mol_elements - basis_elements) > 0: raise ValueError("The auxiliary basis set for " "elements " + ", ".join( list(mol_elements - basis_elements)) + " is missing") if len(basis_elements - mol_elements) > 0: raise ValueError("Auxiliary asis set error: the " "molecule doesn't contain element " + ", ".join(basis_elements - mol_elements)) elif isinstance(aux_basis_set, list): self.params["rem"]["aux_basis"] = "mixed" bs = [(a[0].capitalize(), a[1].lower()) for a in aux_basis_set] self.params["aux_basis"] = bs if len(self.mol) != len(aux_basis_set): raise ValueError("Must specific a auxiliary basis set for every atom") mol_elements = [site.species_string for site in self.mol.sites] basis_elements = [a[0] for a in bs] if mol_elements != basis_elements: raise ValueError("Elements in molecule and mixed basis set don't match") else: raise Exception('Can\'t handle type "{}"'.format(type(aux_basis_set))) def set_ecp(self, ecp): if isinstance(ecp, six.string_types): self.params["rem"]["ecp"] = ecp.lower() elif isinstance(ecp, dict): self.params["rem"]["ecp"] = "gen" potentials = dict() for element, p in ecp.items(): potentials[element.strip().capitalize()] = p.lower() self.params["ecp"] = potentials if self.mol: mol_elements = set([site.species_string for site in self.mol.sites]) ecp_elements = set(self.params["ecp"].keys()) if len(ecp_elements - mol_elements) > 0: raise ValueError("ECP error: the molecule " "doesn't contain element " + ", ".join(ecp_elements - mol_elements)) @property def molecule(self): return self.mol def set_memory(self, total=None, static=None): """ Set the maxium allowed memory. Args: total: The total memory. Integer. Unit: MBytes. If set to None, this parameter will be neglected. static: The static memory. Integer. Unit MBytes. If set to None, this parameterwill be neglected. """ if total: self.params["rem"]["mem_total"] = total if static: self.params["rem"]["mem_static"] = static def set_max_num_of_scratch_files(self, num=16): """ In QChem, the size of a single scratch is limited 2GB. By default, the max number of scratich is 16, which is cooresponding to 32GB scratch space. If you want to use more scratch disk space, you need to increase the number of scratch files: Args: num: The max number of the scratch files. (Integer) """ self.params["rem"]["max_sub_file_num"] = num def set_scf_algorithm_and_iterations(self, algorithm="diis", iterations=50): """ Set algorithm used for converging SCF and max number of SCF iterations. Args: algorithm: The algorithm used for converging SCF. (str) iterations: The max number of SCF iterations. (Integer) """ available_algorithms = {"diis", "dm", "diis_dm", "diis_gdm", "gdm", "rca", "rca_diis", "roothaan"} if algorithm.lower() not in available_algorithms: raise ValueError("Algorithm " + algorithm + " is not available in QChem") self.params["rem"]["scf_algorithm"] = algorithm.lower() self.params["rem"]["max_scf_cycles"] = iterations def set_scf_convergence_threshold(self, exponent=8): """ SCF is considered converged when the wavefunction error is less than 10**(-exponent). In QChem, the default values are: 5 For single point energy calculations. 7 For geometry optimizations and vibrational analysis. 8 For SSG calculations Args: exponent: The exponent of the threshold. (Integer) """ self.params["rem"]["scf_convergence"] = exponent def set_integral_threshold(self, thresh=12): """ Cutoff for neglect of two electron integrals. 10−THRESH (THRESH <= 14). In QChem, the default values are: 8 For single point energies. 10 For optimizations and frequency calculations. 14 For coupled-cluster calculations. Args: thresh: The exponent of the threshold. (Integer) """ self.params["rem"]["thresh"] = thresh def set_dft_grid(self, radical_points=128, angular_points=302, grid_type="Lebedev"): """ Set the grid for DFT numerical integrations. Args: radical_points: Radical points. (Integer) angular_points: Angular points. (Integer) grid_type: The type of of the grid. There are two standard grids: SG-1 and SG-0. The other two supported grids are "Lebedev" and "Gauss-Legendre" """ available_lebedev_angular_points = {6, 18, 26, 38, 50, 74, 86, 110, 146, 170, 194, 230, 266, 302, 350, 434, 590, 770, 974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294} if grid_type.lower() == "sg-0": self.params["rem"]["xc_grid"] = 0 elif grid_type.lower() == "sg-1": self.params["rem"]["xc_grid"] = 1 elif grid_type.lower() == "lebedev": if angular_points not in available_lebedev_angular_points: raise ValueError(str(angular_points) + " is not a valid " "Lebedev angular points number") self.params["rem"]["xc_grid"] = "{rp:06d}{ap:06d}".format( rp=radical_points, ap=angular_points) elif grid_type.lower() == "gauss-legendre": self.params["rem"]["xc_grid"] = "-{rp:06d}{ap:06d}".format( rp=radical_points, ap=angular_points) else: raise ValueError("Grid type " + grid_type + " is not supported " "currently") def set_scf_initial_guess(self, guess="SAD"): """ Set initial guess method to be used for SCF Args: guess: The initial guess method. (str) """ availabel_guesses = {"core", "sad", "gwh", "read", "fragmo"} if guess.lower() not in availabel_guesses: raise ValueError("The guess method " + guess + " is not supported " "yet") self.params["rem"]["scf_guess"] = guess.lower() def set_geom_max_iterations(self, iterations): """ Set the max iterations of geometry optimization. Args: iterations: the maximum iterations of geometry optimization. (Integer) """ self.params["rem"]["geom_opt_max_cycles"] = iterations def set_geom_opt_coords_type(self, coords_type="internal_switch"): """ Set the coordinates system used in geometry optimization. "cartesian" --- always cartesian coordinates. "internal" --- always internal coordinates. "internal-switch" --- try internal coordinates first, if fails, switch to cartesian coordinates. "z-matrix" --- always z-matrix coordinates. "z-matrix-switch" --- try z-matrix first, if fails, switch to cartesian coordinates. Args: coords_type: The type of the coordinates. (str) """ coords_map = {"cartesian": 0, "internal": 1, "internal-switch": -1, "z-matrix": 2, "z-matrix-switch": -2} if coords_type.lower() not in set(coords_map.keys()): raise ValueError("Coodinate system " + coords_type + " is not " "supported yet") else: self.params["rem"]["geom_opt_coords"] = \ coords_map[coords_type.lower()] def scale_geom_opt_threshold(self, gradient=0.1, displacement=0.1, energy=0.1): """ Adjust the convergence criteria of geometry optimization. Args: gradient: the scale factor for gradient criteria. If less than 1.0, you are tightening the threshold. The base value is 300 × 10E−6 displacement: the scale factor for atomic displacement. If less then 1.0, you are tightening the threshold. The base value is 1200 × 10E−6 energy: the scale factor for energy change between successive iterations. If less than 1.0, you are tightening the threshold. The base value is 100 × 10E−8. """ if gradient < 1.0/(300-1) or displacement < 1.0/(1200-1) or \ energy < 1.0/(100-1): raise ValueError("The geometry optimization convergence criteria " "is too tight") self.params["rem"]["geom_opt_tol_gradient"] = int(gradient * 300) self.params["rem"]["geom_opt_tol_displacement"] = int(displacement * 1200) self.params["rem"]["geom_opt_tol_energy"] = int(energy * 100) def set_geom_opt_use_gdiis(self, subspace_size=None): """ Use GDIIS algorithm in geometry optimization. Args: subspace_size: The size of the DIIS subsapce. None for default value. The default value is min(NDEG, NATOMS, 4) NDEG = number of moleculardegrees of freedom. """ subspace_size = subspace_size if subspace_size is not None else -1 self.params["rem"]["geom_opt_max_diis"] = subspace_size def disable_symmetry(self): """ Turn the symmetry off. """ self.params["rem"]["sym_ignore"] = True self.params["rem"]["symmetry"] = False def use_cosmo(self, dielectric_constant=78.4): """ Set the solvent model to COSMO. Args: dielectric_constant: the dielectric constant for the solvent. """ self.params["rem"]["solvent_method"] = "cosmo" self.params["rem"]["solvent_dielectric"] = dielectric_constant def use_pcm(self, pcm_params=None, solvent_key="solvent", solvent_params=None, radii_force_field=None): """ Set the solvent model to PCM. Default parameters are trying to comply to gaussian default value Args: pcm_params (dict): The parameters of "$pcm" section. solvent_key (str): for versions < 4.2 the section name is "pcm_solvent" solvent_params (dict): The parameters of solvent_key section radii_force_field (str): The force fied used to set the solute radii. Default to UFF. """ self.params["pcm"] = dict() self.params[solvent_key] = dict() default_pcm_params = {"Theory": "SSVPE", "vdwScale": 1.1, "Radii": "UFF"} if not solvent_params: solvent_params = {"Dielectric": 78.3553} if pcm_params: for k, v in pcm_params.items(): self.params["pcm"][k.lower()] = v.lower() \ if isinstance(v, six.string_types) else v for k, v in default_pcm_params.items(): if k.lower() not in self.params["pcm"].keys(): self.params["pcm"][k.lower()] = v.lower() \ if isinstance(v, six.string_types) else v for k, v in solvent_params.items(): self.params[solvent_key][k.lower()] = v.lower() \ if isinstance(v, six.string_types) else copy.deepcopy(v) self.params["rem"]["solvent_method"] = "pcm" if radii_force_field: self.params["pcm"]["radii"] = "bondi" self.params["rem"]["force_fied"] = radii_force_field.lower() def __str__(self): sections = ["comment", "molecule", "rem"] + \ sorted(list(self.optional_keywords_list)) lines = [] for sec in sections: if sec in self.params or sec == "molecule": foramt_sec = self.__getattribute__("_format_" + sec) lines.append("$" + sec) lines.extend(foramt_sec()) lines.append("$end") lines.append('\n') return '\n'.join(lines) @classmethod def _wrap_comment(cls, comment): ml_section_start = comment.find('<') if ml_section_start >= 0: title_section = comment[0:ml_section_start] ml_section = comment[ml_section_start:] else: title_section = comment ml_section = '' wrapped_title_lines = textwrap.wrap(title_section.strip(), width=70, initial_indent=' ') wrapped_ml_lines = [] for l in ml_section.splitlines(): if len(l) > 70: wrapped_ml_lines.extend(textwrap.wrap(l.strip(), width=70, initial_indent=' ')) else: wrapped_ml_lines.append(l) return '\n'.join(wrapped_title_lines + wrapped_ml_lines) def _format_comment(self): return self._wrap_comment(self.params["comment"]).splitlines() def _format_alist(self): return [" {}".format(x) for x in self.params["alist"]] def _format_velocity(self): return [' ' + ' '.join(['{:12.5E}'.format(v) for v in atom]) for atom in self.params["velocity"]] def _format_molecule(self): lines = [] def inner_format_mol(m2, index_base): mol_lines = [] for i, site in enumerate(m2.sites): ghost = "@" if self.ghost_atoms \ and i + index_base in self.ghost_atoms else "" atom = "{ghost:s}{element:s}".format(ghost=ghost, element=site.species_string) mol_lines.append(" {atom:<4} {x:>17.8f} {y:>17.8f} " "{z:>17.8f}".format(atom=atom, x=site.x, y=site.y, z=site.z)) return mol_lines if self.charge is not None: lines.append(" {charge:d} {multi:d}".format(charge=self .charge, multi=self.spin_multiplicity)) if isinstance(self.mol, six.string_types) and self.mol == "read": lines.append(" read") elif isinstance(self.mol, list): starting_index = 0 for m in self.mol: lines.append("--") lines.append(" {charge:d} {multi:d}".format( charge=m.charge, multi=m.spin_multiplicity)) lines.extend(inner_format_mol(m, starting_index)) starting_index += len(m) else: lines.extend(inner_format_mol(self.mol, 0)) return lines def _format_rem(self): rem_format_template = Template(" {name:>$name_width} = " "{value}") name_width = 0 for name, value in self.params["rem"].items(): if len(name) > name_width: name_width = len(name) rem = rem_format_template.substitute(name_width=name_width) lines = [] all_keys = set(self.params["rem"].keys()) priority_keys = ["jobtype"] if "exchange" in self.params["rem"]: priority_keys.append("exchange") if "method" in self.params["rem"]: priority_keys.append("method") priority_keys.append("basis") additional_keys = all_keys - set(priority_keys) ordered_keys = priority_keys + sorted(list(additional_keys)) for name in ordered_keys: value = self.params["rem"][name] lines.append(rem.format(name=name, value=value)) return lines def _format_basis(self): lines = [] if isinstance(self.params["basis"], dict): for element in sorted(self.params["basis"].keys()): basis = self.params["basis"][element] lines.append(" " + element) lines.append(" " + basis) lines.append(" ****") elif isinstance(self.params["basis"], list): for i, (element, bs) in enumerate(self.params["basis"]): lines.append(" {element:2s} {number:3d}".format(element=element, number=i+1)) lines.append(" {}".format(bs)) lines.append(" ****") return lines def _format_aux_basis(self): lines = [] if isinstance(self.params["aux_basis"], dict): for element in sorted(self.params["aux_basis"].keys()): basis = self.params["aux_basis"][element] lines.append(" " + element) lines.append(" " + basis) lines.append(" ****") else: for i, (element, bs) in enumerate(self.params["aux_basis"]): lines.append(" {element:2s} {number:3d}".format(element=element, number=i+1)) lines.append(" {}".format(bs)) lines.append(" ****") return lines def _format_basis2(self): lines = [] if isinstance(self.params["basis2"], dict): for element in sorted(self.params["basis2"].keys()): basis = self.params["basis2"][element] lines.append(" " + element) lines.append(" " + basis) lines.append(" ****") else: for i, (element, bs) in enumerate(self.params["basis2"]): lines.append(" {element:2s} {number:3d}".format(element=element, number=i+1)) lines.append(" {}".format(bs)) lines.append(" ****") return lines def _format_ecp(self): lines = [] for element in sorted(self.params["ecp"].keys()): ecp = self.params["ecp"][element] lines.append(" " + element) lines.append(" " + ecp) lines.append(" ****") return lines def _format_pcm(self): pcm_format_template = Template(" {name:>$name_width} " "{value}") name_width = 0 for name in self.params["pcm"].keys(): if len(name) > name_width: name_width = len(name) rem = pcm_format_template.substitute(name_width=name_width) lines = [] for name in sorted(self.params["pcm"].keys()): value = self.params["pcm"][name] lines.append(rem.format(name=name, value=value)) return lines def _format_pcm_solvent(self, key="pcm_solvent"): pp_format_template = Template(" {name:>$name_width} " "{value}") name_width = 0 for name in self.params[key].keys(): if len(name) > name_width: name_width = len(name) rem = pp_format_template.substitute(name_width=name_width) lines = [] all_keys = set(self.params[key].keys()) priority_keys = [] for k in ["dielectric", "nonels", "nsolventatoms", "solventatom"]: if k in all_keys: priority_keys.append(k) additional_keys = all_keys - set(priority_keys) ordered_keys = priority_keys + sorted(list(additional_keys)) for name in ordered_keys: value = self.params[key][name] if name == "solventatom": for v in copy.deepcopy(value): value = "{:<4d} {:<4d} {:<4d} {:4.2f}".format(*v) lines.append(rem.format(name=name, value=value)) continue lines.append(rem.format(name=name, value=value)) return lines def _format_solvent(self): return self._format_pcm_solvent(key="solvent") def _format_opt(self): # lines is a list of all opt keywords lines = [] opt_sub_sections = [sec for sec in sorted(self.params['opt'])] valid_sub_sections = {"CONSTRAINT", "FIXED", "CONNECT", "DUMMY"} valid_fix_spec = {"X", "Y", "Z", "XY", "XZ", "YZ", "XYZ"} if len(set(opt_sub_sections) - valid_sub_sections) > 0: invalid_keys = set(opt_sub_sections) - valid_sub_sections raise ValueError(','.join(['$' + k for k in invalid_keys]) + ' is not a valid geometry optimization constraint') for opt_sub_sec in opt_sub_sections: if len(lines) > 0: lines.append("") if opt_sub_sec == "CONSTRAINT": # constraints constraint_lines = ['CONSTRAINT'] for index in range(len(self.params['opt']['CONSTRAINT'])): vals = self.params['opt']['CONSTRAINT'][index] if vals[0] in ['outp', 'tors', 'linc', 'linp']: constraint_lines.append("{vals[0]} {vals[1]} {vals[2]} {vals[3]} {vals[4]} {vals[5]}".format(vals=vals)) elif vals[0] == 'stre': constraint_lines.append("{vals[0]} {vals[1]} {vals[2]} {vals[3]}".format(vals=vals)) elif vals[0] == 'bend': constraint_lines.append("{vals[0]} {vals[1]} {vals[2]} {vals[3]} {vals[4]}".format(vals=vals)) constraint_lines.append('ENDCONSTRAINT') lines.extend(constraint_lines) elif opt_sub_sec == "FIXED": fixed_lines = ["FIXED"] for atom in sorted(self.params['opt']['FIXED']): fix_spec = self.params['opt']['FIXED'][atom] if fix_spec not in valid_fix_spec: raise ValueError("{} is a wrong keyword to fix atoms".format(fix_spec)) fixed_lines.append(" {} {}".format(atom, fix_spec)) fixed_lines.append("ENDFIXED") lines.extend(fixed_lines) else: raise ValueError("$opt - {} is not supported yet".format(opt_sub_sec)) return lines def as_dict(self): if isinstance(self.mol, six.string_types): mol_dict = self.mol elif isinstance(self.mol, Molecule): mol_dict = self.mol.as_dict() elif isinstance(self.mol, list): mol_dict = [m.as_dict() for m in self.mol] else: raise ValueError('Unknow molecule type "{}"'.format(type(self.mol))) d = {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "molecule": mol_dict, "charge": self.charge, "spin_multiplicity": self.spin_multiplicity, "params": self.params} if self.ghost_atoms: d["ghost_atoms"] = self.ghost_atoms return d @classmethod def from_dict(cls, d): if d["molecule"] == "read": mol = "read" elif isinstance(d["molecule"], dict): mol = Molecule.from_dict(d["molecule"]) elif isinstance(d["molecule"], list): mol = [Molecule.from_dict(m) for m in d["molecule"]] else: raise ValueError('Unknow molecule type "{}"'.format(type(d["molecule"]))) jobtype = d["params"]["rem"]["jobtype"] title = d["params"].get("comment", None) exchange = d["params"]["rem"].get("exchange", "hf") method = d["params"]["rem"].get("method", None) correlation = d["params"]["rem"].get("correlation", None) basis_set = d["params"]["rem"]["basis"] aux_basis_set = d["params"]["rem"].get("aux_basis", None) ecp = d["params"]["rem"].get("ecp", None) ghost_atoms = d.get("ghost_atoms", None) optional_params = None op_keys = set(d["params"].keys()) - {"comment", "rem"} if len(op_keys) > 0: optional_params = dict() for k in op_keys: optional_params[k] = d["params"][k] return QcTask(molecule=mol, charge=d["charge"], spin_multiplicity=d["spin_multiplicity"], jobtype=jobtype, title=title, exchange=exchange, correlation=correlation, basis_set=basis_set, aux_basis_set=aux_basis_set, ecp=ecp, rem_params=d["params"]["rem"], optional_params=optional_params, ghost_atoms=ghost_atoms, method=method) def write_file(self, filename): with zopen(filename, "wt") as f: f.write(self.__str__()) @classmethod def from_file(cls, filename): with zopen(filename, "rt") as f: return cls.from_string(f.read()) @classmethod def from_string(cls, contents): """ Creates QcInput from a string. Args: contents: String representing a QChem input file. Returns: QcInput object """ mol = None charge = None spin_multiplicity = None params = dict() lines = contents.split('\n') parse_section = False section_name = None section_text = [] ghost_atoms = None for line_num, line in enumerate(lines): l = line.strip().lower() if len(l) == 0: continue if (not parse_section) and (l == "$end" or not l.startswith("$")): raise ValueError("Format error, parsing failed") if parse_section and l != "$end": section_text.append(line) if l.startswith("$") and not parse_section: parse_section = True section_name = l[1:] available_sections = ["comment", "molecule", "rem"] + \ sorted(list(cls.optional_keywords_list)) if section_name not in available_sections: raise ValueError("Unrecognized keyword " + line.strip() + " at line " + str(line_num)) if section_name in params: raise ValueError("duplicated keyword " + line.strip() + "at line " + str(line_num)) if parse_section and l == "$end": func_name = "_parse_" + section_name if func_name not in QcTask.__dict__: raise Exception(func_name + " is not implemented yet, " "please implement it") parse_func = QcTask.__dict__[func_name].__get__(None, QcTask) if section_name == "molecule": mol, charge, spin_multiplicity, ghost_atoms = parse_func(section_text) else: d = parse_func(section_text) params[section_name] = d parse_section = False section_name = None section_text = [] if parse_section: raise ValueError("Format error. " + section_name + " is not " "terminated") jobtype = params["rem"]["jobtype"] title = params.get("comment", None) exchange = params["rem"].get("exchange", "hf") method = params["rem"].get("method", None) correlation = params["rem"].get("correlation", None) basis_set = params["rem"]["basis"] aux_basis_set = params["rem"].get("aux_basis", None) ecp = params["rem"].get("ecp", None) optional_params = None op_keys = set(params.keys()) - {"comment", "rem"} if len(op_keys) > 0: optional_params = dict() for k in op_keys: optional_params[k] = params[k] return QcTask(molecule=mol, charge=charge, spin_multiplicity=spin_multiplicity, jobtype=jobtype, title=title, exchange=exchange, correlation=correlation, basis_set=basis_set, aux_basis_set=aux_basis_set, ecp=ecp, rem_params=params["rem"], optional_params=optional_params, ghost_atoms=ghost_atoms, method=method) @classmethod def _parse_comment(cls, contents): return '\n'.join(contents).strip() @classmethod def _parse_coords(cls, coord_lines): """ Helper method to parse coordinates. Copied from GaussianInput class. """ paras = {} var_pattern = re.compile(r'^([A-Za-z]+\S*)[\s=,]+([\d\-\.]+)$') for l in coord_lines: m = var_pattern.match(l.strip()) if m: paras[m.group(1)] = float(m.group(2)) species = [] coords = [] # Stores whether a Zmatrix format is detected. Once a zmatrix format # is detected, it is assumed for the remaining of the parsing. zmode = False for l in coord_lines: l = l.strip() if not l: break if (not zmode) and cls.xyz_patt.match(l): m = cls.xyz_patt.match(l) species.append(m.group(1)) toks = re.split(r'[,\s]+', l.strip()) if len(toks) > 4: coords.append(list(map(float, toks[2:5]))) else: coords.append(list(map(float, toks[1:4]))) elif cls.zmat_patt.match(l): zmode = True toks = re.split(r'[,\s]+', l.strip()) species.append(toks[0]) toks.pop(0) if len(toks) == 0: coords.append(np.array([0.0, 0.0, 0.0])) else: nn = [] parameters = [] while len(toks) > 1: ind = toks.pop(0) data = toks.pop(0) try: nn.append(int(ind)) except ValueError: nn.append(species.index(ind) + 1) try: val = float(data) parameters.append(val) except ValueError: if data.startswith("-"): parameters.append(-paras[data[1:]]) else: parameters.append(paras[data]) if len(nn) == 1: coords.append(np.array( [0.0, 0.0, float(parameters[0])])) elif len(nn) == 2: coords1 = coords[nn[0] - 1] coords2 = coords[nn[1] - 1] bl = parameters[0] angle = parameters[1] axis = [0, 1, 0] op = SymmOp.from_origin_axis_angle(coords1, axis, angle, False) coord = op.operate(coords2) vec = coord - coords1 coord = vec * bl / np.linalg.norm(vec) + coords1 coords.append(coord) elif len(nn) == 3: coords1 = coords[nn[0] - 1] coords2 = coords[nn[1] - 1] coords3 = coords[nn[2] - 1] bl = parameters[0] angle = parameters[1] dih = parameters[2] v1 = coords3 - coords2 v2 = coords1 - coords2 axis = np.cross(v1, v2) op = SymmOp.from_origin_axis_angle( coords1, axis, angle, False) coord = op.operate(coords2) v1 = coord - coords1 v2 = coords1 - coords2 v3 = np.cross(v1, v2) adj = get_angle(v3, axis) axis = coords1 - coords2 op = SymmOp.from_origin_axis_angle( coords1, axis, dih - adj, False) coord = op.operate(coord) vec = coord - coords1 coord = vec * bl / np.linalg.norm(vec) + coords1 coords.append(coord) def parse_species(sp_str): """ The species specification can take many forms. E.g., simple integers representing atomic numbers ("8"), actual species string ("C") or a labelled species ("C1"). Sometimes, the species string is also not properly capitalized, e.g, ("c1"). This method should take care of these known formats. """ try: return int(sp_str) except ValueError: sp = re.sub(r"\d", "", sp_str) return sp.capitalize() species = list(map(parse_species, species)) return Molecule(species, coords) @classmethod def _parse_molecule(cls, contents): def parse_ghost_indices(coord_text_lines): no_ghost_text = [l.replace("@", "") for l in coord_text_lines] ghosts = [] for index, l in enumerate(coord_text_lines): l = l.strip() if not l: break if "@" in l: ghosts.append(index) return ghosts, no_ghost_text text = copy.deepcopy(contents[:2]) charge_multi_pattern = re.compile(r'\s*(?P<charge>' r'[-+]?\d+)\s+(?P<multi>\d+)') line = text.pop(0) m = charge_multi_pattern.match(line) if m: charge = int(m.group("charge")) spin_multiplicity = int(m.group("multi")) line = text.pop(0) else: charge = None spin_multiplicity = None if line.strip().lower() == "read": return "read", charge, spin_multiplicity, None elif charge is None or spin_multiplicity is None: raise ValueError("Charge or spin multiplicity is not found") else: if contents[1].strip()[0:2] == "--": chunks = "\n".join(contents[2:]).split("--\n") mol = [] ghost_atoms = [] starting_index = 0 for chunk in chunks: frag_contents = chunk.split("\n") m = charge_multi_pattern.match(frag_contents[0]) if m: fragment_charge = int(m.group("charge")) fragment_spin_multiplicity = int(m.group("multi")) else: raise Exception("charge and spin multiplicity must be specified for each fragment") gh, coord_lines = parse_ghost_indices(frag_contents[1:]) fragment = cls._parse_coords(coord_lines) fragment.set_charge_and_spin(fragment_charge, fragment_spin_multiplicity) mol.append(fragment) ghost_atoms.extend([i+starting_index for i in gh]) starting_index += len(fragment) else: ghost_atoms, coord_lines = parse_ghost_indices(contents[1:]) mol = cls._parse_coords(coord_lines) if len(ghost_atoms) == 0: mol.set_charge_and_spin(charge, spin_multiplicity) ghost_atoms = ghost_atoms if len(ghost_atoms) > 0 else None return mol, charge, spin_multiplicity, ghost_atoms @classmethod def _parse_rem(cls, contents): d = dict() int_pattern = re.compile(r'^[-+]?\d+$') float_pattern = re.compile(r'^[-+]?\d+\.\d+([eE][-+]?\d+)?$') for line in contents: tokens = line.strip().replace("=", ' ').split() if len(tokens) < 2: raise ValueError("Can't parse $rem section, there should be " "at least two field: key and value!") k1, v = tokens[:2] k2 = k1.lower() if k2 in cls.alternative_keys: k2 = cls.alternative_keys[k2] if v in cls.alternative_values: v = cls.alternative_values if k2 == "xc_grid": d[k2] = v elif v == "True": d[k2] = True elif v == "False": d[k2] = False elif int_pattern.match(v): d[k2] = int(v) elif float_pattern.match(v): d[k2] = float(v) else: d[k2] = v.lower() return d @classmethod def _parse_aux_basis(cls, contents): if len(contents) % 3 != 0: raise ValueError("Auxiliary basis set section format error") chunks = zip(*[iter(contents)]*3) t = contents[0].split() if len(t) == 2 and int(t[1]) > 0: bs = [] for i, ch in enumerate(chunks): element, number = ch[0].split() basis = ch[1] if int(number) != i+1: raise ValueError("Atom order number doesn't match in $aux_basis section") bs.append((element.strip().capitalize(), basis.strip().lower())) else: bs = dict() for ch in chunks: element, basis = ch[:2] bs[element.strip().capitalize()] = basis.strip().lower() return bs @classmethod def _parse_basis2(cls, contents): if len(contents) % 3 != 0: raise ValueError("Auxiliary basis set section format error") chunks = zip(*[iter(contents)]*3) t = contents[0].split() if len(t) == 2 and int(t[1]) > 0: bs = [] for i, ch in enumerate(chunks): element, number = ch[0].split() basis = ch[1] if int(number) != i+1: raise ValueError("Atom order number doesn't match in $aux_basis section") bs.append((element.strip().capitalize(), basis.strip().lower())) else: bs = dict() for ch in chunks: element, basis = ch[:2] bs[element.strip().capitalize()] = basis.strip().lower() return bs @classmethod def _parse_basis(cls, contents): if len(contents) % 3 != 0: raise ValueError("Basis set section format error") chunks = zip(*[iter(contents)]*3) t = contents[0].split() if len(t) == 2 and int(t[1]) > 0: bs = [] for i, ch in enumerate(chunks): element, number = ch[0].split() basis = ch[1] if int(number) != i+1: raise ValueError("Atom order number doesn't match in $basis section") bs.append((element.strip().capitalize(), basis.strip().lower())) else: bs = dict() for ch in chunks: element, basis = ch[:2] bs[element.strip().capitalize()] = basis.strip().lower() return bs @classmethod def _parse_ecp(cls, contents): if len(contents) % 3 != 0: raise ValueError("ECP section format error") chunks = zip(*[iter(contents)]*3) d = dict() for ch in chunks: element, ecp = ch[:2] d[element.strip().capitalize()] = ecp.strip().lower() return d @classmethod def _parse_alist(cls, contents): atom_list = [] for line in contents: atom_list.extend([int(x) for x in line.split()]) return atom_list @classmethod def _parse_velocity(cls, contents): velocities = [] for line in contents: velocities.append([float(v) for v in line.split()]) return velocities @classmethod def _parse_pcm(cls, contents): d = dict() int_pattern = re.compile(r'^[-+]?\d+$') float_pattern = re.compile(r'^[-+]?\d+\.\d+([eE][-+]?\d+)?$') for line in contents: tokens = line.strip().replace("=", ' ').split() if len(tokens) < 2: raise ValueError("Can't parse $pcm section, there should be " "at least two field: key and value!") k1, v = tokens[:2] k2 = k1.lower() if k2 in cls.alternative_keys: k2 = cls.alternative_keys[k2] if v in cls.alternative_values: v = cls.alternative_values if v == "True": d[k2] = True elif v == "False": d[k2] = False elif int_pattern.match(v): d[k2] = int(v) elif float_pattern.match(v): d[k2] = float(v) else: d[k2] = v.lower() return d @classmethod def _parse_pcm_solvent(cls, contents): d = dict() int_pattern = re.compile(r'^[-+]?\d+$') float_pattern = re.compile(r'^[-+]?\d+\.\d+([eE][-+]?\d+)?$') for line in contents: tokens = line.strip().replace("=", ' ').split() if len(tokens) < 2: raise ValueError("Can't parse $pcm_solvent section, " "there should be at least two field: " "key and value!") k1, v = tokens[:2] k2 = k1.lower() if k2 in cls.alternative_keys: k2 = cls.alternative_keys[k2] if v in cls.alternative_values: v = cls.alternative_values if k2 == "solventatom": v = [int(i) for i in tokens[1:4]] # noinspection PyTypeChecker v.append(float(tokens[4])) if k2 not in d: d[k2] = [v] else: d[k2].append(v) elif v == "True": d[k2] = True elif v == "False": d[k2] = False elif int_pattern.match(v): d[k2] = int(v) elif float_pattern.match(v): d[k2] = float(v) else: d[k2] = v.lower() return d @classmethod def _parse_solvent(cls, contents): return cls._parse_pcm_solvent(contents) @classmethod def _parse_opt(cls, contents): #only parses opt constraints opt_dict = {} const_list = list() fixed_dict = dict() constraints = False fixed_sec = False valid_fix_spec = {"X", "Y", "Z", "XY", "XZ", "YZ", "XYZ"} int_pattern = re.compile(r'^[-+]?\d+$') float_pattern = re.compile(r'^[-+]?\d+\.\d+([eE][-+]?\d+)?$') for line in contents: tokens = line.strip().split() if re.match(r'ENDCONSTRAINT', line, re.IGNORECASE): constraints = False opt_dict["CONSTRAINT"] = const_list elif re.match(r'ENDFIXED', line, re.IGNORECASE): fixed_sec = False opt_dict["FIXED"] = fixed_dict elif constraints: vals = [] for val in tokens: if int_pattern.match(val): vals.append(int(val)) elif float_pattern.match(val): vals.append(float(val)) else: vals.append(val) const_list.append(vals) elif fixed_sec: atom = int(tokens[0]) fix_spec = tokens[1].upper() if fix_spec not in valid_fix_spec: raise ValueError("{} is not a correct keyword to fix" "atoms".format(fix_spec)) fixed_dict[atom] = fix_spec elif re.match(r'CONSTRAINT', line, re.IGNORECASE): constraints = True const_list = [] elif re.match(r'FIXED', line, re.IGNORECASE): fixed_sec = True fixed_dict = dict() elif len(line.strip()) == 0: continue else: raise ValueError("Keyword {} in $opt section is not supported yet". format(line.strip())) return opt_dict class QcInput(MSONable): """ An object representing a multiple step QChem input file. Args: jobs: The QChem jobs (List of QcInput object) """ def __init__(self, jobs): jobs = jobs if isinstance(jobs, list) else [jobs] for j in jobs: if not isinstance(j, QcTask): raise ValueError("jobs must be a list QcInput object") self.jobs = jobs def __str__(self): return "\n@@@\n\n\n".join([str(j) for j in self.jobs]) def write_file(self, filename): with zopen(filename, "wt") as f: f.write(self.__str__()) def as_dict(self): return {"@module": self.__class__.__module__, "@class": self.__class__.__name__, "jobs": [j.as_dict() for j in self.jobs]} @classmethod def from_dict(cls, d): jobs = [QcTask.from_dict(j) for j in d["jobs"]] return QcInput(jobs) @classmethod def from_string(cls, contents): qc_contents = contents.split("@@@") jobs = [QcTask.from_string(cont) for cont in qc_contents] return QcInput(jobs) @classmethod def from_file(cls, filename): with zopen(filename, "rt") as f: return cls.from_string(f.read()) class QcOutput(object): kcal_per_mol_2_eV = 4.3363E-2 def __init__(self, filename): self.filename = filename split_pattern = r"\n\nRunning Job \d+ of \d+ \S+|" \ r"[*]{61}\nJob \d+ of \d+ \n[*]{61}|" \ r"\n.*time.*\nRunning Job \d+ of \d+ \S+" try: with zopen(filename, "rt") as f: data = f.read() except UnicodeDecodeError: with zopen(filename, "rb") as f: data = f.read().decode("latin-1") try: chunks = re.split(split_pattern, data) # noinspection PyTypeChecker self.data = list(map(self._parse_job, chunks)) except UnicodeDecodeError: data = data.decode("latin-1") chunks = re.split(split_pattern, data) # noinspection PyTypeChecker self.data = list(map(self._parse_job, chunks)) @property def final_energy(self): return self.data[-1]["energies"][-1][-1] @property def final_structure(self): return self.data[-1]["molecules"][-1] @classmethod def _expected_successful_pattern(cls, qctask): text = ["Convergence criterion met"] if "correlation" in qctask.params["rem"]: if "ccsd" in qctask.params["rem"]["correlation"]\ or "qcisd" in qctask.params["rem"]["correlation"]: text.append('CC.*converged') if qctask.params["rem"]["jobtype"] == "opt"\ or qctask.params["rem"]["jobtype"] == "ts": text.append("OPTIMIZATION CONVERGED") if qctask.params["rem"]["jobtype"] == "freq": text.append("VIBRATIONAL ANALYSIS") if qctask.params["rem"]["jobtype"] == "gradient": text.append("Gradient of SCF Energy") return text @classmethod def _parse_job(cls, output): scf_energy_pattern = re.compile(r'Total energy in the final basis set =' r'\s+(?P<energy>-\d+\.\d+)') corr_energy_pattern = re.compile(r'(?P<name>[A-Z\-\(\)0-9]+)\s+' r'([tT]otal\s+)?[eE]nergy\s+=\s+' r'(?P<energy>-\d+\.\d+)') coord_pattern = re.compile( r'\s*\d+\s+(?P<element>[A-Z][a-zH]*)\s+(?P<x>\-?\d+\.\d+)\s+' r'(?P<y>\-?\d+\.\d+)\s+(?P<z>\-?\d+\.\d+)') num_ele_pattern = re.compile(r'There are\s+(?P<alpha>\d+)\s+alpha ' r'and\s+(?P<beta>\d+)\s+beta electrons') total_charge_pattern = re.compile(r'Sum of atomic charges =' r'\s+(?P<charge>\-?\d+\.\d+)') scf_iter_pattern = re.compile( r'\d+\s*(?P<energy>\-\d+\.\d+)\s+(?P<diis_error>\d+\.\d+E[-+]\d+)') zpe_pattern = re.compile( r'Zero point vibrational energy:\s+(?P<zpe>\d+\.\d+)\s+kcal/mol') thermal_corr_pattern = re.compile( r'(?P<name>\S.*\S):\s+(?P<correction>\d+\.\d+)\s+k?cal/mol') detailed_charge_pattern = re.compile( r'(Ground-State )?(?P<method>\w+)( Net)? Atomic Charges') nbo_charge_pattern = re.compile( r'(?P<element>[A-Z][a-z]{0,2})\s*(?P<no>\d+)\s+(?P<charge>\-?\d\.\d+)' r'\s+(?P<core>\-?\d+\.\d+)\s+(?P<valence>\-?\d+\.\d+)' r'\s+(?P<rydberg>\-?\d+\.\d+)\s+(?P<total>\-?\d+\.\d+)' r'(\s+(?P<spin>\-?\d\.\d+))?') nbo_wavefunction_type_pattern = re.compile( r'This is an? (?P<type>\w+\-\w+) NBO calculation') scr_dir_pattern = re.compile(r"Scratch files written to\s+(?P<scr_dir>[^\n]+)") bsse_pattern = re.compile( r'DE, kJ/mol\s+(?P<raw_be>\-?\d+\.?\d+([eE]\d+)?)\s+' r'(?P<corrected_be>\-?\d+\.?\d+([eE]\d+)?)') float_pattern = re.compile(r'\-?\d+\.?\d+([eE]\d+)?$') error_defs = ( (re.compile(r'Convergence failure'), "Bad SCF convergence"), (re.compile( r'Coordinates do not transform within specified threshold'), "autoz error"), (re.compile(r'MAXIMUM OPTIMIZATION CYCLES REACHED'), "Geometry optimization failed"), (re.compile(r'\s+[Nn][Aa][Nn]\s+'), "NAN values"), (re.compile(r'energy\s+=\s*(\*)+'), "Numerical disaster"), (re.compile(r'NewFileMan::OpenFile\(\):\s+nopenfiles=\d+\s+' r'maxopenfiles=\d+s+errno=\d+'), "Open file error"), (re.compile(r'Application \d+ exit codes: 1[34]\d+'), "Exit Code 134"), (re.compile(r'Negative overlap matrix eigenvalue. Tighten integral ' r'threshold \(REM_THRESH\)!'), "Negative Eigen"), (re.compile(r'Unable to allocate requested memory in mega_alloc'), "Insufficient static memory"), (re.compile(r'Application \d+ exit signals: Killed'), "Killed"), (re.compile(r'UNABLE TO DETERMINE Lamda IN FormD'), "Lamda Determination Failed"), (re.compile(r'Job too small. Please specify .*CPSCF_NSEG'), "Freq Job Too Small"), (re.compile(r'Not enough total memory'), "Not Enough Total Memory"), (re.compile(r'Use of \$pcm_solvent section has been deprecated starting in Q-Chem'), "pcm_solvent deprecated") ) energies = [] scf_iters = [] coords = [] species = [] molecules = [] gradients = [] freqs = [] vib_freqs = [] vib_modes = [] grad_comp = None errors = [] parse_input = False parse_coords = False parse_scf_iter = False parse_gradient = False parse_freq = False parse_modes = False qctask_lines = [] qctask = None jobtype = None charge = None scr_dir = None spin_multiplicity = None thermal_corr = dict() properly_terminated = False pop_method = None parse_charge = False nbo_available = False nbo_charge_header = None parse_nbo_charge = False charges = dict() scf_successful = False opt_successful = False parse_alpha_homo = False parse_alpha_lumo = False parse_beta_homo = False parse_beta_lumo = False current_alpha_homo = None current_alpha_lumo = None current_beta_homo = None homo_lumo = [] bsse = None hiershfiled_pop = False gen_scfman = False for line in output.split("\n"): for ep, message in error_defs: if ep.search(line): if message == "NAN values": if "time" in line: continue errors.append(message) if parse_input: if "-" * 50 in line: if len(qctask_lines) == 0: continue else: qctask = QcTask.from_string('\n'.join(qctask_lines)) jobtype = qctask.params["rem"]["jobtype"] parse_input = False continue qctask_lines.append(line) elif parse_coords: if "-" * 50 in line: if len(coords) == 0: continue else: if qctask and qctask.ghost_atoms: if isinstance(qctask.mol, Molecule): for i in qctask.ghost_atoms: species[i] = qctask.mol.sites[i].specie.symbol molecules.append(Molecule(species, coords)) coords = [] species = [] parse_coords = False continue if "Atom" in line: continue m = coord_pattern.match(line) coords.append([float(m.group("x")), float(m.group("y")), float(m.group("z"))]) species.append(m.group("element")) elif parse_scf_iter: if "SCF time: CPU" in line: parse_scf_iter = False continue if 'Convergence criterion met' in line and gen_scfman: scf_successful = True name = "GEN_SCFMAN" energy = Energy(float(line.split()[1]), "Ha").to("eV") energies.append(tuple([name, energy])) if 'Convergence criterion met' in line: scf_successful = True m = scf_iter_pattern.search(line) if m: scf_iters[-1].append((float(m.group("energy")), float(m.group("diis_error")))) elif parse_gradient: if "Max gradient component" in line: gradients[-1]["max_gradient"] = \ float(line.split("=")[1]) if grad_comp: if len(grad_comp) == 3: gradients[-1]["gradients"].extend(zip(*grad_comp)) else: raise Exception("Gradient section parsing failed") continue elif "RMS gradient" in line: gradients[-1]["rms_gradient"] = \ float(line.split("=")[1]) parse_gradient = False grad_comp = None continue elif "." not in line: if grad_comp: if len(grad_comp) == 3: gradients[-1]["gradients"].extend(zip(*grad_comp)) else: raise Exception("Gradient section parsing failed") grad_comp = [] else: grad_line_token = list(line) grad_crowd = False grad_line_final = line for i in range(5, len(line), 12): c = grad_line_token[i] if not c.isspace(): grad_crowd = True if ' ' in grad_line_token[i+1: i+6+1] or \ len(grad_line_token[i+1: i+6+1]) < 6: continue grad_line_token[i-1] = ' ' if grad_crowd: grad_line_final = ''.join(grad_line_token) grad_comp.append([float(x) for x in grad_line_final.strip().split()[1:]]) elif parse_freq: if parse_modes: if "TransDip" in line: parse_modes = False for freq, mode in zip(vib_freqs, zip(*vib_modes)): freqs.append({"frequency": freq, "vib_mode": mode}) vib_modes = [] continue dis_flat = [float(x) for x in line.strip().split()[1:]] dis_atom = zip(*([iter(dis_flat)]*3)) vib_modes.append(dis_atom) if "STANDARD THERMODYNAMIC QUANTITIES" in line\ or "Imaginary Frequencies" in line: parse_freq = False continue if "Frequency:" in line: vib_freqs = [float(vib) for vib in line.strip().strip().split()[1:]] elif "X Y Z" in line: parse_modes = True continue elif parse_charge: if '-'*20 in line: if len(charges[pop_method]) == 0: continue else: pop_method = None parse_charge = False else: if len(line.strip()) == 0 or\ 'Atom' in line: continue else: charges[pop_method].append(float(line.split()[2])) elif parse_nbo_charge: if '-'*20 in line: if len(charges[pop_method]) == 0: continue elif "="*20 in line: pop_method = None parse_nbo_charge = False else: m = nbo_charge_pattern.search(line) if m: charges[pop_method].append(float(m.group("charge"))) else: raise Exception("Can't find NBO charges") elif parse_alpha_homo: if "-- Occupied --" in line: continue elif "-- Virtual --" in line: parse_alpha_homo = False parse_alpha_lumo = True continue else: tokens = line.split() m = float_pattern.search(tokens[-1]) if m: current_alpha_homo = float(m.group(0)) continue elif parse_alpha_lumo: current_alpha_lumo = float(line.split()[0]) parse_alpha_lumo = False continue elif parse_beta_homo: if "-- Occupied --" in line: continue elif "-- Virtual --" in line: parse_beta_homo = False parse_beta_lumo = True continue else: tokens = line.split() m = float_pattern.search(tokens[-1]) if m: current_beta_homo = float(m.group(0)) continue elif parse_beta_lumo: current_beta_lumo = float(line.split()[0]) parse_beta_lumo = False if isinstance(current_alpha_homo, float) and isinstance(current_beta_homo, float): current_homo = max([current_alpha_homo, current_beta_homo]) else: current_homo = 0.0 if isinstance(current_alpha_lumo, float) and isinstance(current_beta_lumo, float): current_lumo = min([current_alpha_lumo, current_beta_lumo]) else: current_lumo = 0.0 homo_lumo.append([Energy(current_homo, "Ha").to("eV"), Energy(current_lumo, "Ha").to("eV")]) current_alpha_homo = None current_alpha_lumo = None current_beta_homo = None continue elif "-" * 50 in line and not (current_alpha_lumo is None): homo_lumo.append([Energy(current_alpha_homo, "Ha").to("eV"), Energy(current_alpha_lumo, "Ha").to("eV")]) current_alpha_homo = None current_alpha_lumo = None current_beta_homo = None continue else: if spin_multiplicity is None: m = num_ele_pattern.search(line) if m: spin_multiplicity = int(m.group("alpha")) - \ int(m.group("beta")) + 1 if charge is None: m = total_charge_pattern.search(line) if m: charge = int(float(m.group("charge"))) if scr_dir is None: m = scr_dir_pattern.search(line) if m: scr_dir = os.path.abspath(m.group("scr_dir")) if jobtype and jobtype == "freq": m = zpe_pattern.search(line) if m: zpe = float(m.group("zpe")) thermal_corr["ZPE"] = zpe m = thermal_corr_pattern.search(line) if m: thermal_corr[m.group("name")] = \ float(m.group("correction")) m = bsse_pattern.search(line) if m: raw_be = float(m.group("raw_be")) corrected_be = float(m.group("corrected_be")) bsse_fwu = FloatWithUnit(raw_be - corrected_be, "kJ mol^-1") bsse = bsse_fwu.to('eV atom^-1').real name = None energy = None m = scf_energy_pattern.search(line) if m and not gen_scfman: name = "SCF" energy = Energy(m.group("energy"), "Ha").to("eV") m = corr_energy_pattern.search(line) if m and m.group("name") != "SCF" and not gen_scfman: name = m.group("name") energy = Energy(m.group("energy"), "Ha").to("eV") m = detailed_charge_pattern.search(line) if m: pop_method = m.group("method").lower() parse_charge = True charges[pop_method] = [] if nbo_available: if nbo_charge_header is None: m = nbo_wavefunction_type_pattern.search(line) if m: nbo_wavefunction_type = m.group("type") nbo_charge_header_dict = { "closed-shell": "Atom No Charge Core " "Valence Rydberg Total", "open-shell": "Atom No Charge Core " "Valence Rydberg Total Density"} nbo_charge_header = nbo_charge_header_dict[nbo_wavefunction_type] continue if nbo_charge_header in line: pop_method = "nbo" parse_nbo_charge = True charges[pop_method] = [] if "GEN_SCFMAN: A general SCF calculation manager " in line: gen_scfman = True if "N A T U R A L B O N D O R B I T A L A N A L Y S I S" in line: nbo_available = True if name and energy: energies.append(tuple([name, energy])) if "User input:" in line: parse_input = True elif "Standard Nuclear Orientation (Angstroms)" in line: parse_coords = True elif "Performing Hirshfeld population analysis" in line: hiershfiled_pop = True elif "Hirshfeld: atomic densities completed" in line: hiershfiled_pop = False elif ("Cycle Energy DIIS Error" in line or "Cycle Energy RMS Gradient" in line)\ and not hiershfiled_pop: parse_scf_iter = True scf_iters.append([]) scf_successful = False elif "Gradient of SCF Energy" in line: parse_gradient = True gradients.append({"gradients": []}) elif "VIBRATIONAL ANALYSIS" in line: parse_freq = True elif "Alpha MOs" in line: parse_alpha_homo = True parse_alpha_lumo = False elif "Beta MOs" in line: parse_beta_homo = True parse_beta_lumo = False elif "Thank you very much for using Q-Chem." in line: properly_terminated = True elif "OPTIMIZATION CONVERGED" in line: opt_successful = True if charge is None: errors.append("Molecular charge is not found") elif spin_multiplicity is None: errors.append("Molecular spin multipilicity is not found") else: for mol in molecules: if qctask is None or qctask.ghost_atoms is None: mol.set_charge_and_spin(charge, spin_multiplicity) for k in thermal_corr.keys(): v = thermal_corr[k] if "Entropy" in k: v *= cls.kcal_per_mol_2_eV * 1.0E-3 else: v *= cls.kcal_per_mol_2_eV thermal_corr[k] = v solvent_method = "NA" if qctask: if "solvent_method" in qctask.params["rem"]: solvent_method = qctask.params["rem"]["solvent_method"] else: errors.append("No input text") if not scf_successful: if 'Bad SCF convergence' not in errors: errors.append('Bad SCF convergence') if jobtype == 'opt': if not opt_successful: if 'Geometry optimization failed' not in errors: errors.append('Geometry optimization failed') if len(errors) == 0: for text in cls._expected_successful_pattern(qctask): success_pattern = re.compile(text) if not success_pattern.search(output): errors.append("Can't find text to indicate success") data = { "jobtype": jobtype, "energies": energies, "HOMO/LUMOs": homo_lumo, "bsse": bsse, 'charges': charges, "corrections": thermal_corr, "molecules": molecules, "errors": errors, "has_error": len(errors) > 0, "frequencies": freqs, "gradients": gradients, "input": qctask, "gracefully_terminated": properly_terminated, "scf_iteration_energies": scf_iters, "solvent_method": solvent_method, "scratch_dir": scr_dir } return data class QcNucVeloc(object): """ class to QChem AMID NucVeloc file. Args: filename (str): Filename to parse .. attribute:: time_steps (fs) The AIMD time stamp for each frame .. attribute:: velocities (a.u.) The atom velocities for each frame. Format: [[[x, y, z] [x, y, z] ... ] ## frame 1 ... [[x, y, z] [x, y, z] ... ] ## frame N ] """ def __init__(self, filename): self.filename = filename try: with zopen(filename, "rt") as f: data = f.read() except UnicodeDecodeError: with zopen(filename, "rb") as f: data = f.read().decode("latin-1") self.step_times = [] self.velocities = [] for line in data.split("\n")[1:]: tokens = line.split() if len(tokens) < 4: break step_time = float(tokens[0]) nuc_veloc_tokens = [float(v) for v in tokens[1:]] # unit in au veloc = list(zip(*([iter(nuc_veloc_tokens)] * 3))) self.step_times.append(step_time) self.velocities.append(veloc)
matk86/pymatgen
pymatgen/io/qchem.py
Python
mit
87,768
[ "Gaussian", "Q-Chem", "pymatgen" ]
045274848fee1c3edc603bfc0f3a673ebbe1aabd6b9863ae44cb283649808fb7
#! /usr/bin/env python # # @BEGIN LICENSE # # Psi4: an open-source quantum chemistry software package # # Copyright (c) 2007-2021 The Psi4 Developers. # # The copyrights for code used from other parties are included in # the corresponding files. # # This file is part of Psi4. # # Psi4 is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, version 3. # # Psi4 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License along # with Psi4; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # @END LICENSE # from __future__ import print_function import argparse import os import re import subprocess import sys def collect_version_input_from_fallback(meta_file='metadata.py'): """From *meta_file*, collect lines matching ``_version_{key} = {value}`` and return as dictionary. """ cwd = os.path.dirname(os.path.abspath(__file__)) res = dict(re.findall("__version_([a-z_]+)\s*=\s*'([^']+)'", open(cwd + '/' + meta_file).read())) res.pop('_') return res def is_git_repo(cwd='./', dot_git_qualifies=False, no_git_cmd_result=False): """Returns boolean as to whether *cwd* is under git control. When no ``git`` command available in environment, *no_git_cmd_result* returned. If within the .git directory of a git repository, *dot_git_qualifies* returned. """ command = 'git rev-parse --is-inside-work-tree' try: process = subprocess.Popen(command.split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, cwd=cwd, universal_newlines=True) except EnvironmentError as e: # most likely, git command not available return no_git_cmd_result (out, err) = process.communicate() if process.returncode != 0: # fatal: Not a git repository (or any of the parent directories): .git return False if out.strip() == 'true': # in a git repo and not within .git dir return True if out.strip() == 'false': # in a git repo in .git dir return dot_git_qualifies def collect_version_input_from_git(): """Returns a dictionary filled with ``git describe`` results, clean/dirty flag, and branch status. *cwd* should already be confirmed as a git repository; this doesn't catch returncodes or EnvironmentErrors because the raised errors are preferred to incomplete return dictionary. """ cwd = os.path.dirname(os.path.abspath(__file__)) res = {} # * only want annotated tags, so not --all # * in case *no* tags (impossible in Psi4), --always gets at least hash # * get commits & hash info even if on tag using --long command = 'git describe --abbrev=7 --long --always HEAD' process = subprocess.Popen(command.split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, cwd=cwd, universal_newlines=True) (out, err) = process.communicate() fields = str(out).rstrip().split('-') if len(fields) == 3: # normal: 0.1-62-ga68d223 res['latest_annotated_v_tag'] = fields[0][1:] # drop the "v"; tag mismatch caught later res['commits_since_tag'] = fields[1] res['seven_char_hash'] = fields[2][1:] # drop the "g" git identifier else: # no tag present: a68d223 res['latest_annotated_v_tag'] = '' res['commits_since_tag'] = '' res['seven_char_hash'] = fields[0] # no prepended "g" command = 'git diff-index --name-only HEAD' process = subprocess.Popen(command.split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, cwd=cwd, universal_newlines=True) (out, err) = process.communicate() res['is_clean'] = False if str(out).rstrip() else True command = 'git rev-parse --abbrev-ref HEAD' # returns HEAD when detached process = subprocess.Popen(command.split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, cwd=cwd, universal_newlines=True) (out, err) = process.communicate() res['branch_name'] = str(out).rstrip() return res def reconcile_and_compute_version_output(quiet=False): res = collect_version_input_from_fallback(meta_file='metadata.py') meta_latest_annotated_v_tag, _, meta_seven_char_hash = res['long'].partition('+') # this is the tag format (PEP440 compliant) that our machinery is expecting. # let's catch any deviations with Travis before it can corrupt versioning. sane_tag = re.compile("""^(?P<tag>(?P<forwardseries>\d+\.\d+(?P<patch>\.[1-9]+)?)(?(patch)|(?P<prere>((a)|(b)|(rc))\d+)?))$""") mobj = sane_tag.match(meta_latest_annotated_v_tag) if mobj: # some versioning machinery (looking at you, CMake) does strictly # numerical comparisons such as M.m.p.t and thus can't handle # prereleases and dev snapshots. we compute a Most Rescent Ancestral # Release tag (e.g., 1.0 or 1.12.1) for a backward release series. backwardseries = mobj.group('forwardseries') if mobj.group('prere'): tmp = backwardseries.split('.') bumpdown = str(int(tmp[-1]) - 1) if bumpdown == '-1': print("""Unavoidable snag. Probably "2.0". Can't predict backward series from present prerelease.""") sys.exit() else: tmp[-1] = bumpdown backwardseries = '.'.join(tmp) else: print("""Tag in {} is malformed: {}""".format( 'metadata.py', meta_latest_annotated_v_tag)) sys.exit() cwd = os.path.dirname(os.path.abspath(__file__)) if is_git_repo(cwd=cwd): res.update(collect_version_input_from_git()) # establish the default response project_release = False project_prerelease = False project_version = 'undefined' project_version_long = 'undefined+' + res['seven_char_hash'] if res['latest_annotated_v_tag'] == meta_latest_annotated_v_tag: trial_version_long_release = res['latest_annotated_v_tag'] + '+' + res['seven_char_hash'] trial_version_devel = res['upcoming_annotated_v_tag'] + '.dev' + res['commits_since_tag'] trial_version_long_devel = trial_version_devel + '+' + res['seven_char_hash'] if int(res['commits_since_tag']) == 0: if trial_version_long_release == res['long']: print("""Amazing, this can't actually happen that git hash stored at git commit.""") sys.exit() else: if meta_seven_char_hash == 'zzzzzzz': if not quiet: print("""Defining {} version: {} (recorded and computed)""".format( 'prerelease' if mobj.group('prere') else 'release', trial_version_long_release)) project_release = res['is_clean'] and not mobj.group('prere') project_prerelease = res['is_clean'] and mobj.group('prere') project_version = meta_latest_annotated_v_tag project_version_long = trial_version_long_release else: print("""Undefining version for irreconcilable hashes: {} (computed) vs {} (recorded)""".format( trial_version_long_release, res['long'])) else: if res['branch_name'].endswith('.x'): print("""Undefining version as development snapshots not allowed on maintenance branch: {} (rejected computed)""".format( trial_version_long_devel)) # TODO prob should be undef unless on master else: if not quiet: print("""Defining development snapshot version: {} (computed)""".format( trial_version_long_devel)) project_version = trial_version_devel project_version_long = trial_version_long_devel else: print("""Undefining version for irreconcilable tags: {} (computed) vs {} (recorded)""".format( res['latest_annotated_v_tag'], meta_latest_annotated_v_tag)) else: print("""Blindly (no git) accepting release version: {} (recorded)""".format( res['long'])) # assumes that zip only comes from [pre]release. GitHub hides others, but they're there. project_release = not bool(mobj.group('prere')) project_prerelease = bool(mobj.group('prere')) project_version = meta_latest_annotated_v_tag project_version_long = res['long'] res['is_clean'] = True res['branch_name'] = '' def mapped_cmake_version(last_release, is_release): """CMake expects MAJOR.MINOR.PATCH.TWEAK. The ancestral *last_release* is padded into the first three roles. If not *is_release*, the tweak role collects all postrelease states (prereleases and devel snapshots) into dummy 999 that at least gets them sorted correctly between releases and allows EXACT CMake version comparisons. Returns, for example, 1.1.0.0 for release 1.1, 1.3.4.0 for maintenance release 1.3.4, and 1.0.0.999 for prerelease 1.1a1 or snapshot 1.1.dev600 """ cm = last_release.split('.') cm += ['0'] * (4 - len(cm)) if not is_release: cm[-1] = '999' cm = '.'.join(cm) return cm return {'__version__': project_version, '__version_long': project_version_long, '__version_is_clean': res['is_clean'], '__version_branch_name': res['branch_name'], '__version_last_release': backwardseries, '__version_cmake': mapped_cmake_version(backwardseries, project_release), '__version_release': project_release, '__version_prerelease': project_prerelease} def write_new_metafile(versdata, outfile='metadata.out.py'): formatter_fn = """ def version_formatter(formatstring='{version}'): if formatstring == 'all': formatstring = '{version} {{{branch}}} {githash} {cmake} {clean} {release} {lastrel} <-- {versionlong}' release = 'release' if (__version_release == 'True') else ('prerelease' if (__version_prerelease == 'True') else '') ans = formatstring.format(version=__version__, versionlong=__version_long, githash=__version_long[len(__version__)+1:], clean='' if __version_is_clean == 'True' else 'dirty', branch=__version_branch_name, lastrel=__version_last_release, cmake=__version_cmake, release=release) return ans """ main_fn = """ if __name__ == '__main__': print(version_formatter(formatstring='all')) """ with open(os.path.abspath(outfile), 'w') as handle: for k in sorted(versdata): handle.write("""{} = '{}'\n""".format(k, versdata[k])) handle.write(formatter_fn) handle.write(main_fn) def write_new_cmake_metafile(versdata, outfile='metadata.out.cmake'): main_fn = """ include(CMakePackageConfigHelpers) write_basic_package_version_file( ${{WTO}}/${{PN}}ConfigVersion.cmake VERSION {ver} COMPATIBILITY AnyNewerVersion) """ with open(os.path.abspath(outfile), 'w') as handle: handle.write(main_fn.format(ver=versdata['__version_cmake'])) def version_formatter(versdata, formatstring="""{version}"""): """Return version information string with data from *versdata* when supplied with *formatstring* suitable for ``formatstring.format()``. Use plaintext and any placeholders among: version, versionlong, githash, branch, clean, release, lastrel, cmake. For example, '{branch}@{githash}' returns something like 'fix200@1234567'. """ if formatstring == 'all': formatstring = '{version} {{{branch}}} {githash} {cmake} {clean} {release} {lastrel} <-- {versionlong}' release = 'release' if versdata['__version_release'] else ('prerelease' if versdata['__version_prerelease'] else '') ans = formatstring.format(version=versdata['__version__'], versionlong=versdata['__version_long'], githash=versdata['__version_long'][len(versdata['__version__']) + 1:], clean='' if versdata['__version_is_clean'] else 'dirty', branch=versdata['__version_branch_name'], lastrel=versdata['__version_last_release'], cmake=versdata['__version_cmake'], release=release) return ans if __name__ == '__main__': parser = argparse.ArgumentParser(description='Script to extract Psi4 version from source. Use psi4.version_formatter(fmt_string) after build.') parser.add_argument('--metaout', default='metadata.out.py', help='file to which the computed version info written') parser.add_argument('--cmakeout', default='metadata.out.cmake', help='file to which the CMake ConfigVersion generator written') parser.add_argument('--format', default='all', help='string like "{version} {githash}" to be filled in and returned') parser.add_argument('--formatonly', action='store_true', help='print only the format string, not the detection info') args = parser.parse_args() ans = reconcile_and_compute_version_output(quiet=args.formatonly) write_new_metafile(ans, args.metaout) write_new_cmake_metafile(ans, args.cmakeout) ans2 = version_formatter(ans, formatstring=args.format) print(ans2)
psi-rking/psi4
psi4/versioner.py
Python
lgpl-3.0
14,574
[ "Psi4" ]
7a7a630cf8f6e74392a4afc0b09f571449ffdad32ba146695dc65321159f04a0
from __future__ import absolute_import, division, print_function import sys import os.path import warnings import datetime, time import numpy as np import astropy.table # See pixsim.py import astropy.time from astropy.io import fits import fitsio import desitarget import desitarget.targetmask from desitarget.targets import main_cmx_or_sv import desispec.io import desispec.io.util import desimodel.io from desimodel.focalplane import fiber_area_arcsec2 import desiutil.depend from desiutil.iers import freeze_iers import desispec.interpolation import desisim.io import desisim.specsim #- Reference observing conditions for each of dark, gray, bright reference_conditions = dict(DARK=dict(), GRAY=dict(), BRIGHT=dict()) reference_conditions['DARK']['SEEING'] = 1.1 reference_conditions['DARK']['EXPTIME'] = 1000 reference_conditions['DARK']['AIRMASS'] = 1.0 reference_conditions['DARK']['MOONFRAC'] = 0.0 reference_conditions['DARK']['MOONALT'] = -60 reference_conditions['DARK']['MOONSEP'] = 180 reference_conditions['GRAY']['SEEING'] = 1.1 reference_conditions['GRAY']['EXPTIME'] = 1000 reference_conditions['GRAY']['AIRMASS'] = 1.0 reference_conditions['GRAY']['MOONFRAC'] = 0.1 reference_conditions['GRAY']['MOONALT'] = 10 reference_conditions['GRAY']['MOONSEP'] = 60 reference_conditions['BRIGHT']['SEEING'] = 1.1 reference_conditions['BRIGHT']['EXPTIME'] = 300 reference_conditions['BRIGHT']['AIRMASS'] = 1.0 reference_conditions['BRIGHT']['MOONFRAC'] = 0.7 reference_conditions['BRIGHT']['MOONALT'] = 60 reference_conditions['BRIGHT']['MOONSEP'] = 50 for objtype in ('LRG', 'QSO', 'ELG'): reference_conditions[objtype] = reference_conditions['DARK'] for objtype in ('MWS', 'BGS'): reference_conditions[objtype] = reference_conditions['BRIGHT'] def simarc(arcdata, nspec=5000, nonuniform=False, testslit=False): ''' Simulates an arc lamp exposure Args: arcdata (Table): Table with columns VACUUM_WAVE and ELECTRONS nspec (int, optional) number of spectra to simulate nonuniform (bool, optional): include calibration screen non-uniformity testslit (bool, optional): this argument is undocumented. Returns: (wave, phot, fibermap) wave: 1D[nwave] wavelengths in Angstroms phot: 2D[nspec,nwave] photons observed by CCD (i.e. electrons) fibermap: fibermap Table Note: this bypasses specsim since we don't have an arclamp model in surface brightness units; we only have electrons on the CCD. But it does include the effect of varying fiber sizes. TODO: * add exptime support * update inputs to surface brightness and DESI lamp lines (DESI-2674) * add psfconvolve option ''' wave = arcdata['VACUUM_WAVE'] phot = arcdata['ELECTRONS'] if testslit: fibermap = astropy.table.Table(testslit_fibermap()[0:nspec]) else: fibermap = astropy.table.Table(desispec.io.empty_fibermap(nspec)) fibermap.meta['FLAVOR'] = 'arc' fibermap['OBJTYPE'] = 'ARC' x = fibermap['FIBERASSIGN_X'] y = fibermap['FIBERASSIGN_Y'] r = np.sqrt(x**2 + y**2) #----- #- Determine ratio of fiber sizes relative to larges fiber fiber_area = fiber_area_arcsec2(x, y) size_ratio = fiber_area / np.max(fiber_area) #- Correct photons for fiber size phot = np.tile(phot, nspec).reshape(nspec, len(wave)) phot = (phot.T * size_ratio).T #- Apply calibration screen non-uniformity if nonuniform: ratio = _calib_screen_uniformity(radius=r) assert np.all(ratio <= 1) and np.all(ratio > 0.99) phot = (phot.T * ratio).T return wave, phot, fibermap def simflat(flatfile, nspec=5000, nonuniform=False, exptime=10, testslit=False, psfconvolve=True, specsim_config_file="desi"): ''' Simulates a flat lamp calibration exposure Args: flatfile (str): filename with flat lamp spectrum data nspec (int, optional): number of spectra to simulate nonuniform (bool, optional): include calibration screen non-uniformity exptime (float, optional): exposure time in seconds psfconvolve (bool, optional): passed to simspec.simulator.Simulator camera_output. if True, convolve with PSF and include per-camera outputs specsim_config_file (str, optional): path to DESI instrument config file. default is desi config in specsim package. Returns: (sim, fibermap) sim: specsim Simulator object fibermap: fibermap Table ''' import astropy.units as u import specsim.simulator from desiutil.log import get_logger log = get_logger() freeze_iers() log.info('Reading flat lamp spectrum from {}'.format(flatfile)) sbflux, hdr = fits.getdata(flatfile, header=True) wave = desispec.io.util.header2wave(hdr) assert len(wave) == len(sbflux) #- Trim to DESI wavelength ranges #- TODO: is there an easier way to get these parameters? try: params = desimodel.io.load_desiparams() wavemin = params['ccd']['b']['wavemin'] wavemax = params['ccd']['z']['wavemax'] except KeyError: wavemin = desimodel.io.load_throughput('b').wavemin wavemax = desimodel.io.load_throughput('z').wavemax ii = (wavemin <= wave) & (wave <= wavemax) wave = wave[ii] sbflux = sbflux[ii] #- Downsample to 0.2A grid to not blow up memory ww = np.arange(wave[0], wave[-1]+0.1, 0.2) sbflux = desispec.interpolation.resample_flux(ww, wave, sbflux) wave = ww if testslit: fibermap = astropy.table.Table(testslit_fibermap()[0:nspec]) else: fibermap = astropy.table.Table(desispec.io.empty_fibermap(nspec)) fibermap.meta['FLAVOR'] = 'flat' fibermap['OBJTYPE'] = 'FLT' x = fibermap['FIBERASSIGN_X'] y = fibermap['FIBERASSIGN_Y'] r = np.sqrt(x**2 + y**2) xy = np.vstack([x, y]).T * u.mm #- Convert to unit-ful 2D sbunit = 1e-17 * u.erg / (u.Angstrom * u.s * u.cm ** 2 * u.arcsec ** 2) sbflux = np.tile(sbflux, nspec).reshape(nspec, len(wave)) * sbunit if nonuniform: ratio = _calib_screen_uniformity(radius=r) assert np.all(ratio <= 1) and np.all(ratio > 0.99) sbflux = (sbflux.T * ratio).T tmp = np.min(sbflux) / np.max(sbflux) log.info('Adjusting for calibration screen non-uniformity {:.4f}'.format(tmp)) log.debug('Creating specsim configuration') config = _specsim_config_for_wave(wave,specsim_config_file=specsim_config_file) log.debug('Creating specsim simulator for {} spectra'.format(nspec)) # sim = specsim.simulator.Simulator(config, num_fibers=nspec) sim = desisim.specsim.get_simulator(config, num_fibers=nspec, camera_output=psfconvolve) sim.observation.exposure_time = exptime * u.s log.debug('Simulating') sim.simulate(calibration_surface_brightness=sbflux, focal_positions=xy) return sim, fibermap def _calib_screen_uniformity(theta=None, radius=None): ''' Returns calibration screen relative non-uniformity as a function of theta (degrees) or focal plane radius (mm) ''' if theta is not None: assert radius is None #- Julien Guy fit to DESI-2761v1 figure 5 #- ratio lamp/sky = 1 - 9.4e-04*theta - 2.1e-03 * theta**2 return 1 - 9.4e-04*theta - 2.1e-03 * theta**2 elif radius is not None: import desimodel.io ps = desimodel.io.load_platescale() theta = np.interp(radius, ps['radius'], ps['theta']) return _calib_screen_uniformity(theta=theta) else: raise ValueError('must provide theta or radius') def simscience(targets, fiberassign, obsconditions='DARK', expid=None, nspec=None, psfconvolve=True): ''' Simulates a new DESI exposure from surveysim+fiberassign+mock spectra Args: targets (tuple): tuple of (flux[nspec,nwave], wave[nwave], meta[nspec]) fiberassign (Table): fiber assignments table obsconditions (object, optional): observation metadata as str: DARK (default) or GRAY or BRIGHT dict or row of Table with keys:: SEEING (arcsec), EXPTIME (sec), AIRMASS, MOONFRAC (0-1), MOONALT (deg), MOONSEP (deg) Table including EXPID for subselection of which row to use filename with obsconditions Table; expid must also be set expid (int, optional): exposure ID nspec (int, optional): number of spectra to simulate psfconvolve (bool, optional): passed to simspec.simulator.Simulator camera_output. if True, convolve with PSF and include per-camera outputs Returns: (sim, fibermap, meta) sim: specsim.simulate.Simulator object fibermap: Table meta: target metadata truth table See obs.new_exposure() for function to generate new random exposure, independent from surveysim, fiberassignment, and pre-generated mocks. ''' from desiutil.log import get_logger log = get_logger() freeze_iers() flux, wave, meta = targets if nspec is not None: fiberassign = fiberassign[0:nspec] flux = flux[0:nspec] meta = meta[0:nspec] assert np.all(fiberassign['TARGETID'] == meta['TARGETID']) fibermap = fibermeta2fibermap(fiberassign, meta) #- Parse multiple options for obsconditions if isinstance(obsconditions, str): #- DARK GRAY BRIGHT if obsconditions.upper() in reference_conditions: log.info('Using reference {} obsconditions'.format(obsconditions.upper())) obsconditions = reference_conditions[obsconditions.upper()] #- filename elif os.path.exists(obsconditions): log.info('Loading obsconditions from {}'.format(obsconditions.upper())) if obsconditions.endswith('.ecsv'): allobs = astropy.table.Table.read(obsconditions, format='ascii.ecsv') else: allobs = astropy.table.Table.read(obsconditions) #- trim down to just this exposure if (expid is not None) and 'EXPID' in allobs.colnames: obsconditions = allobs[allobs['EXPID'] == expid] else: raise ValueError('unable to select which exposure from obsconditions file') else: raise ValueError('bad obsconditions {}'.format(obsconditions)) elif isinstance(obsconditions, (astropy.table.Table, np.ndarray)): #- trim down to just this exposure if (expid is not None) and ('EXPID' in obsconditions): obsconditions = allobs[allobs['EXPID'] == expid] else: raise ValueError('must provide expid when providing obsconditions as a Table') #- Validate obsconditions keys try: obskeys = set(obsconditions.dtype.names) except AttributeError: obskeys = set(obsconditions.keys()) missing_keys = set(reference_conditions['DARK'].keys()) - obskeys if len(missing_keys) > 0: raise ValueError('obsconditions missing keys {}'.format(missing_keys)) sim = simulate_spectra(wave, flux, fibermap=fibermap, obsconditions=obsconditions, psfconvolve=psfconvolve) return sim, fibermap def fibermeta2fibermap(fiberassign, meta): ''' Convert a fiberassign + targeting metadata table into a fibermap Table A future refactor will standardize the column names of fiber assignment, target catalogs, and fibermaps, but in the meantime this is needed. ''' #- Handle DESI_TARGET vs. SV1_DESI_TARGET etc. target_colnames, target_masks, survey = main_cmx_or_sv(fiberassign) targetcol = target_colnames[0] #- DESI_TARGET or SV1_DESI_TARGET desi_mask = target_masks[0] #- desi_mask or sv1_desi_mask #- Copy column names in common fibermap = desispec.io.empty_fibermap(len(fiberassign)) for c in ['FIBER', 'TARGETID', 'BRICKNAME']: fibermap[c] = fiberassign[c] for c in target_colnames: fibermap[c] = fiberassign[c] for band in ['G', 'R', 'Z', 'W1', 'W2']: key = 'FLUX_'+band fibermap[key] = meta[key] #- TODO: FLUX_IVAR_* #- set OBJTYPE #- TODO: what about MWS science targets that are also standard stars? #- Loop over STD options for backwards/forwards compatibility stdmask = 0 for name in ['STD', 'STD_FSTAR', 'STD_WD' 'STD_FAINT', 'STD_FAINT_BEST', 'STD_BRIGHT', 'STD_BRIGHT_BEST']: if name in desi_mask.names(): stdmask |= desi_mask[name] isSTD = (fiberassign[targetcol] & stdmask) != 0 isSKY = (fiberassign[targetcol] & desi_mask.SKY) != 0 isSCI = (~isSTD & ~isSKY) fibermap['OBJTYPE'][isSKY] = 'SKY' fibermap['OBJTYPE'][isSCI | isSTD] = 'TGT' fibermap['LAMBDAREF'] = 5400.0 fibermap['TARGET_RA'] = fiberassign['TARGET_RA'] fibermap['TARGET_DEC'] = fiberassign['TARGET_DEC'] fibermap['FIBER_RA'] = fiberassign['TARGET_RA'] fibermap['FIBER_DEC'] = fiberassign['TARGET_DEC'] fibermap['FIBERASSIGN_X'] = fiberassign['FIBERASSIGN_X'] fibermap['FIBERASSIGN_Y'] = fiberassign['FIBERASSIGN_Y'] fibermap['DELTA_X'] = 0.0 fibermap['DELTA_Y'] = 0.0 #- TODO: POSITIONER -> LOCATION #- TODO: TARGETCAT (how should we propagate this info into here?) #- TODO: NaNs in fibermap for unassigned positioners targets return fibermap #------------------------------------------------------------------------- #- specsim related routines def simulate_spectra(wave, flux, fibermap=None, obsconditions=None, redshift=None, dwave_out=None, seed=None, psfconvolve=True, specsim_config_file = "desi"): ''' Simulates an exposure without reading/writing data files Args: wave (array): 1D wavelengths in Angstroms flux (array): 2D[nspec,nwave] flux in 1e-17 erg/s/cm2/Angstrom or astropy Quantity with flux units fibermap (Table, optional): table from fiberassign or fibermap; uses X/YFOCAL_DESIGN, TARGETID, DESI_TARGET obsconditions(dict-like, optional): observation metadata including SEEING (arcsec), EXPTIME (sec), AIRMASS, MOONFRAC (0-1), MOONALT (deg), MOONSEP (deg) redshift (array-like, optional): list/array with each index being the redshifts for that target seed (int, optional): random seed psfconvolve (bool, optional): passed to simspec.simulator.Simulator camera_output. if True, convolve with PSF and include per-camera outputs specsim_config_file (str, optional): path to DESI instrument config file. default is desi config in specsim package. Returns: A specsim.simulator.Simulator object TODO: galsim support ''' import specsim.simulator import specsim.config import astropy.units as u from astropy.coordinates import SkyCoord from desiutil.log import get_logger log = get_logger('DEBUG') freeze_iers() # Input cosmology to calculate the angular diameter distance of the galaxy's redshift from astropy.cosmology import FlatLambdaCDM LCDM = FlatLambdaCDM(H0=70, Om0=0.3) ang_diam_dist = LCDM.angular_diameter_distance random_state = np.random.RandomState(seed) nspec, nwave = flux.shape #- Convert to unit-ful quantities for specsim if not isinstance(flux, u.Quantity): fluxunits = 1e-17 * u.erg / (u.Angstrom * u.s * u.cm**2) flux = flux * fluxunits if not isinstance(wave, u.Quantity): wave = wave * u.Angstrom log.debug('loading specsim desi config {}'.format(specsim_config_file)) config = _specsim_config_for_wave(wave.to('Angstrom').value, dwave_out=dwave_out, specsim_config_file=specsim_config_file) #- Create simulator log.debug('creating specsim desi simulator') # desi = specsim.simulator.Simulator(config, num_fibers=nspec) desi = desisim.specsim.get_simulator(config, num_fibers=nspec, camera_output=psfconvolve) if obsconditions is None: log.warning('Assuming DARK conditions') obsconditions = reference_conditions['DARK'] elif isinstance(obsconditions, str): obsconditions = reference_conditions[obsconditions.upper()] desi.atmosphere.seeing_fwhm_ref = obsconditions['SEEING'] * u.arcsec desi.observation.exposure_time = obsconditions['EXPTIME'] * u.s desi.atmosphere.airmass = obsconditions['AIRMASS'] desi.atmosphere.moon.moon_phase = np.arccos(2*obsconditions['MOONFRAC']-1)/np.pi desi.atmosphere.moon.moon_zenith = (90 - obsconditions['MOONALT']) * u.deg desi.atmosphere.moon.separation_angle = obsconditions['MOONSEP'] * u.deg try: desi.observation.exposure_start = astropy.time.Time(obsconditions['MJD'], format='mjd') log.info('exposure_start {}'.format(desi.observation.exposure_start.utc.isot)) except KeyError: log.info('MJD not in obsconditions, using DATE-OBS {}'.format(desi.observation.exposure_start.utc.isot)) for obskey in reference_conditions['DARK'].keys(): obsval = obsconditions[obskey] log.debug('obsconditions {} = {}'.format(obskey, obsval)) #- Set fiber locations from meta Table or default fiberpos fiberpos = desimodel.io.load_fiberpos() if fibermap is not None and len(fiberpos) != len(fibermap): ii = np.in1d(fiberpos['FIBER'], fibermap['FIBER']) fiberpos = fiberpos[ii] if fibermap is None: fibermap = astropy.table.Table() fibermap['X'] = fiberpos['X'][0:nspec] fibermap['Y'] = fiberpos['Y'][0:nspec] fibermap['FIBER'] = fiberpos['FIBER'][0:nspec] fibermap['LOCATION'] = fiberpos['LOCATION'][0:nspec] #- Extract fiber locations from meta Table -> xy[nspec,2] assert np.all(fibermap['FIBER'] == fiberpos['FIBER'][0:nspec]) if 'XFOCAL_DESIGN' in fibermap.dtype.names: xy = np.vstack([fibermap['XFOCAL_DESIGN'], fibermap['YFOCAL_DESIGN']]).T * u.mm elif 'X' in fibermap.dtype.names: xy = np.vstack([fibermap['X'], fibermap['Y']]).T * u.mm else: xy = np.vstack([fiberpos['X'], fiberpos['Y']]).T * u.mm if 'TARGETID' in fibermap.dtype.names: unassigned = (fibermap['TARGETID'] == -1) if np.any(unassigned): #- see https://github.com/astropy/astropy/issues/5961 #- for the units -> array -> units trick xy[unassigned,0] = np.asarray(fiberpos['X'][unassigned], dtype=xy.dtype) * u.mm xy[unassigned,1] = np.asarray(fiberpos['Y'][unassigned], dtype=xy.dtype) * u.mm #- Determine source types #- TODO: source shapes + galsim instead of fixed types + fiberloss table source_types = get_source_types(fibermap) # source types are sky elg lrg qso bgs star , they # are only used in specsim.fiberloss for the desi.instrument.fiberloss_method="table" method if specsim_config_file == "desi": desi.instrument.fiberloss_method = 'fastsim' log.debug('running simulation with {} fiber loss method'.format(desi.instrument.fiberloss_method)) unique_source_types = set(source_types) comment_line="source types:" for u in set(source_types) : comment_line+=" {} {}".format(np.sum(source_types==u),u) log.debug(comment_line) source_fraction=None source_half_light_radius=None source_minor_major_axis_ratio=None source_position_angle=None if desi.instrument.fiberloss_method == 'fastsim' or desi.instrument.fiberloss_method == 'galsim' : # the following parameters are used only with fastsim and galsim methods elgs=(source_types=="elg") lrgs=(source_types=="lrg") bgss=(source_types=="bgs") if np.sum(lrgs)>0 or np.sum(elgs)>0: log.warning("the half light radii are fixed here for LRGs and ELGs (and not magnitude or redshift dependent)") if np.sum(bgss)>0 and redshift is None: log.warning("the half light radii are fixed here for BGS (as redshifts weren't supplied)") # BGS parameters based on SDSS main sample, in g-band # see analysis from J. Moustakas in # https://github.com/desihub/desitarget/blob/master/doc/nb/bgs-morphology-properties.ipynb # B/T (bulge-to-total ratio): 0.48 (0.36 - 0.59). # Bulge Sersic n: 2.27 (1.12 - 3.60). # log10 (Bulge Half-light radius): 0.11 (-0.077 - 0.307) arcsec # log10 (Disk Half-light radius): 0.67 (0.54 - 0.82) arcsec # This gives # bulge_fraction = 0.48 # disk_fraction = 0.52 # bulge_half_light_radius = 1.3 arcsec # disk_half_light_radius = 4.7 arcsec # note we use De Vaucouleurs' law , which correspond to a Sersic index n=4 # source_fraction[:,0] is DISK profile (exponential) fraction # source_fraction[:,1] is BULGE profile (devaucouleurs) fraction # 1 - np.sum(source_fraction,axis=1) is POINT source profile fraction # see specsim.GalsimFiberlossCalculator.create_source routine source_fraction=np.zeros((nspec,2)) source_fraction[elgs,0]=1. # ELG are disk only source_fraction[lrgs,1]=1. # LRG are bulge only source_fraction[bgss,0]=0.52 # disk comp in BGS source_fraction[bgss,1]=0.48 # bulge comp in BGS # source_half_light_radius[:,0] is the half light radius in arcsec for the DISK profile # source_half_light_radius[:,1] is the half light radius in arcsec for the BULGE profile # see specsim.GalsimFiberlossCalculator.create_source routine source_half_light_radius=np.zeros((nspec,2)) source_half_light_radius[elgs,0]=0.45 # ELG are disk only, arcsec source_half_light_radius[lrgs,1]=1. # LRG are bulge only, arcsec # 4.7 is angular size of z=0.1 disk, and 1.3 is angular size of z=0.1 bulge bgs_disk_z01 = 4.7 # in arcsec bgs_bulge_z01 = 1.3 # in arcsec # Convert to angular size of the objects in this sample with given redshifts if redshift is None: angscales = np.ones(np.sum(bgss)) else: bgs_redshifts = redshift[bgss] # Avoid infinities if np.any(bgs_redshifts <= 0.): bgs_redshifts[bgs_redshifts <= 0.] = 0.0001 angscales = ( ang_diam_dist(0.1) / ang_diam_dist(bgs_redshifts) ).value source_half_light_radius[bgss,0]= bgs_disk_z01 * angscales # disk comp in BGS, arcsec source_half_light_radius[bgss,1]= bgs_bulge_z01 * angscales # bulge comp in BGS, arcsec if desi.instrument.fiberloss_method == 'galsim' : # the following parameters are used only with galsim method # source_minor_major_axis_ratio[:,0] is the axis ratio for the DISK profile # source_minor_major_axis_ratio[:,1] is the axis ratio for the BULGE profile # see specsim.GalsimFiberlossCalculator.create_source routine source_minor_major_axis_ratio=np.zeros((nspec,2)) source_minor_major_axis_ratio[elgs,0]=0.7 source_minor_major_axis_ratio[lrgs,1]=0.7 source_minor_major_axis_ratio[bgss,1]=0.7 # the source position angle is in degrees # see specsim.GalsimFiberlossCalculator.create_source routine source_position_angle = np.zeros((nspec,2)) random_angles = 360.*random_state.uniform(size=nspec) source_position_angle[elgs,0]=random_angles[elgs] source_position_angle[lrgs,1]=random_angles[lrgs] source_position_angle[bgss,1]=random_angles[bgss] #- Work around randomness in specsim quickfiberloss calculations #- while not impacting global random state. #- See https://github.com/desihub/specsim/issues/83 randstate = np.random.get_state() np.random.seed(seed) desi.simulate(source_fluxes=flux, focal_positions=xy, source_types=source_types, source_fraction=source_fraction, source_half_light_radius=source_half_light_radius, source_minor_major_axis_ratio=source_minor_major_axis_ratio, source_position_angle=source_position_angle) np.random.set_state(randstate) return desi def _specsim_config_for_wave(wave, dwave_out=None, specsim_config_file = "desi"): ''' Generate specsim config object for a given wavelength grid Args: wave: array of linearly spaced wavelengths in Angstroms Options: specsim_config_file: (str) path to DESI instrument config file. default is desi config in specsim package. Returns: specsim Configuration object with wavelength parameters set to match this input wavelength grid ''' import specsim.config dwave = round(np.mean(np.diff(wave)), 3) assert np.allclose(dwave, np.diff(wave), rtol=1e-6, atol=1e-3) config = specsim.config.load_config(specsim_config_file) config.wavelength_grid.min = wave[0] config.wavelength_grid.max = wave[-1] + dwave/2.0 config.wavelength_grid.step = dwave if dwave_out is None: dwave_out = 1.0 config.instrument.cameras.b.constants.output_pixel_size = "{:.3f} Angstrom".format(dwave_out) config.instrument.cameras.r.constants.output_pixel_size = "{:.3f} Angstrom".format(dwave_out) if specsim_config_file == "desi": config.instrument.cameras.z.constants.output_pixel_size = "{:.3f} Angstrom".format(dwave_out) config.update() return config def get_source_types(fibermap): ''' Return a list of specsim source types based upon fibermap['DESI_TARGET'] Args: fibermap: fibermap Table including DESI_TARGET column Returns array of source_types 'sky', 'elg', 'lrg', 'qso', 'star' Unassigned fibers fibermap['TARGETID'] == -1 will be treated as 'sky' If fibermap.meta['FLAVOR'] = 'arc' or 'flat', returned source types will match that flavor, though specsim doesn't use those as source_types TODO: specsim/desimodel doesn't have a fiber input loss model for BGS yet, so BGS targets get source_type = 'lrg' (!) ''' from desiutil.log import get_logger log = get_logger() if ('DESI_TARGET' not in fibermap.dtype.names) and \ ('SV1_DESI_TARGET' not in fibermap.dtype.names): log.warning("(SV1_)DESI_TARGET not in fibermap table; using source_type='star' for everything") return np.array(['star',] * len(fibermap)) target_colnames, target_masks, survey = main_cmx_or_sv(fibermap) targetcol = target_colnames[0] #- DESI_TARGET or SV1_DESI_TARGET tm = target_masks[0] #- desi_mask or sv1_desi_mask source_type = np.zeros(len(fibermap), dtype='U4') assert np.all(source_type == '') if 'TARGETID' in fibermap.dtype.names: unassigned = fibermap['TARGETID'] == -1 source_type[unassigned] = 'sky' source_type[(fibermap['OBJTYPE'] == 'FLT')] = 'FLAT' source_type[(fibermap['OBJTYPE'] == 'ARC')] = 'ARC' source_type[(fibermap[targetcol] & tm.SKY) != 0] = 'sky' source_type[(fibermap[targetcol] & tm.ELG) != 0] = 'elg' source_type[(fibermap[targetcol] & tm.LRG) != 0] = 'lrg' source_type[(fibermap[targetcol] & tm.QSO) != 0] = 'qso' source_type[(fibermap[targetcol] & tm.BGS_ANY) != 0] = 'bgs' starmask = 0 for name in ['STD', 'STD_FSTAR', 'STD_WD', 'MWS_ANY', 'STD_FAINT', 'STD_FAINT_BEST', 'STD_BRIGHT', 'STD_BRIGHT_BEST']: if name in desitarget.targetmask.desi_mask.names(): starmask |= desitarget.targetmask.desi_mask[name] source_type[(fibermap[targetcol] & starmask) != 0] = 'star' #- Simulate unassigned fibers as sky ## TODO: when fiberassign and desitarget are updated, use ## desitarget.targetmask.desi_mask.NO_TARGET to identify these source_type[fibermap['TARGETID'] < 0] = 'sky' assert not np.any(source_type == '') for name in sorted(np.unique(source_type)): n = np.count_nonzero(source_type == name) log.debug('{} {} targets'.format(name, n)) return source_type #------------------------------------------------------------------------- #- I/O related routines def read_fiberassign(tilefile_or_id, indir=None): ''' Returns fiberassignment table for tileid Args: tilefile_or_id (int or str): tileid (int) or full path to tile file (str) Returns: fiberassignment Table from HDU 1 ''' #- tileid is full path to file instead of int ID or just filename if isinstance(tilefile_or_id, str) and os.path.exists(tilefile_or_id): return astropy.table.Table.read(tilefile_or_id) if indir is None: indir = os.path.join(os.environ['DESI_TARGETS'], 'fiberassign') if isinstance(tilefile_or_id, (int, np.int32, np.int64)): tilefile = os.path.join(indir, 'tile_{:05d}.fits'.format(tilefile_or_id)) else: tilefile = os.path.join(indir, tilefile_or_id) return astropy.table.Table.read(tilefile, 'FIBER_ASSIGNMENTS') #------------------------------------------------------------------------- #- Move this to desispec.io? def testslit_fibermap(): # from WBS 1.6 PDR Fiber Slit document # science slit has 20 bundles of 25 fibers # test slit has 1 fiber per bundle except in the middle where it is fully populated nspectro=10 testslit_nspec_per_spectro=20 testslit_nspec = nspectro*testslit_nspec_per_spectro # fibermap = np.zeros(testslit_nspec, dtype=desispec.io.fibermap.fibermap_columns) fibermap = desispec.io.empty_fibermap(testslit_nspec) fibermap['FIBER'] = np.zeros((testslit_nspec)).astype(int) fibermap['SPECTROID'] = np.zeros((testslit_nspec)).astype(int) for spectro in range(nspectro) : fiber_index=testslit_nspec_per_spectro*spectro first_fiber_id=500*spectro for b in range(20) : # Fibers at Top of top block or Bottom of bottom block if b <= 10: fibermap['FIBER'][fiber_index] = 25*b + first_fiber_id else: fibermap['FIBER'][fiber_index] = 25*b + 24 + first_fiber_id fibermap['SPECTROID'][fiber_index] = spectro fiber_index+=1 return fibermap #------------------------------------------------------------------------- #- MOVE THESE TO desitarget.mocks.io (?) #------------------------------------------------------------------------- def get_mock_spectra(fiberassign, mockdir=None, nside=64, obscon=None): ''' Args: fiberassign: table loaded from fiberassign tile file Options: mockdir (str): base directory under which files are found nside (int): healpix nside for file directory grouping obscon (str): (observing conditions) None/dark/bright extra dir level Returns (flux, wave, meta) tuple ''' nspec = len(fiberassign) flux = None meta = None wave = None objmeta = None target_colnames, target_masks, survey = main_cmx_or_sv(fiberassign) targetcol = target_colnames[0] #- DESI_TARGET or SV1_DESI_TARGET desi_mask = target_masks[0] #- desi_mask or sv1_desi_mask issky = (fiberassign[targetcol] & desi_mask.SKY) != 0 skyids = fiberassign['TARGETID'][issky] #- check several ways in which an unassigned fiber might appear unassigned = np.isnan(fiberassign['TARGET_RA']) unassigned |= np.isnan(fiberassign['TARGET_DEC']) unassigned |= (fiberassign['TARGETID'] < 0) ## TODO: check desi_mask.NO_TARGET once that bit exists for truthfile, targetids in zip(*targets2truthfiles( fiberassign[~unassigned], basedir=mockdir, nside=nside, obscon=obscon)): #- Sky fibers aren't in the truth files ok = ~np.in1d(targetids, skyids) tmpflux, tmpwave, tmpmeta, tmpobjmeta = read_mock_spectra(truthfile, targetids[ok]) if flux is None: nwave = tmpflux.shape[1] flux = np.zeros((nspec, nwave)) meta = np.zeros(nspec, dtype=tmpmeta.dtype) meta['TARGETID'] = -1 wave = tmpwave.astype('f8') objmeta = dict() for key in tmpobjmeta.keys(): objmeta[key] = list() ii = np.in1d(fiberassign['TARGETID'], tmpmeta['TARGETID']) flux[ii] = tmpflux meta[ii] = tmpmeta assert np.all(wave == tmpwave) for key in tmpobjmeta.keys(): if key not in objmeta: objmeta[key] = list() objmeta[key].append(tmpobjmeta[key]) #- Stack the per-objtype meta tables for key in objmeta.keys(): objmeta[key] = astropy.table.Table(np.hstack(objmeta[key])) #- Set meta['TARGETID'] for sky fibers #- TODO: other things to set? meta['TARGETID'][issky] = skyids meta['TARGETID'][unassigned] = fiberassign['TARGETID'][unassigned] assert np.all(fiberassign['TARGETID'] == meta['TARGETID']) return flux, wave, astropy.table.Table(meta), objmeta def read_mock_spectra(truthfile, targetids, mockdir=None): r''' Reads mock spectra from a truth file Args: truthfile (str): full path to a mocks truth-\*.fits file targetids (array-like): targetids to load from that file mockdir: ??? Returns (flux, wave, truth) tuples: flux[nspec, nwave]: flux in 1e-17 erg/s/cm2/Angstrom wave[nwave]: wavelengths in Angstroms truth[nspec]: metadata truth table objtruth: dictionary keyed by objtype type with type-specific truth ''' if len(targetids) != len(np.unique(targetids)): from desiutil.log import get_logger log = get_logger() log.error("Requested TARGETIDs for {} are not unique".format( os.path.basename(truthfile))) #- astropy.io.fits doesn't return a real ndarray, causing problems #- with the reordering downstream so use fitsio instead # with fits.open(truthfile, memmap=False) as fx: # truth = fx['TRUTH'].data # wave = fx['WAVE'].data # flux = fx['FLUX'].data objtruth = dict() with fitsio.FITS(truthfile) as fx: truth = fx['TRUTH'].read() wave = fx['WAVE'].read() flux = fx['FLUX'].read() if 'OBJTYPE' in truth.dtype.names: # output of desisim.obs.new_exposure if isinstance(truth['OBJTYPE'][0], bytes): objtype = [oo.decode('ascii').strip().upper() \ for oo in truth['OBJTYPE']] else: objtype = [oo.strip().upper() for oo in truth['OBJTYPE']] else: # output of desitarget.mock.build.write_targets_truth if isinstance(truth['TEMPLATETYPE'][0], bytes): objtype = [oo.decode('ascii').strip().upper() \ for oo in truth['TEMPLATETYPE']] else: objtype = [oo.strip().upper() for oo in truth['TEMPLATETYPE']] for obj in set(objtype): extname = 'TRUTH_{}'.format(obj) if extname in fx: objtruth[obj] = fx[extname].read() missing = np.in1d(targetids, truth['TARGETID'], invert=True) if np.any(missing): missingids = targetids[missing] raise ValueError('Targets missing from {}: {}'.format(truthfile, missingids)) #- Trim to just the spectra for these targetids ii = np.in1d(truth['TARGETID'], targetids) flux = flux[ii] truth = truth[ii] if bool(objtruth): for obj in objtruth.keys(): ii = np.in1d(objtruth[obj]['TARGETID'], targetids) objtruth[obj] = objtruth[obj][ii] assert set(targetids) == set(truth['TARGETID']) #- sort truth to match order of input targetids # it doesn't matter if objtruth is sorted if len(targetids) == len(truth['TARGETID']): i = np.argsort(targetids) j = np.argsort(truth['TARGETID']) k = np.argsort(i) reordered_truth = truth[j[k]] reordered_flux = flux[j[k]] else: #- Slower, but works even with repeated TARGETIDs ii = np.argsort(truth['TARGETID']) sorted_truthids = truth['TARGETID'][ii] reordered_flux = np.empty(shape=(len(targetids), flux.shape[1]), dtype=flux.dtype) reordered_truth = np.empty(shape=(len(targetids),), dtype=truth.dtype) for j, tx in enumerate(targetids): k = np.searchsorted(sorted_truthids, tx) reordered_flux[j] = flux[ii[k]] reordered_truth[j] = truth[ii[k]] assert np.all(reordered_truth['TARGETID'] == targetids) wave = desispec.io.util.native_endian(wave).astype(np.float64) reordered_flux = desispec.io.util.native_endian(reordered_flux).astype(np.float64) return reordered_flux, wave, reordered_truth, objtruth def targets2truthfiles(targets, basedir, nside=64, obscon=None): ''' Return list of mock truth files that contain these targets Args: targets: table with TARGETID column, e.g. from fiber assignment basedir: base directory under which files are found Options: nside (int): healpix nside for file directory grouping obscon (str): (observing conditions) None/dark/bright extra dir level Returns (truthfiles, targetids): truthfiles: list of truth filenames targetids: list of lists of targetids in each truthfile i.e. targetids[i] is the list of targetids from targets['TARGETID'] that are in truthfiles[i] ''' import healpy #import desitarget.mock.io as mockio from desitarget.io import find_target_files assert nside >= 2 #- TODO: what should be done with assignments without targets? targets = targets[targets['TARGETID'] != -1] theta = np.radians(90-targets['TARGET_DEC']) phi = np.radians(targets['TARGET_RA']) pixels = healpy.ang2pix(nside, theta, phi, nest=True) truthfiles = list() targetids = list() for ipix in sorted(np.unique(pixels)): filename = find_target_files(basedir, flavor='truth', obscon=obscon, hp=ipix, nside=nside, mock=True) truthfiles.append(filename) ii = (pixels == ipix) targetids.append(np.asarray(targets['TARGETID'][ii])) return truthfiles, targetids
desihub/desisim
py/desisim/simexp.py
Python
bsd-3-clause
38,406
[ "Galaxy" ]
4b409860f9c115021d249f74441ba05dbda68773cb8924b68ad3ecbf843a741c
""" Models for the shopping cart and assorted purchase types """ from collections import namedtuple from datetime import datetime from decimal import Decimal import pytz import logging import smtplib from boto.exception import BotoServerError # this is a super-class of SESError and catches connection errors from django.dispatch import receiver from django.db import models from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from django.core.mail import send_mail from django.contrib.auth.models import User from django.utils.translation import ugettext as _ from django.db import transaction from django.db.models import Sum from django.core.urlresolvers import reverse from model_utils.managers import InheritanceManager from xmodule.modulestore.django import modulestore from config_models.models import ConfigurationModel from course_modes.models import CourseMode from edxmako.shortcuts import render_to_string from student.models import CourseEnrollment, UNENROLL_DONE from util.query import use_read_replica_if_available from xmodule_django.models import CourseKeyField from verify_student.models import SoftwareSecurePhotoVerification from .exceptions import ( InvalidCartItem, PurchasedCallbackException, ItemAlreadyInCartException, AlreadyEnrolledInCourseException, CourseDoesNotExistException, MultipleCouponsNotAllowedException, RegCodeAlreadyExistException, ItemDoesNotExistAgainstRegCodeException ) from microsite_configuration import microsite log = logging.getLogger("shoppingcart") ORDER_STATUSES = ( # The user is selecting what he/she wants to purchase. ('cart', 'cart'), # The user has been sent to the external payment processor. # At this point, the order should NOT be modified. # If the user returns to the payment flow, he/she will start a new order. ('paying', 'paying'), # The user has successfully purchased the items in the order. ('purchased', 'purchased'), # The user's order has been refunded. ('refunded', 'refunded'), ) # we need a tuple to represent the primary key of various OrderItem subclasses OrderItemSubclassPK = namedtuple('OrderItemSubclassPK', ['cls', 'pk']) # pylint: disable=C0103 class Order(models.Model): """ This is the model for an order. Before purchase, an Order and its related OrderItems are used as the shopping cart. FOR ANY USER, THERE SHOULD ONLY EVER BE ZERO OR ONE ORDER WITH STATUS='cart'. """ user = models.ForeignKey(User, db_index=True) currency = models.CharField(default="usd", max_length=8) # lower case ISO currency codes status = models.CharField(max_length=32, default='cart', choices=ORDER_STATUSES) purchase_time = models.DateTimeField(null=True, blank=True) refunded_time = models.DateTimeField(null=True, blank=True) # Now we store data needed to generate a reasonable receipt # These fields only make sense after the purchase bill_to_first = models.CharField(max_length=64, blank=True) bill_to_last = models.CharField(max_length=64, blank=True) bill_to_street1 = models.CharField(max_length=128, blank=True) bill_to_street2 = models.CharField(max_length=128, blank=True) bill_to_city = models.CharField(max_length=64, blank=True) bill_to_state = models.CharField(max_length=8, blank=True) bill_to_postalcode = models.CharField(max_length=16, blank=True) bill_to_country = models.CharField(max_length=64, blank=True) bill_to_ccnum = models.CharField(max_length=8, blank=True) # last 4 digits bill_to_cardtype = models.CharField(max_length=32, blank=True) # a JSON dump of the CC processor response, for completeness processor_reply_dump = models.TextField(blank=True) @classmethod def get_cart_for_user(cls, user): """ Always use this to preserve the property that at most 1 order per user has status = 'cart' """ # find the newest element in the db try: cart_order = cls.objects.filter(user=user, status='cart').order_by('-id')[:1].get() except ObjectDoesNotExist: # if nothing exists in the database, create a new cart cart_order, _created = cls.objects.get_or_create(user=user, status='cart') return cart_order @classmethod def user_cart_has_items(cls, user, item_type=None): """ Returns true if the user (anonymous user ok) has a cart with items in it. (Which means it should be displayed. If a item_type is passed in, then we check to see if the cart has at least one of those types of OrderItems """ if not user.is_authenticated(): return False cart = cls.get_cart_for_user(user) return cart.has_items(item_type) @property def total_cost(self): """ Return the total cost of the cart. If the order has been purchased, returns total of all purchased and not refunded items. """ return sum(i.line_cost for i in self.orderitem_set.filter(status=self.status)) # pylint: disable=E1101 def has_items(self, item_type=None): """ Does the cart have any items in it? If an item_type is passed in then we check to see if there are any items of that class type """ if not item_type: return self.orderitem_set.exists() # pylint: disable=E1101 else: items = self.orderitem_set.all().select_subclasses() for item in items: if isinstance(item, item_type): return True return False def clear(self): """ Clear out all the items in the cart """ self.orderitem_set.all().delete() @transaction.commit_on_success def start_purchase(self): """ Start the purchase process. This will set the order status to "paying", at which point it should no longer be modified. Future calls to `Order.get_cart_for_user()` will filter out orders with status "paying", effectively creating a new (empty) cart. """ if self.status == 'cart': self.status = 'paying' self.save() for item in OrderItem.objects.filter(order=self).select_subclasses(): item.start_purchase() def purchase(self, first='', last='', street1='', street2='', city='', state='', postalcode='', country='', ccnum='', cardtype='', processor_reply_dump=''): """ Call to mark this order as purchased. Iterates through its OrderItems and calls their purchased_callback `first` - first name of person billed (e.g. John) `last` - last name of person billed (e.g. Smith) `street1` - first line of a street address of the billing address (e.g. 11 Cambridge Center) `street2` - second line of a street address of the billing address (e.g. Suite 101) `city` - city of the billing address (e.g. Cambridge) `state` - code of the state, province, or territory of the billing address (e.g. MA) `postalcode` - postal code of the billing address (e.g. 02142) `country` - country code of the billing address (e.g. US) `ccnum` - last 4 digits of the credit card number of the credit card billed (e.g. 1111) `cardtype` - 3-digit code representing the card type used (e.g. 001) `processor_reply_dump` - all the parameters returned by the processor """ if self.status == 'purchased': return self.status = 'purchased' self.purchase_time = datetime.now(pytz.utc) self.bill_to_first = first self.bill_to_last = last self.bill_to_city = city self.bill_to_state = state self.bill_to_country = country self.bill_to_postalcode = postalcode if settings.FEATURES['STORE_BILLING_INFO']: self.bill_to_street1 = street1 self.bill_to_street2 = street2 self.bill_to_ccnum = ccnum self.bill_to_cardtype = cardtype self.processor_reply_dump = processor_reply_dump # save these changes on the order, then we can tell when we are in an # inconsistent state self.save() # this should return all of the objects with the correct types of the # subclasses orderitems = OrderItem.objects.filter(order=self).select_subclasses() for item in orderitems: item.purchase_item() # send confirmation e-mail subject = _("Order Payment Confirmation") message = render_to_string( 'emails/order_confirmation_email.txt', { 'order': self, 'order_items': orderitems, 'has_billing_info': settings.FEATURES['STORE_BILLING_INFO'] } ) try: from_address = microsite.get_value( 'email_from_address', settings.DEFAULT_FROM_EMAIL ) send_mail(subject, message, from_address, [self.user.email]) # pylint: disable=E1101 except (smtplib.SMTPException, BotoServerError): # sadly need to handle diff. mail backends individually log.error('Failed sending confirmation e-mail for order %d', self.id) # pylint: disable=E1101 def generate_receipt_instructions(self): """ Call to generate specific instructions for each item in the order. This gets displayed on the receipt page, typically. Instructions are something like "visit your dashboard to see your new courses". This will return two things in a pair. The first will be a dict with keys=OrderItemSubclassPK corresponding to an OrderItem and values=a set of html instructions they generate. The second will be a set of de-duped html instructions """ instruction_set = set([]) # heh. not ia32 or alpha or sparc instruction_dict = {} order_items = OrderItem.objects.filter(order=self).select_subclasses() for item in order_items: item_pk_with_subclass, set_of_html = item.generate_receipt_instructions() instruction_dict[item_pk_with_subclass] = set_of_html instruction_set.update(set_of_html) return instruction_dict, instruction_set class OrderItem(models.Model): """ This is the basic interface for order items. Order items are line items that fill up the shopping carts and orders. Each implementation of OrderItem should provide its own purchased_callback as a method. """ objects = InheritanceManager() order = models.ForeignKey(Order, db_index=True) # this is denormalized, but convenient for SQL queries for reports, etc. user should always be = order.user user = models.ForeignKey(User, db_index=True) # this is denormalized, but convenient for SQL queries for reports, etc. status should always be = order.status status = models.CharField(max_length=32, default='cart', choices=ORDER_STATUSES, db_index=True) qty = models.IntegerField(default=1) unit_cost = models.DecimalField(default=0.0, decimal_places=2, max_digits=30) list_price = models.DecimalField(decimal_places=2, max_digits=30, null=True) line_desc = models.CharField(default="Misc. Item", max_length=1024) currency = models.CharField(default="usd", max_length=8) # lower case ISO currency codes fulfilled_time = models.DateTimeField(null=True, db_index=True) refund_requested_time = models.DateTimeField(null=True, db_index=True) service_fee = models.DecimalField(default=0.0, decimal_places=2, max_digits=30) # general purpose field, not user-visible. Used for reporting report_comments = models.TextField(default="") @property def line_cost(self): """ Return the total cost of this OrderItem """ return self.qty * self.unit_cost @classmethod def add_to_order(cls, order, *args, **kwargs): """ A suggested convenience function for subclasses. NOTE: This does not add anything to the cart. That is left up to the subclasses to implement for themselves """ # this is a validation step to verify that the currency of the item we # are adding is the same as the currency of the order we are adding it # to currency = kwargs.get('currency', 'usd') if order.currency != currency and order.orderitem_set.exists(): raise InvalidCartItem(_("Trying to add a different currency into the cart")) @transaction.commit_on_success def purchase_item(self): """ This is basically a wrapper around purchased_callback that handles modifying the OrderItem itself """ self.purchased_callback() self.status = 'purchased' self.fulfilled_time = datetime.now(pytz.utc) self.save() def start_purchase(self): """ Start the purchase process. This will set the order item status to "paying", at which point it should no longer be modified. """ self.status = 'paying' self.save() def purchased_callback(self): """ This is called on each inventory item in the shopping cart when the purchase goes through. """ raise NotImplementedError def generate_receipt_instructions(self): """ This is called on each item in a purchased order to generate receipt instructions. This should return a list of `ReceiptInstruction`s in HTML string Default implementation is to return an empty set """ return self.pk_with_subclass, set([]) @property def pk_with_subclass(self): """ Returns a named tuple that annotates the pk of this instance with its class, to fully represent a pk of a subclass (inclusive) of OrderItem """ return OrderItemSubclassPK(type(self), self.pk) @property def single_item_receipt_template(self): """ The template that should be used when there's only one item in the order """ return 'shoppingcart/receipt.html' @property def single_item_receipt_context(self): """ Extra variables needed to render the template specified in `single_item_receipt_template` """ return {} @property def additional_instruction_text(self): """ Individual instructions for this order item. Currently, only used for e-mails. """ return '' class Invoice(models.Model): """ This table capture all the information needed to support "invoicing" which is when a user wants to purchase Registration Codes, but will not do so via a Credit Card transaction. """ company_name = models.CharField(max_length=255, db_index=True) company_contact_name = models.CharField(max_length=255) company_contact_email = models.CharField(max_length=255) recipient_name = models.CharField(max_length=255) recipient_email = models.CharField(max_length=255) address_line_1 = models.CharField(max_length=255) address_line_2 = models.CharField(max_length=255, null=True) address_line_3 = models.CharField(max_length=255, null=True) city = models.CharField(max_length=255, null=True) state = models.CharField(max_length=255, null=True) zip = models.CharField(max_length=15, null=True) country = models.CharField(max_length=64, null=True) course_id = CourseKeyField(max_length=255, db_index=True) total_amount = models.FloatField() internal_reference = models.CharField(max_length=255, null=True) customer_reference_number = models.CharField(max_length=63, null=True) is_valid = models.BooleanField(default=True) class CourseRegistrationCode(models.Model): """ This table contains registration codes With registration code, a user can register for a course for free """ code = models.CharField(max_length=32, db_index=True, unique=True) course_id = CourseKeyField(max_length=255, db_index=True) created_by = models.ForeignKey(User, related_name='created_by_user') created_at = models.DateTimeField(default=datetime.now(pytz.utc)) order = models.ForeignKey(Order, db_index=True, null=True, related_name="purchase_order") invoice = models.ForeignKey(Invoice, null=True) @classmethod @transaction.commit_on_success def free_user_enrollment(cls, cart): """ Here we enroll the user free for all courses available in shopping cart """ cart_items = cart.orderitem_set.all().select_subclasses() if cart_items: for item in cart_items: CourseEnrollment.enroll(cart.user, item.course_id) log.info("Enrolled '{0}' in free course '{1}'" .format(cart.user.email, item.course_id)) # pylint: disable=E1101 item.status = 'purchased' item.save() cart.status = 'purchased' cart.purchase_time = datetime.now(pytz.utc) cart.save() class RegistrationCodeRedemption(models.Model): """ This model contains the registration-code redemption info """ order = models.ForeignKey(Order, db_index=True, null=True) registration_code = models.ForeignKey(CourseRegistrationCode, db_index=True) redeemed_by = models.ForeignKey(User, db_index=True) redeemed_at = models.DateTimeField(default=datetime.now(pytz.utc), null=True) @classmethod def add_reg_code_redemption(cls, course_reg_code, order): """ add course registration code info into RegistrationCodeRedemption model """ cart_items = order.orderitem_set.all().select_subclasses() for item in cart_items: if getattr(item, 'course_id'): if item.course_id == course_reg_code.course_id: # If another account tries to use a existing registration code before the student checks out, an # error message will appear.The reg code is un-reusable. code_redemption = cls.objects.filter(registration_code=course_reg_code) if code_redemption: log.exception("Registration code '{0}' already used".format(course_reg_code.code)) raise RegCodeAlreadyExistException code_redemption = RegistrationCodeRedemption(registration_code=course_reg_code, order=order, redeemed_by=order.user) code_redemption.save() item.list_price = item.unit_cost item.unit_cost = 0 item.save() log.info("Code '{0}' is used by user {1} against order id '{2}' " .format(course_reg_code.code, order.user.username, order.id)) return course_reg_code log.warning("Course item does not exist against registration code '{0}'".format(course_reg_code.code)) raise ItemDoesNotExistAgainstRegCodeException @classmethod def create_invoice_generated_registration_redemption(cls, course_reg_code, user): """ This function creates a RegistrationCodeRedemption entry in case the registration codes were invoice generated and thus the order_id is missing. """ code_redemption = RegistrationCodeRedemption(registration_code=course_reg_code, redeemed_by=user) code_redemption.save() class SoftDeleteCouponManager(models.Manager): """ Use this manager to get objects that have a is_active=True """ def get_active_coupons_query_set(self): """ filter the is_active = True Coupons only """ return super(SoftDeleteCouponManager, self).get_query_set().filter(is_active=True) def get_query_set(self): """ get all the coupon objects """ return super(SoftDeleteCouponManager, self).get_query_set() class Coupon(models.Model): """ This table contains coupon codes A user can get a discount offer on course if provide coupon code """ code = models.CharField(max_length=32, db_index=True) description = models.CharField(max_length=255, null=True, blank=True) course_id = CourseKeyField(max_length=255) percentage_discount = models.IntegerField(default=0) created_by = models.ForeignKey(User) created_at = models.DateTimeField(default=datetime.now(pytz.utc)) is_active = models.BooleanField(default=True) def __unicode__(self): return "[Coupon] code: {} course: {}".format(self.code, self.course_id) objects = SoftDeleteCouponManager() class CouponRedemption(models.Model): """ This table contain coupon redemption info """ order = models.ForeignKey(Order, db_index=True) user = models.ForeignKey(User, db_index=True) coupon = models.ForeignKey(Coupon, db_index=True) @classmethod def get_discount_price(cls, percentage_discount, value): """ return discounted price against coupon """ discount = Decimal("{0:.2f}".format(Decimal(percentage_discount / 100.00) * value)) return value - discount @classmethod def add_coupon_redemption(cls, coupon, order, cart_items): """ add coupon info into coupon_redemption model """ is_redemption_applied = False coupon_redemptions = cls.objects.filter(order=order, user=order.user) for coupon_redemption in coupon_redemptions: if coupon_redemption.coupon.code != coupon.code or coupon_redemption.coupon.id == coupon.id: log.exception("Coupon redemption already exist for user '{0}' against order id '{1}'" .format(order.user.username, order.id)) raise MultipleCouponsNotAllowedException for item in cart_items: if getattr(item, 'course_id'): if item.course_id == coupon.course_id: coupon_redemption = cls(order=order, user=order.user, coupon=coupon) coupon_redemption.save() discount_price = cls.get_discount_price(coupon.percentage_discount, item.unit_cost) item.list_price = item.unit_cost item.unit_cost = discount_price item.save() log.info("Discount generated for user {0} against order id '{1}' " .format(order.user.username, order.id)) is_redemption_applied = True return is_redemption_applied return is_redemption_applied class PaidCourseRegistration(OrderItem): """ This is an inventory item for paying for a course registration """ course_id = CourseKeyField(max_length=128, db_index=True) mode = models.SlugField(default=CourseMode.DEFAULT_MODE_SLUG) @classmethod def contained_in_order(cls, order, course_id): """ Is the course defined by course_id contained in the order? """ return course_id in [ item.course_id for item in order.orderitem_set.all().select_subclasses("paidcourseregistration") if isinstance(item, cls) ] @classmethod def get_total_amount_of_purchased_item(cls, course_key): """ This will return the total amount of money that a purchased course generated """ total_cost = 0 result = cls.objects.filter(course_id=course_key, status='purchased').aggregate(total=Sum('unit_cost', field='qty * unit_cost')) # pylint: disable=E1101 if result['total'] is not None: total_cost = result['total'] return total_cost @classmethod @transaction.commit_on_success def add_to_order(cls, order, course_id, mode_slug=CourseMode.DEFAULT_MODE_SLUG, cost=None, currency=None): """ A standardized way to create these objects, with sensible defaults filled in. Will update the cost if called on an order that already carries the course. Returns the order item """ # First a bunch of sanity checks course = modulestore().get_course(course_id) # actually fetch the course to make sure it exists, use this to # throw errors if it doesn't if not course: log.error("User {} tried to add non-existent course {} to cart id {}" .format(order.user.email, course_id, order.id)) raise CourseDoesNotExistException if cls.contained_in_order(order, course_id): log.warning("User {} tried to add PaidCourseRegistration for course {}, already in cart id {}" .format(order.user.email, course_id, order.id)) raise ItemAlreadyInCartException if CourseEnrollment.is_enrolled(user=order.user, course_key=course_id): log.warning("User {} trying to add course {} to cart id {}, already registered" .format(order.user.email, course_id, order.id)) raise AlreadyEnrolledInCourseException ### Validations done, now proceed ### handle default arguments for mode_slug, cost, currency course_mode = CourseMode.mode_for_course(course_id, mode_slug) if not course_mode: # user could have specified a mode that's not set, in that case return the DEFAULT_MODE course_mode = CourseMode.DEFAULT_MODE if not cost: cost = course_mode.min_price if not currency: currency = course_mode.currency super(PaidCourseRegistration, cls).add_to_order(order, course_id, cost, currency=currency) item, created = cls.objects.get_or_create(order=order, user=order.user, course_id=course_id) item.status = order.status item.mode = course_mode.slug item.qty = 1 item.unit_cost = cost item.line_desc = _(u'Registration for Course: {course_name}').format( course_name=course.display_name_with_default) item.currency = currency order.currency = currency item.report_comments = item.csv_report_comments order.save() item.save() log.info("User {} added course registration {} to cart: order {}" .format(order.user.email, course_id, order.id)) return item def purchased_callback(self): """ When purchased, this should enroll the user in the course. We are assuming that course settings for enrollment date are configured such that only if the (user.email, course_id) pair is found in CourseEnrollmentAllowed will the user be allowed to enroll. Otherwise requiring payment would in fact be quite silly since there's a clear back door. """ if not modulestore().has_course(self.course_id): raise PurchasedCallbackException( "The customer purchased Course {0}, but that course doesn't exist!".format(self.course_id)) CourseEnrollment.enroll(user=self.user, course_key=self.course_id, mode=self.mode) log.info("Enrolled {0} in paid course {1}, paid ${2}" .format(self.user.email, self.course_id, self.line_cost)) # pylint: disable=E1101 def generate_receipt_instructions(self): """ Generates instructions when the user has purchased a PaidCourseRegistration. Basically tells the user to visit the dashboard to see their new classes """ notification = (_('Please visit your <a href="{dashboard_link}">dashboard</a> to see your new course.') .format(dashboard_link=reverse('dashboard'))) return self.pk_with_subclass, set([notification]) @property def csv_report_comments(self): """ Tries to fetch an annotation associated with the course_id from the database. If not found, returns u"". Otherwise returns the annotation """ try: return PaidCourseRegistrationAnnotation.objects.get(course_id=self.course_id).annotation except PaidCourseRegistrationAnnotation.DoesNotExist: return u"" class PaidCourseRegistrationAnnotation(models.Model): """ A model that maps course_id to an additional annotation. This is specifically needed because when Stanford generates report for the paid courses, each report item must contain the payment account associated with a course. And unfortunately we didn't have the concept of a "SKU" or stock item where we could keep this association, so this is to retrofit it. """ course_id = CourseKeyField(unique=True, max_length=128, db_index=True) annotation = models.TextField(null=True) def __unicode__(self): # pylint: disable=no-member return u"{} : {}".format(self.course_id.to_deprecated_string(), self.annotation) class CertificateItem(OrderItem): """ This is an inventory item for purchasing certificates """ course_id = CourseKeyField(max_length=128, db_index=True) course_enrollment = models.ForeignKey(CourseEnrollment) mode = models.SlugField() @receiver(UNENROLL_DONE) def refund_cert_callback(sender, course_enrollment=None, **kwargs): """ When a CourseEnrollment object calls its unenroll method, this function checks to see if that unenrollment occurred in a verified certificate that was within the refund deadline. If so, it actually performs the refund. Returns the refunded certificate on a successful refund; else, it returns nothing. """ # Only refund verified cert unenrollments that are within bounds of the expiration date if not course_enrollment.refundable(): return target_certs = CertificateItem.objects.filter(course_id=course_enrollment.course_id, user_id=course_enrollment.user, status='purchased', mode='verified') try: target_cert = target_certs[0] except IndexError: log.error("Matching CertificateItem not found while trying to refund. User %s, Course %s", course_enrollment.user, course_enrollment.course_id) return target_cert.status = 'refunded' target_cert.refund_requested_time = datetime.now(pytz.utc) target_cert.save() target_cert.order.status = 'refunded' target_cert.order.save() order_number = target_cert.order_id # send billing an email so they can handle refunding subject = _("[Refund] User-Requested Refund") message = "User {user} ({user_email}) has requested a refund on Order #{order_number}.".format(user=course_enrollment.user, user_email=course_enrollment.user.email, order_number=order_number) to_email = [settings.PAYMENT_SUPPORT_EMAIL] from_email = microsite.get_value('payment_support_email', settings.PAYMENT_SUPPORT_EMAIL) try: send_mail(subject, message, from_email, to_email, fail_silently=False) except Exception as exception: # pylint: disable=broad-except err_str = ('Failed sending email to billing to request a refund for verified certificate' ' (User {user}, Course {course}, CourseEnrollmentID {ce_id}, Order #{order})\n{exception}') log.error(err_str.format( user=course_enrollment.user, course=course_enrollment.course_id, ce_id=course_enrollment.id, order=order_number, exception=exception, )) return target_cert @classmethod @transaction.commit_on_success def add_to_order(cls, order, course_id, cost, mode, currency='usd'): """ Add a CertificateItem to an order Returns the CertificateItem object after saving `order` - an order that this item should be added to, generally the cart order `course_id` - the course that we would like to purchase as a CertificateItem `cost` - the amount the user will be paying for this CertificateItem `mode` - the course mode that this certificate is going to be issued for This item also creates a new enrollment if none exists for this user and this course. Example Usage: cart = Order.get_cart_for_user(user) CertificateItem.add_to_order(cart, 'edX/Test101/2013_Fall', 30, 'verified') """ super(CertificateItem, cls).add_to_order(order, course_id, cost, currency=currency) course_enrollment = CourseEnrollment.get_or_create_enrollment(order.user, course_id) # do some validation on the enrollment mode valid_modes = CourseMode.modes_for_course_dict(course_id) if mode in valid_modes: mode_info = valid_modes[mode] else: raise InvalidCartItem(_("Mode {mode} does not exist for {course_id}").format(mode=mode, course_id=course_id)) item, _created = cls.objects.get_or_create( order=order, user=order.user, course_id=course_id, course_enrollment=course_enrollment, mode=mode, ) item.status = order.status item.qty = 1 item.unit_cost = cost course_name = modulestore().get_course(course_id).display_name # Translators: In this particular case, mode_name refers to a # particular mode (i.e. Honor Code Certificate, Verified Certificate, etc) # by which a user could enroll in the given course. item.line_desc = _("{mode_name} for course {course}").format( mode_name=mode_info.name, course=course_name ) item.currency = currency order.currency = currency order.save() item.save() return item def purchased_callback(self): """ When purchase goes through, activate and update the course enrollment for the correct mode """ try: verification_attempt = SoftwareSecurePhotoVerification.active_for_user(self.course_enrollment.user) verification_attempt.submit() except Exception: log.exception( "Could not submit verification attempt for enrollment {}".format(self.course_enrollment) ) self.course_enrollment.change_mode(self.mode) self.course_enrollment.activate() @property def single_item_receipt_template(self): if self.mode in ('verified', 'professional'): return 'shoppingcart/verified_cert_receipt.html' else: return super(CertificateItem, self).single_item_receipt_template @property def single_item_receipt_context(self): course = modulestore().get_course(self.course_id) return { "course_id": self.course_id, "course_name": course.display_name_with_default, "course_org": course.display_org_with_default, "course_num": course.display_number_with_default, "course_start_date_text": course.start_date_text, "course_has_started": course.start > datetime.today().replace(tzinfo=pytz.utc), "course_root_url": reverse( 'course_root', kwargs={'course_id': self.course_id.to_deprecated_string()} # pylint: disable=no-member ), "dashboard_url": reverse('dashboard'), } @property def additional_instruction_text(self): return _("Note - you have up to 2 weeks into the course to unenroll from the Verified Certificate option " "and receive a full refund. To receive your refund, contact {billing_email}. " "Please include your order number in your e-mail. " "Please do NOT include your credit card information.").format( billing_email=settings.PAYMENT_SUPPORT_EMAIL) @classmethod def verified_certificates_count(cls, course_id, status): """Return a queryset of CertificateItem for every verified enrollment in course_id with the given status.""" return use_read_replica_if_available( CertificateItem.objects.filter(course_id=course_id, mode='verified', status=status).count()) # TODO combine these three methods into one @classmethod def verified_certificates_monetary_field_sum(cls, course_id, status, field_to_aggregate): """ Returns a Decimal indicating the total sum of field_to_aggregate for all verified certificates with a particular status. Sample usages: - status 'refunded' and field_to_aggregate 'unit_cost' will give the total amount of money refunded for course_id - status 'purchased' and field_to_aggregate 'service_fees' gives the sum of all service fees for purchased certificates etc """ query = use_read_replica_if_available( CertificateItem.objects.filter(course_id=course_id, mode='verified', status=status)).aggregate(Sum(field_to_aggregate))[field_to_aggregate + '__sum'] if query is None: return Decimal(0.00) else: return query @classmethod def verified_certificates_contributing_more_than_minimum(cls, course_id): return use_read_replica_if_available( CertificateItem.objects.filter( course_id=course_id, mode='verified', status='purchased', unit_cost__gt=(CourseMode.min_course_price_for_verified_for_currency(course_id, 'usd')))).count() class DonationConfiguration(ConfigurationModel): """Configure whether donations are enabled on the site.""" pass class Donation(OrderItem): """A donation made by a user. Donations can be made for a specific course or to the organization as a whole. Users can choose the donation amount. """ # Types of donations DONATION_TYPES = ( ("general", "A general donation"), ("course", "A donation to a particular course") ) # The type of donation donation_type = models.CharField(max_length=32, default="general", choices=DONATION_TYPES) # If a donation is made for a specific course, then store the course ID here. # If the donation is made to the organization as a whole, # set this field to CourseKeyField.Empty course_id = CourseKeyField(max_length=255, db_index=True) @classmethod @transaction.commit_on_success def add_to_order(cls, order, donation_amount, course_id=None, currency='usd'): """Add a donation to an order. Args: order (Order): The order to add this donation to. donation_amount (Decimal): The amount the user is donating. Keyword Args: course_id (CourseKey): If provided, associate this donation with a particular course. currency (str): The currency used for the the donation. Raises: InvalidCartItem: The provided course ID is not valid. Returns: Donation """ # This will validate the currency but won't actually add the item to the order. super(Donation, cls).add_to_order(order, currency=currency) # Create a line item description, including the name of the course # if this is a per-course donation. # This will raise an exception if the course can't be found. description = cls._line_item_description(course_id=course_id) params = { "order": order, "user": order.user, "status": order.status, "qty": 1, "unit_cost": donation_amount, "currency": currency, "line_desc": description } if course_id is not None: params["course_id"] = course_id params["donation_type"] = "course" else: params["donation_type"] = "general" return cls.objects.create(**params) def purchased_callback(self): """Donations do not need to be fulfilled, so this method does nothing.""" pass def generate_receipt_instructions(self): """Provide information about tax-deductible donations in the receipt. Returns: tuple of (Donation, unicode) """ return self.pk_with_subclass, set([self._tax_deduction_msg()]) @property def additional_instruction_text(self): """Provide information about tax-deductible donations in the confirmation email. Returns: unicode """ return self._tax_deduction_msg() def _tax_deduction_msg(self): """Return the translated version of the tax deduction message. Returns: unicode """ return _( u"We greatly appreciate this generous contribution and your support of the {platform_name} mission. " u"This receipt was prepared to support charitable contributions for tax purposes. " u"We confirm that neither goods nor services were provided in exchange for this gift." ).format(platform_name=settings.PLATFORM_NAME) @classmethod def _line_item_description(self, course_id=None): """Create a line-item description for the donation. Includes the course display name if provided. Keyword Arguments: course_id (CourseKey) Raises: CourseDoesNotExistException: The course ID is not valid. Returns: unicode """ # If a course ID is provided, include the display name of the course # in the line item description. if course_id is not None: course = modulestore().get_course(course_id) if course is None: err = _( u"Could not find a course with the ID '{course_id}'" ).format(course_id=course_id) raise CourseDoesNotExistException(err) return _(u"Donation for {course}").format(course=course.display_name) # The donation is for the organization as a whole, not a specific course else: return _(u"Donation for {platform_name}").format(platform_name=settings.PLATFORM_NAME)
adlnet-archive/edx-platform
lms/djangoapps/shoppingcart/models.py
Python
agpl-3.0
42,752
[ "VisIt" ]
2f2a6866c8129f1b381404b34d2c287591282896db7c70ccf27e49ea645b9093
# Copyright (C) 2009, Thomas Leonard # See the README file for details, or visit http://0install.net. from zeroinstall import _ from zeroinstall.support import tasks from zeroinstall.injector import handler, download gobject = tasks.get_loop().gobject glib = tasks.get_loop().glib version = '2.5-post' class GUIHandler(handler.Handler): pulse = None mainwindow = None def _reset_counters(self): if not self.monitored_downloads: self.n_completed_downloads = 0 self.total_bytes_downloaded = 0 return False def abort_all_downloads(self): for dl in self.monitored_downloads: dl.abort() def downloads_changed(self): if self.monitored_downloads and self.pulse is None: def pulse(): self.mainwindow.update_download_status(only_update_visible = True) return True pulse() self.pulse = glib.timeout_add(200, pulse) elif len(self.monitored_downloads) == 0: # Delay before resetting, in case we start a new download quickly glib.timeout_add(500, self._reset_counters) # Stop animation if self.pulse: glib.source_remove(self.pulse) self.pulse = None self.mainwindow.update_download_status() def impl_added_to_store(self, impl): self.mainwindow.update_download_status(only_update_visible = True) @tasks.async def _switch_to_main_window(self, reason): if self.mainwindow.systray_icon: self.mainwindow.systray_icon.set_tooltip(reason) self.mainwindow.systray_icon.set_blinking(True) # Wait for the user to click the icon, then continue yield self.mainwindow.systray_icon_blocker yield tasks.TimeoutBlocker(0.5, 'Delay') @tasks.async def confirm_import_feed(self, pending, valid_sigs, retval): yield self._switch_to_main_window(_('Need to confirm a new GPG key')) from zeroinstall.gtkui import trust_box box = trust_box.TrustBox(pending, valid_sigs, retval, parent = self.mainwindow.window) box.show() yield box.closed @tasks.async def confirm_install(self, message): yield self._switch_to_main_window(_('Need to confirm installation of distribution packages')) from zeroinstall.injector.download import DownloadAborted from zeroinstall.gui import dialog import gtk box = gtk.MessageDialog(self.mainwindow.window, gtk.DIALOG_DESTROY_WITH_PARENT, gtk.MESSAGE_QUESTION, gtk.BUTTONS_CANCEL, str(message)) box.set_position(gtk.WIN_POS_CENTER) install = dialog.MixedButton(_('Install'), gtk.STOCK_OK) if gtk.pygtk_version >= (2,22,0): install.set_can_default(True) else: install.set_flags(gtk.CAN_DEFAULT) box.add_action_widget(install, gtk.RESPONSE_OK) install.show_all() box.set_default_response(gtk.RESPONSE_OK) box.show() response = dialog.DialogResponse(box) yield response box.destroy() if response.response != gtk.RESPONSE_OK: raise DownloadAborted() def report_error(self, ex, tb = None): if isinstance(ex, download.DownloadAborted): return # No need to tell the user about this, since they caused it self.mainwindow.report_exception(ex, tb = tb)
afb/0install
zeroinstall/gui/gui.py
Python
lgpl-2.1
3,020
[ "VisIt" ]
668a475b78054b4eb18377dfc6b6dea57004784aa6c23e664a99f14388f00c62
# Copyright (C) 2004 CCLRC & NERC( Natural Environment Research Council ). # This software may be distributed under the terms of the # Q Public License, version 1.0 or later. http://ndg.nerc.ac.uk/public_docs/QPublic_license.txt """ na_to_cdms.py ============= Container module for class NADictToCdmsObjects that is sub-classed by NAToNC classes. """ # Imports from python standard library import sys import re import time import logging # Import from nappy package from nappy.na_error import na_error import nappy.utils import nappy.utils.common_utils config_dict = nappy.utils.getConfigDict() na_to_nc_map = config_dict["na_to_nc_map"] header_partitions = config_dict["header_partitions"] hp = header_partitions # Import external packages (if available) if sys.platform.find("win") > -1: raise na_error.NAPlatformError("Windows does not support CDMS. CDMS is required to convert to CDMS objects and NetCDF.") try: import cdms2 as cdms import numpy as N except: try: import cdms import Numeric as N except: raise Exception("Could not import third-party software. Nappy requires the CDMS and Numeric packages to be installed to convert to CDMS and NetCDF.") # Define global variables safe_nc_id = re.compile("[\/\s\[\(\)\]\=\+\-\?\#\~\@\&\$\%\!\*\{\}\^]+") time_units_pattn = re.compile("\w+\s+since\s+\d{4}-\d{1,2}-\d{1,2}\s+\d+:\d+:\d+") max_id_length = 40 special_comment_known_strings = (hp["sc_start"], hp["sc_end"], hp["addl_vatts"], hp["addl_globals"], "\n") normal_comment_known_strings = (hp["nc_start"], hp["nc_end"], hp["data_next"], hp["addl_vatts"], hp["addl_globals"], "\n") time_units_warning_message = """\nWARNING: Could not recognise time units. For true NetCDF compability please insert the correct time unit string below in the format: <units> since <YYYY>-<MM>-<DD> <hh>-<mm>-<ss> Where: <units> is a known time interval such as years, months, days, etc. <YYYY> is the year, <MM> is the month, <DD> is the day, <hh> is the hour, <mm> is minutes, <ss> is seconds. """ DEBUG = nappy.utils.getDebug() logging.basicConfig() log = logging.getLogger(__name__) class NADictToCdmsObjects: """ Converts a NA File instance to a tuple of CDMS objects. """ def __init__(self, na_file_obj, variables="all", aux_variables="all", global_attributes=[("Conventions", "CF-1.0")], time_units=None, time_warning=True, rename_variables={}): """ Sets up instance variables. """ self.na_file_obj = na_file_obj self.variables = variables self.aux_variables = aux_variables self.global_attributes = global_attributes self.time_units = time_units self.time_warning = time_warning self.rename_variables = rename_variables # Check if we have capability to convert this FFI if self.na_file_obj.FFI in (2110, 2160, 2310): raise Exception("Cannot convert NASA Ames File Format Index (FFI) " + `self.na_file_obj.FFI` + " to CDMS objects. No mapping implemented yet.") self.output_message = [] # for output displaying message self.converted = False def convert(self): """ Reads the NASA Ames file object and converts to CDMS objects. Returns (variable_list, aux_variable_list, global_attributes_list). All these can be readily written to a CDMS File object. """ if self.converted == True: log.info("Already converted to CDMS objects so not re-doing.") return (self.cdms_variables, self.cdms_aux_variables, self.global_attributes) self.na_file_obj.readData() # Convert global attribute self._mapNACommentsToGlobalAttributes() # Convert axes if not hasattr(self, 'cdms_axes'): self._convertCdmsAxes() # Convert main variables if not hasattr(self, 'cdms_variables'): self._convertCdmsVariables() # Then do auxiliary variables if hasattr(self.na_file_obj, "NAUXV") and (type(self.na_file_obj.NAUXV) == type(1) and self.na_file_obj.NAUXV > 0): # Are there any auxiliary variables? if not hasattr(self, 'cdms_aux_variables'): self._convertCdmsAuxVariables() else: self.cdms_aux_variables = [] self.converted = True return (self.cdms_variables, self.cdms_aux_variables, self.global_attributes) def _mapNACommentsToGlobalAttributes(self): """ Maps the NASA Ames comments section to global attributes and append them to the self.global_attributes list. """ glob_atts = dict(self.global_attributes) for key in na_to_nc_map.keys(): if type(key) == type((1,2)): if key == ("SCOM", "NCOM"): # Map special and normal comments into the global comments section comment_line = "" # Add Special comments first if self.na_file_obj.NSCOML > 0: comment_line += (hp["sc_start"] + "\n") for i in self.na_file_obj.SCOM: if i.strip() not in special_comment_known_strings: comment_line += ("\n" + i) comment_line += ("\n" + hp["sc_end"] + "\n") # Now add normal comments if self.na_file_obj.NNCOML > 0: comment_line += (hp["nc_start"] + "\n") for i in self.na_file_obj.NCOM: if i.strip() not in normal_comment_known_strings: comment_line += ("\n" + i) comment_line += ("\n" + hp["nc_end"]) # Tidy comment line then write to global atts dict comment_line = comment_line.replace("\n\n", "\n") glob_atts["comment"] = comment_line elif key == ("ONAME", "ORG"): # Map the two organisation NA files to the institution field in CDMS (NetCDF) institution = "%s (ONAME from NASA Ames file); %s (ORG from NASA Ames file)." % \ (self.na_file_obj.ONAME, self.na_file_obj.ORG) glob_atts["institution"] = institution else: # Any other strange tuple just gets merged into a string item = (getattr(self.na_file_obj, key[0])) + "\n" + (getattr(self.na_file_obj, key[1])) glob_atts[na_to_nc_map[key]] = item elif key == "RDATE": # RDATE = Revision date - update this and put in history global attribute date_parts = getattr(self.na_file_obj, "RDATE") date_string = "%.4d-%.2d-%.2d" % tuple(date_parts) hist = date_string + " - NASA Ames File created/revised.\n" time_string = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) version = nappy.utils.getVersion() hist = "%s\n%s - Converted to CDMS (NetCDF) format using nappy-%s." % (hist, time_string, version) # self.cdms_file.history = hist log.debug("No history mapping from na so added it here from global attributes.") glob_atts["history"] = hist else: # Anything else just needs to be stored as a global attribute glob_atts[na_to_nc_map[key]] = getattr(self.na_file_obj, key) # Now remake global atts list new_atts = [] for key, value in self.global_attributes: new_atts.append( (key, glob_atts[key]) ) used_keys = [i[0] for i in new_atts] for key in glob_atts.keys(): if key not in used_keys: new_atts.append( (key, glob_atts[key]) ) self.global_attributes = new_atts[:] def _convertCdmsVariables(self): """ Creates cdms variable list for writing out. """ self.cdms_variables = [] if self.variables in (None, "all"): for var_number in range(self.na_file_obj.NV): self.cdms_variables.append(self._convertNAToCdmsVariable(var_number)) else: if type(self.variables[0]) == type(1) or re.match("\d+", str(self.variables[0])): # They are integers = indices for var_number in self.variables: vn = int(var_number) self.cdms_variables.append(self._convertNAToCdmsVariable(vn)) elif type(self.variables[0]) == type("string"): # Vars are strings for var_name in self.variables: if var_name in self.na_file_obj.VNAME: var_number = self.na_file_obj.VNAME.index(var_name) self.cdms_variables.append(self._convertNAToCdmsVariable(var_number)) else: raise Exception("Variable name not known: " + var_name) def _convertNAToCdmsVariable(self, var_number, attributes={}): """ Creates a single cdms variable from the variable number provided in the list. """ (var_name, units, miss, scal) = self.na_file_obj.getVariable(var_number) msg = "\nAdding variable: %s" % self.na_file_obj.VNAME[var_number] log.debug(msg) self.output_message.append(msg) array = N.array(self.na_file_obj.V[var_number]) array = array * scal # Set up axes if not hasattr(self, 'cdms_axes'): self._convertCdmsAxes() # Set up variable var=cdms.createVariable(array, axes=self.cdms_axes, fill_value=miss, attributes=attributes) # Sort units etc if units: var.units=units # Add the best variable name if len(var_name) < max_id_length: var.id=safe_nc_id.sub("_", var_name).lower() else: var.id="naVariable_%s" % (var_number) # Check if mapping provided for renaming this variable if var_name in self.rename_variables.keys(): var_name = self.rename_variables[var_name] var.long_name = var.name = var.title = var_name # Add a NASA Ames variable number (for mapping correctly back to NASA Ames) var.nasa_ames_var_number = var_number return var def _convertCdmsAuxVariables(self): """ Creates a cdms variable from an auxiliary variable """ self.cdms_aux_variables = [] if self.aux_variables in (None, "all"): for avar_number in range(self.na_file_obj.NAUXV): self.cdms_aux_variables.append(self._convertNAAuxToCdmsVariable(avar_number)) else: if type(self.aux_variables[0]) == type(1): # They are integers = indices for avar_number in self.aux_variables: self.cdms_aux_variables.append(self._convertNAAuxToCdmsVariable(avar_number)) elif type(self.aux_variables[0]) == type("string"): # They are strings for avar_name in self.aux_variables: if avar_name in self.na_file_obj.ANAME: avar_number = self.na_file_obj.ANAME.index(avar_name) self.cdms_aux_variables.append(self._convertNAAuxToCdmsVariable(avar_number)) else: raise Exception("Auxiliary variable name not known: " + avar_name) def _convertNAAuxToCdmsVariable(self, avar_number, attributes={}): """ Converts an auxiliary variable to a cdms variable. """ (var_name, units, miss, scal) = self.na_file_obj.getAuxVariable(avar_number) array = N.array(self.na_file_obj.A[avar_number]) array = array * scal msg="\nAdding auxiliary variable: %s" % self.na_file_obj.ANAME[avar_number] log.debug(msg) self.output_message.append(msg) # Set up axes if not hasattr(self, 'cdms_axes'): self._convertCdmsAxes() # Set up variable var = cdms.createVariable(array, axes=[self.cdms_axes[0]], fill_value=miss, attributes=attributes) # Sort units etc if units: var.units = units if len(var_name) < max_id_length: var.id = safe_nc_id.sub("_", var_name).lower() else: var.id = "naAuxVariable_%s" % (avar_number) # Check if mapping provided for renaming this variable if var_name in self.rename_variables.keys(): var_name = self.rename_variables[var_name] var.long_name = var.name = var.title = var_name # Add a NASA Ames auxiliary variable number (for mapping correctly back to NASA Ames) var.nasa_ames_aux_var_number = avar_number return var def _convertCdmsAxes(self): """ Creates cdms axes from information provided in the NASA Ames dictionary. """ if not hasattr(self, 'cdms_axes'): self.cdms_axes = [] for ivar_number in range(self.na_file_obj.NIV): self.cdms_axes.append(self._convertNAIndVarToCdmsAxis(ivar_number)) def _convertNAIndVarToCdmsAxis(self, ivar_number): """ Creates a cdms axis from a NASA Ames independent variable. """ if self.na_file_obj._normalized_X == False: self.na_file_obj._normalizeIndVars() if self.na_file_obj.NIV == 1: array = self.na_file_obj.X else: array = self.na_file_obj.X[ivar_number] axis = cdms.createAxis(array) axis.id = axis.name = axis.long_name = self.na_file_obj.XNAME[ivar_number] (var_name, units) = self.na_file_obj.getIndependentVariable(ivar_number) # Sort units etc if units: axis.units = units if len(var_name) < max_id_length: axis.id = safe_nc_id.sub("_", var_name).lower() else: axis.id = "naIndVariable_%s" % (ivar_number) if units: axis.units = units axis_types = ("longitude", "latitude", "level", "time") for axis_type in axis_types: if re.search(axis_type, var_name, re.IGNORECASE): axis.standard_name = axis.id = axis_type # Designate it CF-style if known axis type (e.g. axis.designateTime() etc..) exec "axis.designate%s()" % axis_type.title() # Check warning for time units pattern if axis.isTime() and (not hasattr(axis, "units") or not time_units_pattn.match(axis.units)): if self.time_units == None: time_units_input = "I WON'T MATCH" while time_units_input != "" and not time_units_pattn.match(time_units_input): message = time_units_warning_message if self.time_warning == True: log.debug(message) time_units_input = raw_input("Please insert your time unit string here (or leave blank):").strip() else: time_units_input = "" self.output_message.append(message) self.time_units = time_units_input axis.units = self.time_units axis.long_name = axis.name = "time (%s)" % self.time_units if not hasattr(axis, "units") or axis.units == None: if units: axis.units = units else: axis.units = "Not known" return axis
eufarn7sp/egads
egads/thirdparty/nappy/nc_interface/na_to_cdms.py
Python
gpl-3.0
15,829
[ "NetCDF" ]
be46f6f722f9dd037f0168e4f70ca7936c22a5acbfed0797a295f81700bacdac
#!/usr/bin/env python # -*- coding: utf-8 -*- # # king_phisher/server/database/models.py # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import datetime import logging import operator from king_phisher import errors from king_phisher import utilities from king_phisher.server import signals import sqlalchemy import sqlalchemy.event import sqlalchemy.ext.declarative import sqlalchemy.orm DATABASE_TABLE_REGEX = '[a-z_]+' """A regular expression which will match all valid database table names.""" SCHEMA_VERSION = 7 """The schema version of the database, used for compatibility checks.""" database_tables = {} """A dictionary which contains all the database tables and their column names.""" database_table_objects = {} """A dictionary which contains all the database tables and their primitive objects.""" logger = logging.getLogger('KingPhisher.Server.Database.Models') def current_timestamp(*args, **kwargs): """ The function used for creating the timestamp used by database objects. :return: The current timestamp. :rtype: :py:class:`datetime.datetime` """ return datetime.datetime.utcnow() def get_tables_with_column_id(column_id): """ Get all tables which contain a column named *column_id*. :param str column_id: The column name to get all the tables of. :return: The list of matching tables. :rtype: set """ return set(x[0] for x in database_tables.items() if column_id in x[1]) def forward_signal_delete(mapper, connection, target): signals.safe_send('db-table-delete', logger, target.__tablename__, mapper=mapper, connection=connection, target=target) def forward_signal_insert(mapper, connection, target): signals.safe_send('db-table-insert', logger, target.__tablename__, mapper=mapper, connection=connection, target=target) def forward_signal_update(mapper, connection, target): signals.safe_send('db-table-update', logger, target.__tablename__, mapper=mapper, connection=connection, target=target) def register_table(table): """ Register a database table. This will populate the information provided in DATABASE_TABLES dictionary. This also forwards signals to the appropriate listeners within the :py:mod:`server.signal` module. :param cls table: The table to register. """ columns = tuple(col.name for col in table.__table__.columns) database_tables[table.__tablename__] = columns database_table_objects[table.__tablename__] = table sqlalchemy.event.listen(table, 'before_delete', forward_signal_delete) sqlalchemy.event.listen(table, 'before_insert', forward_signal_insert) sqlalchemy.event.listen(table, 'before_update', forward_signal_update) return table class BaseRowCls(object): """ The base class from which other database table objects inherit from. Provides a standard ``__repr__`` method and default permission checks which are to be overridden as desired by subclasses. """ __repr_attributes__ = () """Attributes which should be included in the __repr__ method.""" is_private = False """Whether the table is only allowed to be accessed by the server or not.""" def __repr__(self): description = "<{0} id={1} ".format(self.__class__.__name__, repr(self.id)) for repr_attr in self.__repr_attributes__: description += "{0}={1!r} ".format(repr_attr, getattr(self, repr_attr)) description += '>' return description def assert_session_has_permissions(self, *args, **kwargs): """ A convenience function which wraps :py:meth:`~.session_has_permissions` and raises a :py:exc:`~king_phisher.errors.KingPhisherPermissionError` if the session does not have the specified permissions. """ if self.session_has_permissions(*args, **kwargs): return raise errors.KingPhisherPermissionError() def session_has_permissions(self, access, session): """ Check that the authenticated session has the permissions specified in *access*. The permissions in *access* are abbreviated with the first letter of create, read, update, and delete. :param str access: The desired permissions. :param session: The authenticated session to check access for. :return: Whether the session has the desired permissions. :rtype: bool """ if self.is_private: return False access = access.lower() for case in utilities.switch(access, comp=operator.contains, swapped=True): if case('c') and not self.session_has_create_access(session): break if case('r') and not self.session_has_read_access(session): break if case('u') and not self.session_has_update_access(session): break if case('d') and not self.session_has_delete_access(session): break else: return True return False def session_has_create_access(self, session): if self.is_private: return False return True def session_has_delete_access(self, session): if self.is_private: return False return True def session_has_read_access(self, session): if self.is_private: return False return True def session_has_read_prop_access(self, session, prop): return self.session_has_read_access(session) def session_has_update_access(self, session): if self.is_private: return False return True Base = sqlalchemy.ext.declarative.declarative_base(cls=BaseRowCls) metadata = Base.metadata class TagMixIn(object): __repr_attributes__ = ('name',) id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) name = sqlalchemy.Column(sqlalchemy.String, nullable=False) description = sqlalchemy.Column(sqlalchemy.String) @register_table class AlertSubscription(Base): __repr_attributes__ = ('campaign_id', 'user_id') __tablename__ = 'alert_subscriptions' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) user_id = sqlalchemy.Column(sqlalchemy.String, sqlalchemy.ForeignKey('users.id'), nullable=False) campaign_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaigns.id'), nullable=False) type = sqlalchemy.Column(sqlalchemy.Enum('email', 'sms', name='alert_subscription_type'), default='sms', server_default='sms', nullable=False) mute_timestamp = sqlalchemy.Column(sqlalchemy.DateTime) def session_has_create_access(self, session): return session.user == self.user_id def session_has_delete_access(self, session): return session.user == self.user_id def session_has_read_access(self, session): return session.user == self.user_id def session_has_update_access(self, session): return session.user == self.user_id @register_table class AuthenticatedSession(Base): __repr_attributes__ = ('user_id',) __tablename__ = 'authenticated_sessions' is_private = True id = sqlalchemy.Column(sqlalchemy.String, primary_key=True) created = sqlalchemy.Column(sqlalchemy.Integer, nullable=False) last_seen = sqlalchemy.Column(sqlalchemy.Integer, nullable=False) user_id = sqlalchemy.Column(sqlalchemy.String, sqlalchemy.ForeignKey('users.id'), nullable=False) @register_table class Campaign(Base): __repr_attributes__ = ('name',) __tablename__ = 'campaigns' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) name = sqlalchemy.Column(sqlalchemy.String, unique=True, nullable=False) description = sqlalchemy.Column(sqlalchemy.String) user_id = sqlalchemy.Column(sqlalchemy.String, sqlalchemy.ForeignKey('users.id'), nullable=False) created = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) reject_after_credentials = sqlalchemy.Column(sqlalchemy.Boolean, default=False) expiration = sqlalchemy.Column(sqlalchemy.DateTime) campaign_type_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaign_types.id')) company_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('companies.id')) # relationships alert_subscriptions = sqlalchemy.orm.relationship('AlertSubscription', backref='campaign', cascade='all, delete-orphan') credentials = sqlalchemy.orm.relationship('Credential', backref='campaign', cascade='all, delete-orphan') deaddrop_connections = sqlalchemy.orm.relationship('DeaddropConnection', backref='campaign', cascade='all, delete-orphan') deaddrop_deployments = sqlalchemy.orm.relationship('DeaddropDeployment', backref='campaign', cascade='all, delete-orphan') landing_pages = sqlalchemy.orm.relationship('LandingPage', backref='campaign', cascade='all, delete-orphan') messages = sqlalchemy.orm.relationship('Message', backref='campaign', cascade='all, delete-orphan') visits = sqlalchemy.orm.relationship('Visit', backref='campaign', cascade='all, delete-orphan') @property def has_expired(self): if self.expiration is None: return False if self.expiration > current_timestamp(): return False return True @register_table class CampaignType(TagMixIn, Base): __tablename__ = 'campaign_types' # relationships campaigns = sqlalchemy.orm.relationship('Campaign', backref='campaign_type') @register_table class Company(Base): __repr_attributes__ = ('name',) __tablename__ = 'companies' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) name = sqlalchemy.Column(sqlalchemy.String, unique=True, nullable=False) description = sqlalchemy.Column(sqlalchemy.String) industry_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('industries.id')) url_main = sqlalchemy.Column(sqlalchemy.String) url_email = sqlalchemy.Column(sqlalchemy.String) url_remote_access = sqlalchemy.Column(sqlalchemy.String) # relationships campaigns = sqlalchemy.orm.relationship('Campaign', backref='company', cascade='all') @register_table class CompanyDepartment(TagMixIn, Base): __tablename__ = 'company_departments' # relationships messages = sqlalchemy.orm.relationship('Message', backref='company_department') @register_table class Credential(Base): __repr_attributes__ = ('campaign_id', 'username') __tablename__ = 'credentials' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) visit_id = sqlalchemy.Column(sqlalchemy.String, sqlalchemy.ForeignKey('visits.id'), nullable=False) message_id = sqlalchemy.Column(sqlalchemy.String, sqlalchemy.ForeignKey('messages.id'), nullable=False) campaign_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaigns.id'), nullable=False) username = sqlalchemy.Column(sqlalchemy.String) password = sqlalchemy.Column(sqlalchemy.String) submitted = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) @register_table class DeaddropDeployment(Base): __repr_attributes__ = ('campaign_id', 'destination') __tablename__ = 'deaddrop_deployments' id = sqlalchemy.Column(sqlalchemy.String, default=lambda: utilities.random_string(16), primary_key=True) campaign_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaigns.id'), nullable=False) destination = sqlalchemy.Column(sqlalchemy.String) # relationships deaddrop_connections = sqlalchemy.orm.relationship('DeaddropConnection', backref='deaddrop_deployment', cascade='all, delete-orphan') @register_table class DeaddropConnection(Base): __repr_attributes__ = ('campaign_id', 'deployment_id', 'visitor_ip') __tablename__ = 'deaddrop_connections' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) deployment_id = sqlalchemy.Column(sqlalchemy.String, sqlalchemy.ForeignKey('deaddrop_deployments.id'), nullable=False) campaign_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaigns.id'), nullable=False) visit_count = sqlalchemy.Column(sqlalchemy.Integer, default=1) visitor_ip = sqlalchemy.Column(sqlalchemy.String) local_username = sqlalchemy.Column(sqlalchemy.String) local_hostname = sqlalchemy.Column(sqlalchemy.String) local_ip_addresses = sqlalchemy.Column(sqlalchemy.String) first_visit = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) last_visit = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) @register_table class Industry(TagMixIn, Base): __tablename__ = 'industries' # relationships companies = sqlalchemy.orm.relationship('Company', backref='industry') @register_table class LandingPage(Base): __repr_attributes__ = ('campaign_id', 'hostname', 'page') __tablename__ = 'landing_pages' id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) campaign_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaigns.id'), nullable=False) hostname = sqlalchemy.Column(sqlalchemy.String, nullable=False) page = sqlalchemy.Column(sqlalchemy.String, nullable=False) @register_table class StorageData(Base): __repr_attributes__ = ('namespace', 'key', 'value') __tablename__ = 'storage_data' is_private = True id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) created = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) namespace = sqlalchemy.Column(sqlalchemy.String) key = sqlalchemy.Column(sqlalchemy.String, nullable=False) value = sqlalchemy.Column(sqlalchemy.Binary) @register_table class Message(Base): __repr_attributes__ = ('campaign_id', 'target_email') __tablename__ = 'messages' id = sqlalchemy.Column(sqlalchemy.String, default=utilities.make_message_uid, primary_key=True) campaign_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaigns.id'), nullable=False) target_email = sqlalchemy.Column(sqlalchemy.String) first_name = sqlalchemy.Column(sqlalchemy.String) last_name = sqlalchemy.Column(sqlalchemy.String) opened = sqlalchemy.Column(sqlalchemy.DateTime) opener_ip = sqlalchemy.Column(sqlalchemy.String) opener_user_agent = sqlalchemy.Column(sqlalchemy.String) sent = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) trained = sqlalchemy.Column(sqlalchemy.Boolean, default=False) company_department_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('company_departments.id')) # relationships credentials = sqlalchemy.orm.relationship('Credential', backref='message', cascade='all, delete-orphan') visits = sqlalchemy.orm.relationship('Visit', backref='message', cascade='all, delete-orphan') @register_table class MetaData(Base): __repr_attributes__ = ('value_type', 'value') __tablename__ = 'meta_data' is_private = True id = sqlalchemy.Column(sqlalchemy.String, primary_key=True) value_type = sqlalchemy.Column(sqlalchemy.String, default='str') value = sqlalchemy.Column(sqlalchemy.String) @register_table class User(Base): __tablename__ = 'users' id = sqlalchemy.Column(sqlalchemy.String, default=lambda: utilities.random_string(16), primary_key=True) phone_carrier = sqlalchemy.Column(sqlalchemy.String) phone_number = sqlalchemy.Column(sqlalchemy.String) email_address = sqlalchemy.Column(sqlalchemy.String) otp_secret = sqlalchemy.Column(sqlalchemy.String(16)) # relationships alert_subscriptions = sqlalchemy.orm.relationship('AlertSubscription', backref='user', cascade='all, delete-orphan') campaigns = sqlalchemy.orm.relationship('Campaign', backref='user', cascade='all, delete-orphan') def session_has_create_access(self, session): return False def session_has_delete_access(self, session): return False def session_has_read_access(self, session): return session.user == self.id def session_has_read_prop_access(self, session, prop): if prop in ('id', 'campaigns'): # everyone can read the id return True return self.session_has_read_access(session) def session_has_update_access(self, session): return session.user == self.id @register_table class Visit(Base): __repr_attributes__ = ('campaign_id', 'message_id') __tablename__ = 'visits' id = sqlalchemy.Column(sqlalchemy.String, default=utilities.make_visit_uid, primary_key=True) message_id = sqlalchemy.Column(sqlalchemy.String, sqlalchemy.ForeignKey('messages.id'), nullable=False) campaign_id = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('campaigns.id'), nullable=False) visit_count = sqlalchemy.Column(sqlalchemy.Integer, default=1) visitor_ip = sqlalchemy.Column(sqlalchemy.String) visitor_details = sqlalchemy.Column(sqlalchemy.String) first_visit = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) last_visit = sqlalchemy.Column(sqlalchemy.DateTime, default=current_timestamp) # relationships credentials = sqlalchemy.orm.relationship('Credential', backref='visit', cascade='all, delete-orphan')
hdemeyer/king-phisher
king_phisher/server/database/models.py
Python
bsd-3-clause
17,588
[ "VisIt" ]
f0764e1ab5b6eca95af71aa3b9d108a00134f01013f0d32301db79954a24ac59
""" This module defines most special functions and mathematical constants provided by mpmath. [Exception: elliptic functions are currently in elliptic.py] Most of the actual computational code is located in the lib* modules (libelefun, libhyper, ...); this module simply wraps this code to handle precision management in a user friendly way, provide type conversions, etc. In addition, this module defines a number of functions that would be inconvenient to define in the lib* modules, due to requiring high level operations (e.g. numerical quadrature) for the computation, or the need to support multiple arguments of mixed types. """ import libmpf import libelefun import libmpc import libmpi import gammazeta import libhyper from settings import dps_to_prec from mptypes import (\ mpnumeric, mpmathify, mpf, make_mpf, mpc, make_mpc, mpi, make_mpi, constant, prec_rounding, mp, extraprec, zero, one, inf, ninf, nan, j, isnan, isinf, isint, eps, ComplexResult, ) class _pi(constant): r""" `\pi`, roughly equal to 3.141592654, represents the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Mpmath can evaluate `\pi` to arbitrary precision:: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print pi 3.1415926535897932384626433832795028841971693993751 This shows digits 99991-100000 of `\pi`:: >>> mp.dps = 100000 >>> str(pi)[-10:] '5549362464' **Possible issues** :data:`pi` always rounds to the nearest floating-point number when used. This means that exact mathematical identities involving `\pi` will generally not be preserved in floating-point arithmetic. In particular, multiples of :data:`pi` (except for the trivial case ``0*pi``) are *not* the exact roots of :func:`sin`, but differ roughly by the current epsilon:: >>> mp.dps = 15 >>> sin(pi) mpf('1.2246467991473532e-16') One solution is to use the :func:`sinpi` function instead:: >>> sinpi(1) mpf('0.0') See the documentation of trigonometric functions for additional details. """ class _degree(constant): """ Represents one degree of angle, `1^{\circ} = \pi/180`, or about 0.01745329. This constant may be evaluated to arbitrary precision:: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print degree 0.017453292519943295769236907684886127134428718885417 The :data:`degree` object is convenient for conversion to radians:: >>> print sin(30 * degree) 0.5 >>> print asin(0.5) / degree 30.0 """ class _e(constant): """ The transcendental number `e` = 2.718281828... is the base of the natural logarithm (:func:`ln`) and of the exponential function (:func:`exp`). Mpmath can be evaluate `e` to arbitrary precision:: >>> mp.dps = 50 >>> print e 2.7182818284590452353602874713526624977572470937 This shows digits 99991-100000 of `e`:: >>> mp.dps = 100000 >>> str(e)[-10:] '2100427165' **Possible issues** :data:`e` always rounds to the nearest floating-point number when used, and mathematical identities involving `e` may not hold in floating-point arithmetic. For example, ``ln(e)`` might not evaluate exactly to 1. In particular, don't use ``e**x`` to compute the exponential function. Use ``exp(x)`` instead; this is both faster and more accurate. """ class _ln2(constant): pass class _ln10(constant): pass class _phi(constant): r""" Represents the golden ratio `\phi = (1+\sqrt 5)/2`, approximately equal to 1.6180339887. To high precision, its value is:: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print phi 1.6180339887498948482045868343656381177203091798058 Formulas for the golden ratio include the following:: >>> print (1+sqrt(5))/2 1.6180339887498948482045868343656381177203091798058 >>> print findroot(lambda x: x**2-x-1, 1) 1.6180339887498948482045868343656381177203091798058 >>> print limit(lambda n: fib(n+1)/fib(n), inf) 1.6180339887498948482045868343656381177203091798058 """ class _euler(constant): r""" Euler's constant or the Euler-Mascheroni constant `\gamma` = 0.57721566... is a number of central importance to number theory and special functions. It is defined as the limit .. math :: \gamma = \lim_{n\to\infty} H_n - \log n where `H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}` is a harmonic number (see :func:`harmonic`). Evaluation of `\gamma` is supported at arbitrary precision:: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print euler 0.57721566490153286060651209008240243104215933593992 We can also compute `\gamma` directly from the definition, although this is less efficient:: >>> print limit(lambda n: harmonic(n)-log(n), inf) 0.57721566490153286060651209008240243104215933593992 This shows digits 9991-10000 of `\gamma`:: >>> mp.dps = 10000 >>> str(euler)[-10:] '4679858165' Integrals, series, and representations for `\gamma` in terms of special functions include the following (there are many others):: >>> mp.dps = 25 >>> print -quad(lambda x: exp(-x)*log(x), [0,inf]) 0.5772156649015328606065121 >>> print quad(lambda x,y: (x-1)/(1-x*y)/log(x*y), [0,1], [0,1]) 0.5772156649015328606065121 >>> print nsum(lambda k: 1/k-log(1+1/k), [1,inf]) 0.5772156649015328606065121 >>> print nsum(lambda k: (-1)**k*zeta(k)/k, [2,inf]) 0.5772156649015328606065121 >>> print -diff(gamma, 1) 0.5772156649015328606065121 >>> print limit(lambda x: 1/x-gamma(x), 0) 0.5772156649015328606065121 >>> print limit(lambda x: zeta(x)-1/(x-1), 1) 0.5772156649015328606065121 >>> print (log(2*pi*nprod(lambda n: ... exp(-2+2/n)*(1+2/n)**n, [1,inf]))-3)/2 0.5772156649015328606065121 For generalizations of the identities `\gamma = -\Gamma'(1)` and `\gamma = \lim_{x\to1} \zeta(x)-1/(x-1)`, see :func:`psi` and :func:`stieltjes` respectively. """ class _catalan(constant): r""" Catalan's constant `K` = 0.91596559... is given by the infinite series .. math :: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}. Mpmath can evaluate it to arbitrary precision:: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print catalan 0.91596559417721901505460351493238411077414937428167 One can also compute `K` directly from the definition, although this is significantly less efficient:: >>> print nsum(lambda k: (-1)**k/(2*k+1)**2, [0, inf]) 0.91596559417721901505460351493238411077414937428167 This shows digits 9991-10000 of `K`:: >>> mp.dps = 10000 >>> str(catalan)[-10:] '9537871503' Catalan's constant has numerous integral representations:: >>> mp.dps = 50 >>> print quad(lambda x: -log(x)/(1+x**2), [0, 1]) 0.91596559417721901505460351493238411077414937428167 >>> print quad(lambda x: atan(x)/x, [0, 1]) 0.91596559417721901505460351493238411077414937428167 >>> print quad(lambda x: ellipk(x**2)/2, [0, 1]) 0.91596559417721901505460351493238411077414937428167 >>> print quad(lambda x,y: 1/(1+(x*y)**2), [0, 1], [0, 1]) 0.91596559417721901505460351493238411077414937428167 As well as series representations:: >>> print pi*log(sqrt(3)+2)/8 + 3*nsum(lambda n: ... (fac(n)/(2*n+1))**2/fac(2*n), [0, inf])/8 0.91596559417721901505460351493238411077414937428167 >>> print 1-nsum(lambda n: n*zeta(2*n+1)/16**n, [1,inf]) 0.91596559417721901505460351493238411077414937428167 """ class _khinchin(constant): r""" Khinchin's constant `K` = 2.68542... is a number that appears in the theory of continued fractions. Mpmath can evaluate it to arbitrary precision:: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print khinchin 2.6854520010653064453097148354817956938203822939945 An integral representation is:: >>> I = quad(lambda x: log((1-x**2)/sincpi(x))/x/(1+x), [0, 1]) >>> print 2*exp(1/log(2)*I) 2.6854520010653064453097148354817956938203822939945 The computation of ``khinchin`` is based on an efficient implementation of the following series:: >>> f = lambda n: (zeta(2*n)-1)/n*sum((-1)**(k+1)/mpf(k) ... for k in range(1,2*n)) >>> print exp(nsum(f, [1,inf])/log(2)) 2.6854520010653064453097148354817956938203822939945 """ class _glaisher(constant): r""" Glaisher's constant `A`, also known as the Glaisher-Kinkelin constant, is a number approximately equal to 1.282427129 that sometimes appears in formulas related to gamma and zeta functions. It is also related to the Barnes G-function (see :func:`barnesg`). The constant is defined as `A = \exp(1/12-\zeta'(-1))` where `\zeta'(s)` denotes the derivative of the Riemann zeta function (see :func:`zeta`). Mpmath can evaluate Glaisher's constant to arbitrary precision: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print glaisher 1.282427129100622636875342568869791727767688927325 We can verify that the value computed by :data:`glaisher` is correct using mpmath's facilities for numerical differentiation and arbitrary evaluation of the zeta function: >>> print exp(mpf(1)/12 - diff(zeta, -1)) 1.282427129100622636875342568869791727767688927325 Here is an example of an integral that can be evaluated in terms of Glaisher's constant: >>> mp.dps = 15 >>> print quad(lambda x: log(gamma(x)), [1, 1.5]) -0.0428537406502909 >>> print -0.5 - 7*log(2)/24 + log(pi)/4 + 3*log(glaisher)/2 -0.042853740650291 Mpmath computes Glaisher's constant by applying Euler-Maclaurin summation to a slowly convergent series. The implementation is reasonably efficient up to about 10,000 digits. See the source code for additional details. References: http://mathworld.wolfram.com/Glaisher-KinkelinConstant.html """ class _apery(constant): r""" Represents Apery's constant, which is the irrational number approximately equal to 1.2020569 given by .. math :: \zeta(3) = \sum_{k=1}^\infty\frac{1}{k^3}. The calculation is based on an efficient hypergeometric series. To 50 decimal places, the value is given by:: >>> from sympy.mpmath import * >>> mp.dps = 50 >>> print apery 1.2020569031595942853997381615114499907649862923405 Other ways to evaluate Apery's constant using mpmath include:: >>> print zeta(3) 1.2020569031595942853997381615114499907649862923405 >>> print -diff(trigamma, 1)/2 1.2020569031595942853997381615114499907649862923405 >>> print 8*nsum(lambda k: 1/(2*k+1)**3, [0,inf])/7 1.2020569031595942853997381615114499907649862923405 >>> f = lambda k: 2/k**3/(exp(2*pi*k)-1) >>> print 7*pi**3/180 - nsum(f, [1,inf]) 1.2020569031595942853997381615114499907649862923405 This shows digits 9991-10000 of Apery's constant:: >>> mp.dps = 10000 >>> str(apery)[-10:] '3189504235' """ # Mathematical constants pi = _pi(libelefun.mpf_pi, "pi") degree = _degree(libelefun.mpf_degree, "degree") e = _e(libelefun.mpf_e, "e") ln2 = _ln2(libelefun.mpf_ln2, "ln(2)") ln10 = _ln10(libelefun.mpf_ln10, "ln(10)") phi = _phi(libelefun.mpf_phi, "Golden ratio (phi)") euler = _euler(gammazeta.mpf_euler, "Euler's constant (gamma)") catalan = _catalan(gammazeta.mpf_catalan, "Catalan's constant") khinchin = _khinchin(gammazeta.mpf_khinchin, "Khinchin's constant") glaisher = _glaisher(gammazeta.mpf_glaisher, "Glaisher's constant") apery = _apery(gammazeta.mpf_apery, "Apery's constant") def funcwrapper(f): def g(*args, **kwargs): orig = mp.prec try: args = [mpmathify(z) for z in args] mp.prec = orig + 10 v = f(*args, **kwargs) finally: mp.prec = orig return +v g.__name__ = f.__name__ g.__doc__ = f.__doc__ return g def mpfunc(name, real_f, complex_f, doc, interval_f=None): def f(x, **kwargs): if not isinstance(x, mpnumeric): x = mpmathify(x) prec, rounding = prec_rounding if kwargs: prec = kwargs.get('prec', prec) if 'dps' in kwargs: prec = dps_to_prec(kwargs['dps']) rounding = kwargs.get('rounding', rounding) if isinstance(x, mpf): try: return make_mpf(real_f(x._mpf_, prec, rounding)) except ComplexResult: # Handle propagation to complex if mp.trap_complex: raise return make_mpc(complex_f((x._mpf_, libmpf.fzero), prec, rounding)) elif isinstance(x, mpc): return make_mpc(complex_f(x._mpc_, prec, rounding)) elif isinstance(x, mpi): if interval_f: return make_mpi(interval_f(x._val, prec)) raise NotImplementedError("%s of a %s" % (name, type(x))) f.__name__ = name f.__doc__ = "Computes the %s of x" % doc return f def altfunc(f, name, desc): def g(x): orig = mp.prec try: mp.prec = orig + 10 return one/f(x) finally: mp.prec = orig g.__name__ = name g.__doc__ = "Computes the %s of x, 1/%s(x)" % (desc, f.__name__) return g def altinvfunc(f, name, desc): def g(x): orig = mp.prec try: mp.prec = orig + 10 return f(one/x) finally: mp.prec = orig g.__name__ = name g.__doc__ = "Computes the inverse %s of x, %s(1/x)" % (desc, f.__name__) return g sqrt = mpfunc('sqrt', libelefun.mpf_sqrt, libmpc.mpc_sqrt, "principal square root", libmpi.mpi_sqrt) sqrt.__doc__ = r""" ``sqrt(x)`` computes the principal square root of `x`, `\sqrt x`. For positive real numbers, the principal root is simply the positive square root. For arbitrary complex numbers, the principal square root is defined to satisfy `\sqrt x = \exp(\log(x)/2)`. The function thus has a branch cut along the negative half real axis. For all mpmath numbers ``x``, calling ``sqrt(x)`` is equivalent to performing ``x**0.5``. **Examples** Basic examples and limits:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print sqrt(10) 3.16227766016838 >>> print sqrt(100) 10.0 >>> print sqrt(-4) (0.0 + 2.0j) >>> print sqrt(1+1j) (1.09868411346781 + 0.455089860562227j) >>> print sqrt(inf) +inf Square root evaluation is fast at huge precision:: >>> mp.dps = 50000 >>> a = sqrt(3) >>> str(a)[-10:] '9329332814' :func:`sqrt` supports interval arguments:: >>> mp.dps = 15 >>> print sqrt(mpi(16, 100)) [4.0, 10.0] >>> print sqrt(mpi(2)) [1.4142135623730949234, 1.4142135623730951455] >>> print sqrt(mpi(2)) ** 2 [1.9999999999999995559, 2.0000000000000004441] """ cbrt = mpfunc('cbrt', libelefun.mpf_cbrt, libmpc.mpc_cbrt, "principal cubic root") cbrt.__doc__ = """ ``cbrt(x)`` computes the cube root of `x`, `x^{1/3}`. This function is faster and more accurate than raising to a floating-point fraction:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> 125**(mpf(1)/3) mpf('4.9999999999999991') >>> cbrt(125) mpf('5.0') Every nonzero complex number has three cube roots. This function returns the cube root defined by `\exp(\log(x)/3)` where the principal branch of the natural logarithm is used. Note that this does not give a real cube root for negative real numbers:: >>> print cbrt(-1) (0.5 + 0.866025403784439j) """ exp = mpfunc('exp', libelefun.mpf_exp, libmpc.mpc_exp, "exponential function", libmpi.mpi_exp) exp.__doc__ = r""" Computes the exponential function, .. math :: \exp(x) = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}. For complex numbers, the exponential function also satisfies .. math :: \exp(x+yi) = e^x (\cos y + i \sin y). **Basic examples** Some values of the exponential function:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print exp(0) 1.0 >>> print exp(1) 2.718281828459045235360287 >>> print exp(-1) 0.3678794411714423215955238 >>> print exp(inf) +inf >>> print exp(-inf) 0.0 Arguments can be arbitrarily large:: >>> print exp(10000) 8.806818225662921587261496e+4342 >>> print exp(-10000) 1.135483865314736098540939e-4343 Evaluation is supported for interval arguments:: >>> print exp(mpi(-inf,0)) [0.0, 1.0] >>> print exp(mpi(0,1)) [1.0, 2.71828182845904523536028749558] The exponential function can be evaluated efficiently to arbitrary precision:: >>> mp.dps = 10000 >>> print exp(pi) #doctest: +ELLIPSIS 23.140692632779269005729...8984304016040616 **Functional properties** Numerical verification of Euler's identity for the complex exponential function:: >>> mp.dps = 15 >>> print exp(j*pi)+1 (0.0 + 1.22464679914735e-16j) >>> print chop(exp(j*pi)+1) 0.0 This recovers the coefficients (reciprocal factorials) in the Maclaurin series expansion of exp:: >>> nprint(taylor(exp, 0, 5)) [1.0, 1.0, 0.5, 0.166667, 4.16667e-2, 8.33333e-3] The exponential function is its own derivative and antiderivative:: >>> print exp(pi) 23.1406926327793 >>> print diff(exp, pi) 23.1406926327793 >>> print quad(exp, [-inf, pi]) 23.1406926327793 The exponential function can be evaluated using various methods, including direct summation of the series, limits, and solving the defining differential equation:: >>> print nsum(lambda k: pi**k/fac(k), [0,inf]) 23.1406926327793 >>> print limit(lambda k: (1+pi/k)**k, inf) 23.1406926327793 >>> print odefun(lambda t, x: x, 0, 1)(pi) 23.1406926327793 """ ln = mpfunc('ln', libelefun.mpf_log, libmpc.mpc_log, "natural logarithm", libmpi.mpi_log) ln.__doc__ = r"""Computes the natural logarithm of `x`, `\ln x`. See :func:`log` for additional documentation.""" cos = mpfunc('cos', libelefun.mpf_cos, libmpc.mpc_cos, "cosine", libmpi.mpi_cos) sin = mpfunc('sin', libelefun.mpf_sin, libmpc.mpc_sin, "sine", libmpi.mpi_sin) tan = mpfunc('tan', libelefun.mpf_tan, libmpc.mpc_tan, "tangent", libmpi.mpi_tan) cosh = mpfunc('cosh', libelefun.mpf_cosh, libmpc.mpc_cosh, "hyperbolic cosine") sinh = mpfunc('sinh', libelefun.mpf_sinh, libmpc.mpc_sinh, "hyperbolic sine") tanh = mpfunc('tanh', libelefun.mpf_tanh, libmpc.mpc_tanh, "hyperbolic tangent") acos = mpfunc('acos', libelefun.mpf_acos, libmpc.mpc_acos, "inverse cosine") asin = mpfunc('asin', libelefun.mpf_asin, libmpc.mpc_asin, "inverse sine") atan = mpfunc('atan', libelefun.mpf_atan, libmpc.mpc_atan, "inverse tangent") asinh = mpfunc('asinh', libelefun.mpf_asinh, libmpc.mpc_asinh, "inverse hyperbolic sine") acosh = mpfunc('acosh', libelefun.mpf_acosh, libmpc.mpc_acosh, "inverse hyperbolic cosine") atanh = mpfunc('atanh', libelefun.mpf_atanh, libmpc.mpc_atanh, "inverse hyperbolic tangent") sec = altfunc(cos, 'sec', 'secant') csc = altfunc(sin, 'csc', 'cosecant') cot = altfunc(tan, 'cot', 'cotangent') sech = altfunc(cosh, 'sech', 'hyperbolic secant') csch = altfunc(sinh, 'csch', 'hyperbolic cosecant') coth = altfunc(tanh, 'coth', 'hyperbolic cotangent') asec = altinvfunc(acos, 'asec', 'secant') acsc = altinvfunc(asin, 'acsc', 'cosecant') acot = altinvfunc(atan, 'acot', 'cotangent') asech = altinvfunc(acosh, 'asech', 'hyperbolic secant') acsch = altinvfunc(asinh, 'acsch', 'hyperbolic cosecant') acoth = altinvfunc(atanh, 'acoth', 'hyperbolic cotangent') cospi = mpfunc('cospi', libelefun.mpf_cos_pi, libmpc.mpc_cos_pi, "") sinpi = mpfunc('sinpi', libelefun.mpf_sin_pi, libmpc.mpc_sin_pi, "") cosh.__doc__ = r""" Computes the hyperbolic cosine of `x`, `\cosh(x) = (e^x + e^{-x})/2`. Values and limits include:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print cosh(0) 1.0 >>> print cosh(1) 1.543080634815243778477906 >>> print cosh(-inf), cosh(+inf) +inf +inf The hyperbolic cosine is an even, convex function with a global minimum at `x = 0`, having a Maclaurin series that starts:: >>> nprint(chop(taylor(cosh, 0, 5))) [1.0, 0.0, 0.5, 0.0, 4.16667e-2, 0.0] Generalized to complex numbers, the hyperbolic cosine is equivalent to a cosine with the argument rotated in the imaginary direction, or `\cosh x = \cos ix`:: >>> print cosh(2+3j) (-3.724545504915322565473971 + 0.5118225699873846088344638j) >>> print cos(3-2j) (-3.724545504915322565473971 + 0.5118225699873846088344638j) """ sinh.__doc__ = r""" Computes the hyperbolic sine of `x`, `\sinh(x) = (e^x - e^{-x})/2`. Values and limits include:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print sinh(0) 0.0 >>> print sinh(1) 1.175201193643801456882382 >>> print sinh(-inf), sinh(+inf) -inf +inf The hyperbolic sine is an odd function, with a Maclaurin series that starts:: >>> nprint(chop(taylor(sinh, 0, 5))) [0.0, 1.0, 0.0, 0.166667, 0.0, 8.33333e-3] Generalized to complex numbers, the hyperbolic sine is essentially a sine with a rotation `i` applied to the argument; more precisely, `\sinh x = -i \sin ix`:: >>> print sinh(2+3j) (-3.590564589985779952012565 + 0.5309210862485198052670401j) >>> print j*sin(3-2j) (-3.590564589985779952012565 + 0.5309210862485198052670401j) """ tanh.__doc__ = r""" Computes the hyperbolic tangent of `x`, `\tanh(x) = \sinh(x)/\cosh(x)`. Values and limits include:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print tanh(0) 0.0 >>> print tanh(1) 0.7615941559557648881194583 >>> print tanh(-inf), tanh(inf) -1.0 1.0 The hyperbolic tangent is an odd, sigmoidal function, similar to the inverse tangent and error function. Its Maclaurin series is:: >>> nprint(chop(taylor(tanh, 0, 5))) [0.0, 1.0, 0.0, -0.333333, 0.0, 0.133333] Generalized to complex numbers, the hyperbolic tangent is essentially a tangent with a rotation `i` applied to the argument; more precisely, `\tanh x = -i \tan ix`:: >>> print tanh(2+3j) (0.9653858790221331242784803 - 0.009884375038322493720314034j) >>> print j*tan(3-2j) (0.9653858790221331242784803 - 0.009884375038322493720314034j) """ cos.__doc__ = r""" Computes the cosine of `x`, `\cos(x)`. >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print cos(pi/3) 0.5 >>> print cos(100000001) -0.9802850113244713353133243 >>> print cos(2+3j) (-4.189625690968807230132555 - 9.109227893755336597979197j) >>> print cos(inf) nan >>> nprint(chop(taylor(cos, 0, 6))) [1.0, 0.0, -0.5, 0.0, 4.16667e-2, 0.0, -1.38889e-3] >>> print cos(mpi(0,1)) [0.540302305868139717400936602301, 1.0] >>> print cos(mpi(0,2)) [-0.41614683654714238699756823214, 1.0] """ sin.__doc__ = r""" Computes the sine of `x`, `\sin(x)`. >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print sin(pi/3) 0.8660254037844386467637232 >>> print sin(100000001) 0.1975887055794968911438743 >>> print sin(2+3j) (9.1544991469114295734673 - 4.168906959966564350754813j) >>> print sin(inf) nan >>> nprint(chop(taylor(sin, 0, 6))) [0.0, 1.0, 0.0, -0.166667, 0.0, 8.33333e-3, 0.0] >>> print sin(mpi(0,1)) [0.0, 0.841470984807896506652502331201] >>> print sin(mpi(0,2)) [0.0, 1.0] """ tan.__doc__ = r""" Computes the tangent of `x`, `\tan(x) = \frac{\sin(x)}{\cos(x)}`. The tangent function is singular at `x = (n+1/2)\pi`, but ``tan(x)`` always returns a finite result since `(n+1/2)\pi` cannot be represented exactly using floating-point arithmetic. >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print tan(pi/3) 1.732050807568877293527446 >>> print tan(100000001) -0.2015625081449864533091058 >>> print tan(2+3j) (-0.003764025641504248292751221 + 1.003238627353609801446359j) >>> print tan(inf) nan >>> nprint(chop(taylor(tan, 0, 6))) [0.0, 1.0, 0.0, 0.333333, 0.0, 0.133333, 0.0] >>> print tan(mpi(0,1)) [0.0, 1.55740772465490223050697482944] >>> print tan(mpi(0,2)) # Interval includes a singularity [-inf, +inf] """ sec.__doc__ = r""" Computes the secant of `x`, `\mathrm{sec}(x) = \frac{1}{\cos(x)}`. The secant function is singular at `x = (n+1/2)\pi`, but ``sec(x)`` always returns a finite result since `(n+1/2)\pi` cannot be represented exactly using floating-point arithmetic. >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print sec(pi/3) 2.0 >>> print sec(10000001) -1.184723164360392819100265 >>> print sec(2+3j) (-0.04167496441114427004834991 + 0.0906111371962375965296612j) >>> print sec(inf) nan >>> nprint(chop(taylor(sec, 0, 6))) [1.0, 0.0, 0.5, 0.0, 0.208333, 0.0, 8.47222e-2] >>> print sec(mpi(0,1)) [1.0, 1.85081571768092561791175324143] >>> print sec(mpi(0,2)) # Interval includes a singularity [-inf, +inf] """ csc.__doc__ = r""" Computes the cosecant of `x`, `\mathrm{csc}(x) = \frac{1}{\sin(x)}`. This cosecant function is singular at `x = n \pi`, but with the exception of the point `x = 0`, ``csc(x)`` returns a finite result since `n \pi` cannot be represented exactly using floating-point arithmetic. >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print csc(pi/3) 1.154700538379251529018298 >>> print csc(10000001) -1.864910497503629858938891 >>> print csc(2+3j) (0.09047320975320743980579048 + 0.04120098628857412646300981j) >>> print csc(inf) nan >>> print csc(mpi(0,1)) # Interval includes a singularity [1.18839510577812121626159945235, +inf] >>> print csc(mpi(0,2)) [1.0, +inf] """ cot.__doc__ = r""" Computes the cotangent of `x`, `\mathrm{cot}(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}`. This cotangent function is singular at `x = n \pi`, but with the exception of the point `x = 0`, ``cot(x)`` returns a finite result since `n \pi` cannot be represented exactly using floating-point arithmetic. >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print cot(pi/3) 0.5773502691896257645091488 >>> print cot(10000001) 1.574131876209625656003562 >>> print cot(2+3j) (-0.003739710376336956660117409 - 0.9967577965693583104609688j) >>> print cot(inf) nan >>> print cot(mpi(0,1)) # Interval includes a singularity [0.642092615934330703006419986575, +inf] >>> print cot(mpi(1,2)) [-inf, +inf] """ acos.__doc__ = r""" Computes the inverse cosine or arccosine of `x`, `\cos^{-1}(x)`. Since `-1 \le \cos(x) \le 1` for real `x`, the inverse cosine is real-valued only for `-1 \le x \le 1`. On this interval, :func:`acos` is defined to be a monotonically decreasing function assuming values between `+\pi` and `0`. Basic values are:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print acos(-1) 3.141592653589793238462643 >>> print acos(0) 1.570796326794896619231322 >>> print acos(1) 0.0 >>> nprint(chop(taylor(acos, 0, 6))) [1.5708, -1.0, 0.0, -0.166667, 0.0, -7.5e-2, 0.0] :func:`acos` is defined so as to be a proper inverse function of `\cos(\theta)` for `0 \le \theta < \pi`. We have `\cos(\cos^{-1}(x)) = x` for all `x`, but `\cos^{-1}(\cos(x)) = x` only for `0 \le \Re[x] < \pi`:: >>> for x in [1, 10, -1, 2+3j, 10+3j]: ... print cos(acos(x)), acos(cos(x)) ... 1.0 1.0 (10.0 + 0.0j) 2.566370614359172953850574 -1.0 1.0 (2.0 + 3.0j) (2.0 + 3.0j) (10.0 + 3.0j) (2.566370614359172953850574 - 3.0j) The inverse cosine has two branch points: `x = \pm 1`. :func:`acos` places the branch cuts along the line segments `(-\infty, -1)` and `(+1, +\infty)`. In general, .. math :: \cos^{-1}(x) = \frac{\pi}{2} + i \log\left(ix + \sqrt{1-x^2} \right) where the principal-branch log and square root are implied. """ asin.__doc__ = r""" Computes the inverse sine or arcsine of `x`, `\sin^{-1}(x)`. Since `-1 \le \sin(x) \le 1` for real `x`, the inverse sine is real-valued only for `-1 \le x \le 1`. On this interval, it is defined to be a monotonically increasing function assuming values between `-\pi/2` and `\pi/2`. Basic values are:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print asin(-1) -1.570796326794896619231322 >>> print asin(0) 0.0 >>> print asin(1) 1.570796326794896619231322 >>> nprint(chop(taylor(asin, 0, 6))) [0.0, 1.0, 0.0, 0.166667, 0.0, 7.5e-2, 0.0] :func:`asin` is defined so as to be a proper inverse function of `\sin(\theta)` for `-\pi/2 < \theta < \pi/2`. We have `\sin(\sin^{-1}(x)) = x` for all `x`, but `\sin^{-1}(\sin(x)) = x` only for `-\pi/2 < \Re[x] < \pi/2`:: >>> for x in [1, 10, -1, 1+3j, -2+3j]: ... print chop(sin(asin(x))), asin(sin(x)) ... 1.0 1.0 10.0 -0.5752220392306202846120698 -1.0 -1.0 (1.0 + 3.0j) (1.0 + 3.0j) (-2.0 + 3.0j) (-1.141592653589793238462643 - 3.0j) The inverse sine has two branch points: `x = \pm 1`. :func:`asin` places the branch cuts along the line segments `(-\infty, -1)` and `(+1, +\infty)`. In general, .. math :: \sin^{-1}(x) = -i \log\left(ix + \sqrt{1-x^2} \right) where the principal-branch log and square root are implied. """ atan.__doc__ = r""" Computes the inverse tangent or arctangent of `x`, `\tan^{-1}(x)`. This is a real-valued function for all real `x`, with range `(-\pi/2, \pi/2)`. Basic values are:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print atan(-inf) -1.570796326794896619231322 >>> print atan(-1) -0.7853981633974483096156609 >>> print atan(0) 0.0 >>> print atan(1) 0.7853981633974483096156609 >>> print atan(inf) 1.570796326794896619231322 >>> nprint(chop(taylor(atan, 0, 6))) [0.0, 1.0, 0.0, -0.333333, 0.0, 0.2, 0.0] The inverse tangent is often used to compute angles. However, the atan2 function is often better for this as it preserves sign (see :func:`atan2`). :func:`atan` is defined so as to be a proper inverse function of `\tan(\theta)` for `-\pi/2 < \theta < \pi/2`. We have `\tan(\tan^{-1}(x)) = x` for all `x`, but `\tan^{-1}(\tan(x)) = x` only for `-\pi/2 < \Re[x] < \pi/2`:: >>> mp.dps = 25 >>> for x in [1, 10, -1, 1+3j, -2+3j]: ... print tan(atan(x)), atan(tan(x)) ... 1.0 1.0 10.0 0.5752220392306202846120698 -1.0 -1.0 (1.0 + 3.0j) (1.000000000000000000000001 + 3.0j) (-2.0 + 3.0j) (1.141592653589793238462644 + 3.0j) The inverse tangent has two branch points: `x = \pm i`. :func:`atan` places the branch cuts along the line segments `(-i \infty, -i)` and `(+i, +i \infty)`. In general, .. math :: \tan^{-1}(x) = \frac{i}{2}\left(\log(1-ix)-\log(1+ix)\right) where the principal-branch log is implied. """ acot.__doc__ = r"""Computes the inverse cotangent of `x`, `\mathrm{cot}^{-1}(x) = \tan^{-1}(1/x)`.""" asec.__doc__ = r"""Computes the inverse secant of `x`, `\mathrm{sec}^{-1}(x) = \cos^{-1}(1/x)`.""" acsc.__doc__ = r"""Computes the inverse cosecant of `x`, `\mathrm{csc}^{-1}(x) = \sin^{-1}(1/x)`.""" sinpi.__doc__ = """ Computes `\sin(\pi x)`, more accurately than the expression ``sin(pi*x)``:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print sinpi(10**10), sin(pi*(10**10)) 0.0 -2.23936276195592e-6 >>> print sinpi(10**10+0.5), sin(pi*(10**10+0.5)) 1.0 0.999999999998721 """ cospi.__doc__ = """ Computes `\cos(\pi x)`, more accurately than the expression ``cos(pi*x)``:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print cospi(10**10), cos(pi*(10**10)) 1.0 0.999999999997493 >>> print cospi(10**10+0.5), cos(pi*(10**10+0.5)) 0.0 1.59960492420134e-6 """ @funcwrapper def sinc(x): r""" ``sinc(x)`` computes the unnormalized sinc function, defined as .. math :: \mathrm{sinc}(x) = \begin{cases} \sin(x)/x, & \mbox{if } x \ne 0 \\ 1, & \mbox{if } x = 0. \end{cases} See :func:`sincpi` for the normalized sinc function. Simple values and limits include:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print sinc(0) 1.0 >>> print sinc(1) 0.841470984807897 >>> print sinc(inf) 0.0 The integral of the sinc function is the sine integral Si:: >>> print quad(sinc, [0, 1]) 0.946083070367183 >>> print si(1) 0.946083070367183 """ if isinf(x): return 1/x if not x: return x+1 return sin(x)/x @funcwrapper def sincpi(x): r""" ``sincpi(x)`` computes the normalized sinc function, defined as .. math :: \mathrm{sinc}_{\pi}(x) = \begin{cases} \sin(\pi x)/(\pi x), & \mbox{if } x \ne 0 \\ 1, & \mbox{if } x = 0. \end{cases} Equivalently, we have `\mathrm{sinc}_{\pi}(x) = \mathrm{sinc}(\pi x)`. The normalization entails that the function integrates to unity over the entire real line:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print quadosc(sincpi, [-inf, inf], period=2.0) 1.0 Like, :func:`sinpi`, :func:`sincpi` is evaluated accurately at its roots:: >>> print sincpi(10) 0.0 """ if isinf(x): return 1/x if not x: return x+1 return sinpi(x)/(pi*x) floor = mpfunc('floor', libmpf.mpf_floor, libmpc.mpc_floor, "") floor.__doc__ = r""" Computes the floor of `x`, `\lfloor x \rfloor`, defined as the largest integer less than or equal to `x`:: >>> from sympy.mpmath import * >>> print floor(3.5) 3.0 Note: :func:`floor` returns a floating-point number, not a Python ``int``. If `\lfloor x \rfloor` is too large to be represented exactly at the present working precision, the result will be rounded, not necessarily in the floor direction.""" ceil = mpfunc('ceil', libmpf.mpf_ceil, libmpc.mpc_ceil, "") ceil.__doc__ = r""" Computes the ceiling of `x`, `\lceil x \rceil`, defined as the smallest integer greater than or equal to `x`:: >>> from sympy.mpmath import * >>> print ceil(3.5) 4.0 Note: :func:`ceil` returns a floating-point number, not a Python ``int``. If `\lceil x \rceil` is too large to be represented exactly at the present working precision, the result will be rounded, not necessarily in the ceiling direction.""" @funcwrapper def nthroot(x, n): r""" ``nthroot(x, n)`` computes the principal `n`-th root of `x`, `x^{1/n}`. Here `n` must be an integer, and can be negative (`x^{-1/n}` is `1/x^{1/n}`). For `n = 2` or `n = 3`, using this function is equivalent to calling :func:`sqrt` or :func:`cbrt`. In general, ``nthroot(x, n)`` is defined to compute `\exp(\log(x)/n)`. :func:`nthroot` is implemented to use Newton's method for small `n`. At high precision, this makes `x^{1/n}` not much more expensive than the regular exponentiation, `x^n`. For very large `n`, :func:`nthroot` falls back to use the exponential function. :func:`nthroot` is faster and more accurate than raising to a floating-point fraction:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> 16807 ** (mpf(1)/5) mpf('7.0000000000000009') >>> nthroot(16807, 5) mpf('7.0') """ n = int(n) if isinstance(x, mpf): try: return make_mpf(libelefun.mpf_nthroot(x._mpf_, n, *prec_rounding)) except ComplexResult: if mp.trap_complex: raise x = (x._mpf_, libmpf.fzero) else: x = x._mpc_ return make_mpc(libmpc.mpc_nthroot(x, n, *prec_rounding)) def hypot(x, y): r""" Computes the Euclidean norm of the vector `(x, y)`, equal to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real.""" x = mpmathify(x) y = mpmathify(y) return make_mpf(libmpf.mpf_hypot(x._mpf_, y._mpf_, *prec_rounding)) def ldexp(x, n): r""" Computes `x 2^n` efficiently. No rounding is performed. The argument `x` must be a real floating-point number (or possible to convert into one) and `n` must be a Python ``int``. >>> from sympy.mpmath import * >>> ldexp(1, 10) mpf('1024.0') >>> ldexp(1, -3) mpf('0.125') """ x = mpmathify(x) return make_mpf(libmpf.mpf_shift(x._mpf_, n)) def frexp(x): r""" Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`, `n` a Python integer, and such that `x = y 2^n`. No rounding is performed. >>> from sympy.mpmath import * >>> frexp(7.5) (mpf('0.9375'), 3) """ x = mpmathify(x) y, n = libmpf.mpf_frexp(x._mpf_) return make_mpf(y), n def sign(x): r""" Returns the sign of `x`, defined as `\mathrm{sign}(x) = x / |x|` (with the special case `\sign(0) = 0`):: >>> from sympy.mpmath import * >>> sign(10) mpf('1.0') >>> sign(-10) mpf('-1.0') >>> sign(0) mpf('0.0') Note that the sign function is also defined for complex numbers, for which it gives the projection onto the unit circle:: >>> mp.dps = 15 >>> print sign(1+j) (0.707106781186547 + 0.707106781186547j) """ x = mpmathify(x) if not x or isnan(x): return x if isinstance(x, mpf): return mpf(cmp(x, 0)) return x / abs(x) @extraprec(5) def arg(x): r""" Computes the complex argument (phase) of `x`, defined as the signed angle between the positive real axis and `x` in the complex plane:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print arg(3) 0.0 >>> print arg(3+3j) 0.785398163397448 >>> print arg(3j) 1.5707963267949 >>> print arg(-3) 3.14159265358979 >>> print arg(-3j) -1.5707963267949 The angle is defined to satisfy `-\pi < \arg(x) \le \pi` and with the sign convention that a nonnegative imaginary part results in a nonnegative argument. The value returned by :func:`arg` is an ``mpf`` instance. """ x = mpc(x) return atan2(x.imag, x.real) def fabs(x): r""" Returns the absolute value of `x`, `|x|`. Unlike :func:`abs`, :func:`fabs` converts non-mpmath numbers (such as ``int``) into mpmath numbers:: >>> from sympy.mpmath import * >>> fabs(3) mpf('3.0') >>> fabs(-3) mpf('3.0') >>> fabs(3+4j) mpf('5.0') """ return abs(mpmathify(x)) def re(x): r""" Returns the real part of `x`, `\Re(x)`. Unlike ``x.real``, :func:`re` converts `x` to a mpmath number:: >>> from sympy.mpmath import * >>> re(3) mpf('3.0') >>> re(-1+4j) mpf('-1.0') """ return mpmathify(x).real def im(x): r""" Returns the imaginary part of `x`, `\Im(x)`. Unlike ``x.imag``, :func:`im` converts `x` to a mpmath number:: >>> from sympy.mpmath import * >>> im(3) mpf('0.0') >>> im(-1+4j) mpf('4.0') """ return mpmathify(x).imag def conj(x): r""" Returns the complex conjugate of `x`, `\overline{x}`. Unlike ``x.conjugate()``, :func:`im` converts `x` to a mpmath number:: >>> from sympy.mpmath import * >>> conj(3) mpf('3.0') >>> conj(-1+4j) mpc(real='-1.0', imag='-4.0') """ return mpmathify(x).conjugate() def log(x, b=None): r""" Computes the base-`b` logarithm of `x`, `\log_b(x)`. If `b` is unspecified, :func:`log` computes the natural (base `e`) logarithm and is equivalent to :func:`ln`. In general, the base `b` logarithm is defined in terms of the natural logarithm as `\log_b(x) = \ln(x)/\ln(b)`. By convention, we take `\log(0) = -\infty`. The natural logarithm is real if `x > 0` and complex if `x < 0` or if `x` is complex. The principal branch of the complex logarithm is used, meaning that `\Im(\ln(x)) = -\pi < \arg(x) \le \pi`. **Examples** Some basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print log(1) 0.0 >>> print log(2) 0.693147180559945 >>> print log(1000,10) 3.0 >>> print log(4, 16) 0.5 >>> print log(j) (0.0 + 1.5707963267949j) >>> print log(-1) (0.0 + 3.14159265358979j) >>> print log(0) -inf >>> print log(inf) +inf The natural logarithm is the antiderivative of `1/x`:: >>> print quad(lambda x: 1/x, [1, 5]) 1.6094379124341 >>> print log(5) 1.6094379124341 >>> print diff(log, 10) 0.1 The Taylor series expansion of the natural logarithm around `x = 1` has coefficients `(-1)^{n+1}/n`:: >>> nprint(taylor(log, 1, 7)) [0.0, 1.0, -0.5, 0.333333, -0.25, 0.2, -0.166667, 0.142857] :func:`log` supports arbitrary precision evaluation:: >>> mp.dps = 50 >>> print log(pi) 1.1447298858494001741434273513530587116472948129153 >>> print log(pi, pi**3) 0.33333333333333333333333333333333333333333333333333 >>> mp.dps = 25 >>> print log(3+4j) (1.609437912434100374600759 + 0.9272952180016122324285125j) """ if b is None: return ln(x) wp = mp.prec + 20 return ln(x, prec=wp) / ln(b, prec=wp) def log10(x): r""" Computes the base-10 logarithm of `x`, `\log_{10}(x)`. ``log10(x)`` is equivalent to ``log(x, 10)``. """ return log(x, 10) def power(x, y): r""" Converts `x` and `y` to mpmath numbers and evaluates `x^y = \exp(y \log(x))`:: >>> from sympy.mpmath import * >>> mp.dps = 30 >>> print power(2, 0.5) 1.41421356237309504880168872421 This shows the leading few digits of a large Mersenne prime (performing the exact calculation ``2**43112609-1`` and displaying the result in Python would be very slow):: >>> print power(2, 43112609)-1 3.16470269330255923143453723949e+12978188 """ return mpmathify(x) ** mpmathify(y) def modf(x,y): r""" Converts `x` and `y` to mpmath numbers and returns `x \mod y`. For mpmath numbers, this is equivalent to ``x % y``. >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print modf(100, pi) 2.61062773871641 You can use :func:`modf` to compute fractional parts of numbers:: >>> print modf(10.25, 1) 0.25 """ x = mpmathify(x) y = mpmathify(y) return x % y def degrees(x): r""" Converts the radian angle `x` to a degree angle:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print degrees(pi/3) 60.0 """ return x / degree def radians(x): r""" Converts the degree angle `x` to radians:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print radians(60) 1.0471975511966 """ return x * degree def atan2(y, x): r""" Computes the two-argument arctangent, `\mathrm{atan2}(y, x)`, giving the signed angle between the positive `x`-axis and the point `(x, y)` in the 2D plane. This function is defined for real `x` and `y` only. The two-argument arctangent essentially computes `\mathrm{atan}(y/x)`, but accounts for the signs of both `x` and `y` to give the angle for the correct quadrant. The following examples illustrate the difference:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print atan2(1,1), atan(1/1.) 0.785398163397448 0.785398163397448 >>> print atan2(1,-1), atan(1/-1.) 2.35619449019234 -0.785398163397448 >>> print atan2(-1,1), atan(-1/1.) -0.785398163397448 -0.785398163397448 >>> print atan2(-1,-1), atan(-1/-1.) -2.35619449019234 0.785398163397448 The angle convention is the same as that used for the complex argument; see :func:`arg`. """ x = mpmathify(x) y = mpmathify(y) return make_mpf(libelefun.mpf_atan2(y._mpf_, x._mpf_, *prec_rounding)) fib = fibonacci = mpfunc('fibonacci', libelefun.mpf_fibonacci, libmpc.mpc_fibonacci, "") fibonacci.__doc__ = r""" ``fibonacci(n)`` computes the `n`-th Fibonacci number, `F(n)`. The Fibonacci numbers are defined by the recurrence `F(n) = F(n-1) + F(n-2)` with the initial values `F(0) = 0`, `F(1) = 1`. :func:`fibonacci` extends this definition to arbitrary real and complex arguments using the formula .. math :: F(z) = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5} where `\phi` is the golden ratio. :func:`fibonacci` also uses this continuous formula to compute `F(n)` for extremely large `n`, where calculating the exact integer would be wasteful. For convenience, :func:`fib` is available as an alias for :func:`fibonacci`. **Basic examples** Some small Fibonacci numbers are:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for i in range(10): ... print fibonacci(i), ... 0.0 1.0 1.0 2.0 3.0 5.0 8.0 13.0 21.0 34.0 >>> print fibonacci(50) 12586269025.0 The recurrence for `F(n)` extends backwards to negative `n`:: >>> for i in range(10): ... print fibonacci(-i), ... 0.0 1.0 -1.0 2.0 -3.0 5.0 -8.0 13.0 -21.0 34.0 Large Fibonacci numbers will be computed approximately unless the precision is set high enough:: >>> print fib(200) 2.8057117299251e+41 >>> mp.dps = 45 >>> print fib(200) 280571172992510140037611932413038677189525.0 :func:`fibonacci` can compute approximate Fibonacci numbers of stupendous size:: >>> mp.dps = 15 >>> print fibonacci(10**25) 3.49052338550226e+2089876402499787337692720 **Real and complex arguments** The extended Fibonacci function is an analytic function. The property `F(z) = F(z-1) + F(z-2)` holds for arbitrary `z`:: >>> mp.dps = 15 >>> print fib(pi) 2.1170270579161 >>> print fib(pi-1) + fib(pi-2) 2.1170270579161 >>> print fib(3+4j) (-5248.51130728372 - 14195.962288353j) >>> print fib(2+4j) + fib(1+4j) (-5248.51130728372 - 14195.962288353j) The Fibonacci function has infinitely many roots on the negative half-real axis. The first root is at 0, the second is close to -0.18, and then there are infinitely many roots that asymptotically approach `-n+1/2`:: >>> print findroot(fib, -0.2) -0.183802359692956 >>> print findroot(fib, -2) -1.57077646820395 >>> print findroot(fib, -17) -16.4999999596115 >>> print findroot(fib, -24) -23.5000000000479 **Mathematical relationships** For large `n`, `F(n+1)/F(n)` approaches the golden ratio:: >>> mp.dps = 50 >>> print fibonacci(101)/fibonacci(100) 1.6180339887498948482045868343656381177203127439638 >>> print phi 1.6180339887498948482045868343656381177203091798058 The sum of reciprocal Fibonacci numbers converges to an irrational number for which no closed form expression is known:: >>> mp.dps = 15 >>> print nsum(lambda n: 1/fib(n), [1, inf]) 3.35988566624318 Amazingly, however, the sum of odd-index reciprocal Fibonacci numbers can be expressed in terms of a Jacobi theta function:: >>> print nsum(lambda n: 1/fib(2*n+1), [0, inf]) 1.82451515740692 >>> print sqrt(5)*jtheta(2,0,(3-sqrt(5))/2)**2/4 1.82451515740692 Some related sums can be done in closed form:: >>> print nsum(lambda k: 1/(1+fib(2*k+1)), [0, inf]) 1.11803398874989 >>> print phi - 0.5 1.11803398874989 >>> f = lambda k:(-1)**(k+1) / sum(fib(n)**2 for n in range(1,k+1)) >>> print nsum(f, [1, inf]) 0.618033988749895 >>> print phi-1 0.618033988749895 **References** 1. http://mathworld.wolfram.com/FibonacciNumber.html """ zeta = mpfunc('zeta', gammazeta.mpf_zeta, gammazeta.mpc_zeta, 'Riemann zeta function') altzeta = mpfunc('zeta', gammazeta.mpf_altzeta, gammazeta.mpc_altzeta, 'Dirichlet eta function') zeta.__doc__ = r""" ``zeta(s)`` computes the Riemann zeta function, `\zeta(s)`. The Riemann zeta function is defined for `\Re(s) > 1` by .. math :: \zeta(s) = 1+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+\ldots and for `\Re(s) \le 1` by analytic continuation. It has a pole at `s = 1`. **Examples** Some exact values of the zeta function are:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print zeta(2) 1.64493406684823 >>> print pi**2 / 6 1.64493406684823 >>> print zeta(0) -0.5 >>> print zeta(-1) -0.0833333333333333 >>> print zeta(-2) 0.0 :func:`zeta` supports arbitrary precision evaluation and complex arguments:: >>> mp.dps = 50 >>> print zeta(pi) 1.1762417383825827588721504519380520911697389900217 >>> print zeta(1+2j) # doctest: +NORMALIZE_WHITESPACE (0.5981655697623817367034568491742186771747764868876 - 0.35185474521784529049653859679690026505229177886045j) The Riemann zeta function has so-called nontrivial zeros on the critical line `s = 1/2 + it`:: >>> mp.dps = 15 >>> print findroot(zeta, 0.5+14j) (0.5 + 14.1347251417347j) >>> print findroot(zeta, 0.5+21j) (0.5 + 21.0220396387716j) >>> print findroot(zeta, 0.5+25j) (0.5 + 25.0108575801457j) For investigation of the zeta function zeros, the Riemann-Siegel Z-function is often more convenient than working with the Riemann zeta function directly (see :func:`siegelz`). For large positive `s`, `\zeta(s)` rapidly approaches 1:: >>> print zeta(30) 1.00000000093133 >>> print zeta(100) 1.0 >>> print zeta(inf) 1.0 The following series converges and in fact has a simple closed form value:: >>> print nsum(lambda k: zeta(k)-1, [2, inf]) 1.0 **Algorithm** The primary algorithm is Borwein's algorithm for the Dirichlet eta function. Three separate implementations are used: for general real arguments, general complex arguments, and for integers. The reflection formula is applied to arguments in the negative half-plane. For very large real arguments, either direct summation or the Euler prime product is used. It should be noted that computation of `\zeta(s)` gets very slow when `s` is far away from the real axis. **References** 1. http://mathworld.wolfram.com/RiemannZetaFunction.html 2. http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf """ altzeta.__doc__ = r""" Computes the Dirichlet eta function, `\eta(s)`, also known as the alternating zeta function. This function is defined in analogy with the Riemann zeta function as providing the sum of the alternating series .. math :: \eta(s) = 1-\frac{1}{2^s}+\frac{1}{3^s}-\frac{1}{4^s}+\ldots Note that `\eta(1) = \log(2)` is the alternating harmonic series. The eta function unlike the Riemann zeta function is an entire function, having a finite value for all complex `s`. The alternating and non-alternating zeta functions are related via the simple formula .. math :: \eta(s) = (1 - 2^{1-s}) \zeta(s). This formula can be used to define `\eta(s)` for `\Re(s) \le 0`, where the series diverges. **Examples** Some special values are:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print altzeta(1) 0.693147180559945 >>> print altzeta(0) 0.5 >>> print altzeta(-1) 0.25 >>> print altzeta(-2) 0.0 An example of a sum that can be computed more accurately and efficiently via :func:`altzeta` than via numerical summation:: >>> sum(-(-1)**n / n**2.5 for n in range(1, 100)) 0.86720495150398402 >>> print altzeta(2.5) 0.867199889012184 At positive even integers, the Dirichlet eta function evaluates to a rational multiple of a power of `\pi`:: >>> print altzeta(2) 0.822467033424113 >>> print pi**2/12 0.822467033424113 Like the Riemann zeta function, `\eta(s)`, approaches 1 as `s` approaches positive infinity, although it does so from below rather than from above:: >>> print altzeta(30) 0.999999999068682 >>> print altzeta(inf) 1.0 >>> altzeta(1000, rounding='d') mpf('0.99999999999999989') >>> altzeta(1000, rounding='u') mpf('1.0') **References** 1. http://mathworld.wolfram.com/DirichletEtaFunction.html 2. http://en.wikipedia.org/wiki/Dirichlet_eta_function """ gamma = mpfunc('gamma', gammazeta.mpf_gamma, gammazeta.mpc_gamma, "gamma function") factorial = mpfunc('factorial', gammazeta.mpf_factorial, gammazeta.mpc_factorial, "factorial") fac = factorial factorial.__doc__ = r""" Computes the factorial, `x!`. For integers `n \ge 0`, we have `n! = 1 \cdot 2 \cdots (n-1) \cdot n` and more generally the factorial is defined for real or complex `x` by `x! = \Gamma(x+1)`. **Examples** Basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for k in range(6): ... print k, fac(k) ... 0 1.0 1 1.0 2 2.0 3 6.0 4 24.0 5 120.0 >>> print fac(inf) +inf >>> print fac(0.5), sqrt(pi)/2 0.886226925452758 0.886226925452758 For large positive `x`, `x!` can be approximated by Stirling's formula:: >>> x = 10**10 >>> print fac(x) 2.32579620567308e+95657055186 >>> print sqrt(2*pi*x)*(x/e)**x 2.32579597597705e+95657055186 :func:`fac` supports evaluation for astronomically large values:: >>> print fac(10**30) 6.22311232304258e+29565705518096748172348871081098 Reciprocal factorials appear in the Taylor series of the exponential function (among many other contexts):: >>> print nsum(lambda k: 1/fac(k), [0, inf]), exp(1) 2.71828182845905 2.71828182845905 >>> print nsum(lambda k: pi**k/fac(k), [0, inf]), exp(pi) 23.1406926327793 23.1406926327793 """ gamma.__doc__ = r""" Computes the gamma function, `\Gamma(x)`. The gamma function is a shifted version of the ordinary factorial, satisfying `\Gamma(n) = (n-1)!` for integers `n > 0`. More generally, it is defined by .. math :: \Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t}\, dt for any real or complex `x` with `\Re(x) > 0` and for `\Re(x) < 0` by analytic continuation. **Examples** Basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for k in range(1, 6): ... print k, gamma(k) ... 1 1.0 2 1.0 3 2.0 4 6.0 5 24.0 >>> print gamma(inf) +inf >>> print gamma(0) Traceback (most recent call last): ... ValueError: gamma function pole The gamma function of a half-integer is a rational multiple of `\sqrt{\pi}`:: >>> print gamma(0.5), sqrt(pi) 1.77245385090552 1.77245385090552 >>> print gamma(1.5), sqrt(pi)/2 0.886226925452758 0.886226925452758 We can check the integral definition:: >>> print gamma(3.5) 3.32335097044784 >>> print quad(lambda t: t**2.5*exp(-t), [0,inf]) 3.32335097044784 :func:`gamma` supports arbitrary-precision evaluation and complex arguments:: >>> mp.dps = 50 >>> print gamma(sqrt(3)) 0.91510229697308632046045539308226554038315280564184 >>> mp.dps = 25 >>> print gamma(2j) (0.009902440080927490985955066 - 0.07595200133501806872408048j) Arguments can also be large. Note that the gamma function grows very quickly:: >>> mp.dps = 15 >>> print gamma(10**20) 6.33636415517321e+1956570547910964391727 """ def psi(m, z): r""" Gives the polygamma function of order `m` of `z`, `\psi^{(m)}(z)`. Special cases are known as the *digamma function* (`\psi^{(0)}(z)`), the *trigamma function* (`\psi^{(1)}(z)`), etc. The polygamma functions are defined as the logarithmic derivatives of the gamma function: .. math :: \psi^{(m)}(z) = \left(\frac{d}{dz}\right)^{m+1} \log \Gamma(z) In particular, `\psi^{(0)}(z) = \Gamma'(z)/\Gamma(z)`. In the present implementation of :func:`psi`, the order `m` must be a nonnegative integer, while the argument `z` may be an arbitrary complex number (with exception for the polygamma function's poles at `z = 0, -1, -2, \ldots`). **Examples** For various rational arguments, the polygamma function reduces to a combination of standard mathematical constants:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print psi(0, 1), -euler -0.5772156649015328606065121 -0.5772156649015328606065121 >>> print psi(1, '1/4'), pi**2+8*catalan 17.19732915450711073927132 17.19732915450711073927132 >>> print psi(2, '1/2'), -14*apery -16.82879664423431999559633 -16.82879664423431999559633 The polygamma functions are derivatives of each other:: >>> print diff(lambda x: psi(3, x), pi), psi(4, pi) -0.1105749312578862734526952 -0.1105749312578862734526952 >>> print quad(lambda x: psi(4, x), [2, 3]), psi(3,3)-psi(3,2) -0.375 -0.375 The digamma function diverges logarithmically as `z \to \infty`, while higher orders tend to zero:: >>> print psi(0,inf), psi(1,inf), psi(2,inf) +inf 0.0 0.0 Evaluation for a complex argument:: >>> print psi(2, -1-2j) (0.03902435405364952654838445 + 0.1574325240413029954685366j) Evaluation is supported for large orders `m` and/or large arguments `z`:: >>> print psi(3, 10**100) 2.0e-300 >>> print psi(250, 10**30+10**20*j) (-1.293142504363642687204865e-7010 + 3.232856260909107391513108e-7018j) **Application to infinite series** Any infinite series where the summand is a rational function of the index `k` can be evaluated in closed form in terms of polygamma functions of the roots and poles of the summand:: >>> a = sqrt(2) >>> b = sqrt(3) >>> print nsum(lambda k: 1/((k+a)**2*(k+b)), [0, inf]) 0.4049668927517857061917531 >>> print (psi(0,a)-psi(0,b)-a*psi(1,a)+b*psi(1,a))/(a-b)**2 0.4049668927517857061917531 This follows from the series representation (`m > 0`) .. math :: \psi^{(m)}(z) = (-1)^{m+1} m! \sum_{k=0}^{\infty} \frac{1}{(z+k)^{m+1}}. Since the roots of a polynomial may be complex, it is sometimes necessary to use the complex polygamma function to evaluate an entirely real-valued sum:: >>> print nsum(lambda k: 1/(k**2-2*k+3), [0, inf]) 1.694361433907061256154665 >>> nprint(polyroots([1,-2,3])) [(1.0 - 1.41421j), (1.0 + 1.41421j)] >>> r1 = 1-sqrt(2)*j >>> r2 = r1.conjugate() >>> print (psi(0,-r2)-psi(0,-r1))/(r1-r2) (1.694361433907061256154665 + 0.0j) """ z = mpmathify(z) m = int(m) if isinstance(z, mpf): return make_mpf(gammazeta.mpf_psi(m, z._mpf_, *prec_rounding)) else: return make_mpc(gammazeta.mpc_psi(m, z._mpc_, *prec_rounding)) def psi0(z): """Shortcut for psi(0,z) (the digamma function)""" return psi(0, z) def psi1(z): """Shortcut for psi(1,z) (the trigamma function)""" return psi(1, z) def psi2(z): """Shortcut for psi(2,z) (the tetragamma function)""" return psi(2, z) def psi3(z): """Shortcut for psi(3,z) (the pentagamma function)""" return psi(3, z) polygamma = psi digamma = psi0 trigamma = psi1 tetragamma = psi2 pentagamma = psi3 harmonic = mpfunc('harmonic', gammazeta.mpf_harmonic, gammazeta.mpc_harmonic, "nth harmonic number") harmonic.__doc__ = r""" If `n` is an integer, ``harmonic(n)`` gives a floating-point approximation of the `n`-th harmonic number `H(n)`, defined as .. math :: H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} The firrst few harmonic numbers are:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(8): ... print n, harmonic(n) ... 0 0.0 1 1.0 2 1.5 3 1.83333333333333 4 2.08333333333333 5 2.28333333333333 6 2.45 7 2.59285714285714 The infinite harmonic series `1 + 1/2 + 1/3 + \ldots` diverges:: >>> print harmonic(inf) +inf :func:`harmonic` is evaluated using the digamma function rather than by summing the harmonic series term by term. It can therefore be computed quickly for arbitrarily large `n`, and even for nonintegral arguments:: >>> print harmonic(10**100) 230.835724964306 >>> print harmonic(0.5) 0.613705638880109 >>> print harmonic(3+4j) (2.24757548223494 + 0.850502209186044j) :func:`harmonic` supports arbitrary precision evaluation:: >>> mp.dps = 50 >>> print harmonic(11) 3.0198773448773448773448773448773448773448773448773 >>> print harmonic(pi) 1.8727388590273302654363491032336134987519132374152 The harmonic series diverges, but at a glacial pace. It is possible to calculate the exact number of terms required before the sum exceeds a given amount, say 100:: >>> mp.dps = 50 >>> v = 10**findroot(lambda x: harmonic(10**x) - 100, 10) >>> print v 15092688622113788323693563264538101449859496.864101 >>> v = int(ceil(v)) >>> print v 15092688622113788323693563264538101449859497 >>> print harmonic(v-1) 99.999999999999999999999999999999999999999999942747 >>> print harmonic(v) 100.000000000000000000000000000000000000000000009 """ def bernoulli(n): r""" Computes the nth Bernoulli number, `B_n`, for any integer `n \ge 0`. The Bernoulli numbers are rational numbers, but this function returns a floating-point approximation. To obtain an exact fraction, use :func:`bernfrac` instead. **Examples** Numerical values of the first few Bernoulli numbers:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(15): ... print n, bernoulli(n) ... 0 1.0 1 -0.5 2 0.166666666666667 3 0.0 4 -0.0333333333333333 5 0.0 6 0.0238095238095238 7 0.0 8 -0.0333333333333333 9 0.0 10 0.0757575757575758 11 0.0 12 -0.253113553113553 13 0.0 14 1.16666666666667 Bernoulli numbers can be approximated with arbitrary precision:: >>> mp.dps = 50 >>> print bernoulli(100) -2.8382249570693706959264156336481764738284680928013e+78 Arbitrarily large `n` are supported:: >>> mp.dps = 15 >>> print bernoulli(10**20 + 2) 3.09136296657021e+1876752564973863312327 The Bernoulli numbers are related to the Riemann zeta function at integer arguments:: >>> print -bernoulli(8) * (2*pi)**8 / (2*fac(8)) 1.00407735619794 >>> print zeta(8) 1.00407735619794 **Algorithm** For small `n` (`n < 3000`) :func:`bernoulli` uses a recurrence formula due to Ramanujan. All results in this range are cached, so sequential computation of small Bernoulli numbers is guaranteed to be fast. For larger `n`, `B_n` is evaluated in terms of the Riemann zeta function. """ return make_mpf(gammazeta.mpf_bernoulli(int(n), *prec_rounding)) bernfrac = gammazeta.bernfrac stieltjes_cache = {} def stieltjes(n, a=1): r""" For a nonnegative integer `n`, ``stieltjes(n)`` computes the `n`-th Stieltjes constant `\gamma_n`, defined as the `n`-th coefficient in the Laurent series expansion of the Riemann zeta function around the pole at `s = 1`. That is, we have: .. math :: \zeta(s) = \frac{1}{s-1} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n (s-1)^n More generally, ``stieltjes(n, a)`` gives the corresponding coefficient `\gamma_n(a)` for the Hurwitz zeta function `\zeta(s,a)` (with `\gamma_n = \gamma_n(1)`). **Examples** The zeroth Stieltjes constant is just Euler's constant `\gamma`:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print stieltjes(0) 0.577215664901533 Some more values are:: >>> print stieltjes(1) -0.0728158454836767 >>> print stieltjes(10) 0.000205332814909065 >>> print stieltjes(30) 0.00355772885557316 >>> print stieltjes(1000) -1.57095384420474e+486 >>> print stieltjes(2000) 2.680424678918e+1109 >>> print stieltjes(1, 2.5) -0.23747539175716 An alternative way to compute `\gamma_1`:: >>> print diff(extradps(25)(lambda x: 1/(x-1) - zeta(x)), 1) -0.0728158454836767 :func:`stieltjes` supports arbitrary precision evaluation:: >>> mp.dps = 50 >>> print stieltjes(2) -0.0096903631928723184845303860352125293590658061013408 **Algorithm** :func:`stieltjes` numerically evaluates the integral in the following representation due to Ainsworth, Howell and Coffey [1], [2]: .. math :: \gamma_n(a) = \frac{\log^n a}{2a} - \frac{\log^{n+1}(a)}{n+1} + \frac{2}{a} \Re \int_0^{\infty} \frac{(x/a-i)\log^n(a-ix)}{(1+x^2/a^2)(e^{2\pi x}-1)} dx. For some reference values with `a = 1`, see e.g. [4]. **References** 1. O. R. Ainsworth & L. W. Howell, "An integral representation of the generalized Euler-Mascheroni constants", NASA Technical Paper 2456 (1985), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850014994_1985014994.pdf 2. M. W. Coffey, "The Stieltjes constants, their relation to the `\eta_j` coefficients, and representation of the Hurwitz zeta function", arXiv:0706.0343v1 http://arxiv.org/abs/0706.0343 3. http://mathworld.wolfram.com/StieltjesConstants.html 4. http://pi.lacim.uqam.ca/piDATA/stieltjesgamma.txt """ n = mpmathify(n) a = mpmathify(a) if n < 0: raise ValueError("Stieltjes constants defined for n >= 0") if a == 1: if n == 0: return +euler if n in stieltjes_cache: prec, s = stieltjes_cache[n] if prec >= mp.prec: return +s mag = 1 def f(x): xa = x/a v = (xa-j)*log(a-j*x)**n/(1+xa**2)/(exp(2*pi*x)-1) return v.real / mag from quadrature import quad orig = mp.prec try: # Normalize integrand by approx. magnitude to # speed up quadrature (which uses absolute error) if n > 50: mp.prec = 20 mag = quad(f, [0,inf], maxdegree=3) mp.prec = orig + 10 + int(n**0.5) s = quad(f, [0,inf], maxdegree=20) v = log(a)**n/(2*a) - log(a)**(n+1)/(n+1) + 2*s/a*mag finally: mp.prec = orig if a == 1 and isint(n): stieltjes_cache[n] = (mp.prec, v) return +v def isnpint(x): if not x: return True if isinstance(x, mpf): sign, man, exp, bc = x._mpf_ return sign and exp >= 0 if isinstance(x, mpc): return not x.imag and isnpint(x.real) def gammaprod(a, b): r""" Given iterables `a` and `b`, ``gammaprod(a, b)`` computes the product / quotient of gamma functions: .. math :: \frac{\Gamma(a_0) \Gamma(a_1) \cdots \Gamma(a_p)} {\Gamma(b_0) \Gamma(b_1) \cdots \Gamma(b_q)} Unlike direct calls to :func:`gamma`, :func:`gammaprod` considers the entire product as a limit and evaluates this limit properly if any of the numerator or denominator arguments are nonpositive integers such that poles of the gamma function are encountered. That is, :func:`gammaprod` evaluates .. math :: \lim_{\epsilon \to 0} \frac{\Gamma(a_0+\epsilon) \Gamma(a_1+\epsilon) \cdots \Gamma(a_p+\epsilon)} {\Gamma(b_0+\epsilon) \Gamma(b_1+\epsilon) \cdots \Gamma(b_q+\epsilon)} In particular: * If there are equally many poles in the numerator and the denominator, the limit is a rational number times the remaining, regular part of the product. * If there are more poles in the numerator, :func:`gammaprod` returns ``+inf``. * If there are more poles in the denominator, :func:`gammaprod` returns 0. **Examples** The reciprocal gamma function `1/\Gamma(x)` evaluated at `x = 0`:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> gammaprod([], [0]) mpf('0.0') A limit:: >>> gammaprod([-4], [-3]) mpf('-0.25') >>> limit(lambda x: gamma(x-1)/gamma(x), -3, direction=1) mpf('-0.25') >>> limit(lambda x: gamma(x-1)/gamma(x), -3, direction=-1) mpf('-0.25') """ a = [mpmathify(x) for x in a] b = [mpmathify(x) for x in b] poles_num = [] poles_den = [] regular_num = [] regular_den = [] for x in a: [regular_num, poles_num][isnpint(x)].append(x) for x in b: [regular_den, poles_den][isnpint(x)].append(x) # One more pole in numerator or denominator gives 0 or inf if len(poles_num) < len(poles_den): return mpf(0) if len(poles_num) > len(poles_den): return mpf('+inf') # All poles cancel # lim G(i)/G(j) = (-1)**(i+j) * gamma(1-j) / gamma(1-i) p = mpf(1) orig = mp.prec try: mp.prec = orig + 15 while poles_num: i = poles_num.pop() j = poles_den.pop() p *= (-1)**(i+j) * gamma(1-j) / gamma(1-i) for x in regular_num: p *= gamma(x) for x in regular_den: p /= gamma(x) finally: mp.prec = orig return +p def beta(x, y): r""" Computes the beta function, `B(x,y) = \Gamma(x) \Gamma(y) / \Gamma(x+y)`. The beta function is also commonly defined by the integral representation .. math :: B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, dt **Examples** For integer and half-integer arguments where all three gamma functions are finite, the beta function becomes either rational number or a rational multiple of `\pi`:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print beta(5, 2) 0.0333333333333333 >>> print beta(1.5, 2) 0.266666666666667 >>> print 16*beta(2.5, 1.5) 3.14159265358979 Where appropriate, :func:`beta` evaluates limits. A pole of the beta function is taken to result in ``+inf``:: >>> print beta(-0.5, 0.5) 0.0 >>> print beta(-3, 3) -0.333333333333333 >>> print beta(-2, 3) +inf >>> print beta(inf, 1) 0.0 >>> print beta(inf, 0) nan :func:`beta` supports complex numbers and arbitrary precision evaluation:: >>> print beta(1, 2+j) (0.4 - 0.2j) >>> mp.dps = 25 >>> print beta(j,0.5) (1.079424249270925780135675 - 1.410032405664160838288752j) >>> mp.dps = 50 >>> print beta(pi, e) 0.037890298781212201348153837138927165984170287886464 Various integrals can be computed by means of the beta function:: >>> mp.dps = 15 >>> print quad(lambda t: t**2.5*(1-t)**2, [0, 1]) 0.0230880230880231 >>> print beta(3.5, 3) 0.0230880230880231 >>> print quad(lambda t: sin(t)**4 * sqrt(cos(t)), [0, pi/2]) 0.319504062596158 >>> print beta(2.5, 0.75)/2 0.319504062596158 """ x = mpmathify(x) y = mpmathify(y) if isinf(y): x, y = y, x if isinf(x): if x == inf and not y.imag: if y == -inf: return nan if y > 0: return zero if isint(y): return nan if y < 0: return sign(gamma(y)) * inf return nan return gammaprod([x, y], [x+y]) def binomial(n, k): r""" Computes the binomial coefficient .. math :: {n \choose k} = \frac{n!}{k!(n-k)!}. The binomial coefficient gives the number of ways that `k` items can be chosen from a set of `n` items. More generally, the binomial coefficient is a well-defined function of arbitrary real or complex `n` and `k`, via the gamma function. **Examples** Generate Pascal's triangle:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(5): ... nprint([binomial(n,k) for k in range(n+1)]) ... [1.0] [1.0, 1.0] [1.0, 2.0, 1.0] [1.0, 3.0, 3.0, 1.0] [1.0, 4.0, 6.0, 4.0, 1.0] There is 1 way to select 0 items from the empty set, and 0 ways to select 1 item from the empty set:: >>> print binomial(0, 0) 1.0 >>> print binomial(0, 1) 0.0 :func:`binomial` supports large arguments:: >>> print binomial(10**20, 10**20-5) 8.33333333333333e+157 >>> print binomial(10**20, 10**10) 2.60784095465201e+104342944813 Nonintegral binomial coefficients find use in series expansions:: >>> nprint(taylor(lambda x: (1+x)**0.25, 0, 4)) [1.0, 0.25, -9.375e-2, 5.46875e-2, -3.75977e-2] >>> nprint([binomial(0.25, k) for k in range(5)]) [1.0, 0.25, -9.375e-2, 5.46875e-2, -3.75977e-2] An integral representation:: >>> n, k = 5, 3 >>> f = lambda t: exp(-j*k*t)*(1+exp(j*t))**n >>> print chop(quad(f, [-pi,pi])/(2*pi)) 10.0 >>> print binomial(n,k) 10.0 """ return gammaprod([n+1], [k+1, n-k+1]) def rf(x, n): r""" Computes the rising factorial or Pochhammer symbol, .. math :: x^{(n)} = x (x+1) \cdots (x+n-1) = \frac{\Gamma(x+n)}{\Gamma(x)} where the rightmost expression is valid for nonintegral `n`. **Examples** For integral `n`, the rising factorial is a polynomial:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(5): ... nprint(taylor(lambda x: rf(x,n), 0, n)) ... [1.0] [0.0, 1.0] [0.0, 1.0, 1.0] [0.0, 2.0, 3.0, 1.0] [0.0, 6.0, 11.0, 6.0, 1.0] Evaluation is supported for arbitrary arguments:: >>> print rf(2+3j, 5.5) (-7202.03920483347 - 3777.58810701527j) """ return gammaprod([x+n], [x]) def ff(x, n): r""" Computes the falling factorial, .. math :: (x)_n = x (x-1) \cdots (x-n+1) = \frac{\Gamma(x+1)}{\Gamma(x-n+1)} where the rightmost expression is valid for nonintegral `n`. **Examples** For integral `n`, the falling factorial is a polynomial:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(5): ... nprint(taylor(lambda x: ff(x,n), 0, n)) ... [1.0] [0.0, 1.0] [0.0, -1.0, 1.0] [0.0, 2.0, -3.0, 1.0] [0.0, -6.0, 11.0, -6.0, 1.0] Evaluation is supported for arbitrary arguments:: >>> print ff(2+3j, 5.5) (-720.41085888203 + 316.101124983878j) """ return gammaprod([x+1], [x-n+1]) @funcwrapper def fac2(x): r""" Computes the double factorial `x!!`, defined for integers `x > 0` by .. math :: x!! = \begin{cases} 1 \cdot 3 \cdots (x-2) \cdot x & x \;\mathrm{odd} \\ 2 \cdot 4 \cdots (x-2) \cdot x & x \;\mathrm{even} \end{cases} and more generally by [1] .. math :: x!! = 2^{x/2} \left(\frac{\pi}{2}\right)^{(\cos(\pi x)-1)/4} \Gamma\left(\frac{x}{2}+1\right). **Examples** The integer sequence of double factorials begins:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> nprint([fac2(n) for n in range(10)]) [1.0, 1.0, 2.0, 3.0, 8.0, 15.0, 48.0, 105.0, 384.0, 945.0] For large `x`, double factorials follow a Stirling-like asymptotic approximation:: >>> x = mpf(10000) >>> print fac2(x) 5.97272691416282e+17830 >>> print sqrt(pi)*x**((x+1)/2)*exp(-x/2) 5.97262736954392e+17830 The recurrence formula `x!! = x (x-2)!!` can be reversed to define the double factorial of negative odd integers (but not negative even integers):: >>> print fac2(-1), fac2(-3), fac2(-5), fac2(-7) 1.0 -1.0 0.333333333333333 -0.0666666666666667 >>> fac2(-2) Traceback (most recent call last): ... ValueError: gamma function pole With the exception of the poles at negative even integers, :func:`fac2` supports evaluation for arbitrary complex arguments. The recurrence formula is valid generally:: >>> print fac2(pi+2j) (-1.3697207890154e-12 + 3.93665300979176e-12j) >>> print (pi+2j)*fac2(pi-2+2j) (-1.3697207890154e-12 + 3.93665300979176e-12j) Double factorials should not be confused with nested factorials, which are immensely larger:: >>> print fac(fac(20)) 5.13805976125208e+43675043585825292774 >>> print fac2(20) 3715891200.0 Double factorials appear, among other things, in series expansions of Gaussian functions and the error function. Infinite series include:: >>> print nsum(lambda k: 1/fac2(k), [0, inf]) 3.05940740534258 >>> print sqrt(e)*(1+sqrt(pi/2)*erf(sqrt(2)/2)) 3.05940740534258 >>> print nsum(lambda k: 2**k/fac2(2*k-1), [1, inf]) 4.06015693855741 >>> print e * erf(1) * sqrt(pi) 4.06015693855741 A beautiful Ramanujan sum:: >>> print nsum(lambda k: (-1)**k*(fac2(2*k-1)/fac2(2*k))**3, [0,inf]) 0.90917279454693 >>> print (gamma('9/8')/gamma('5/4')/gamma('7/8'))**2 0.90917279454693 **References** 1. http://functions.wolfram.com/GammaBetaErf/Factorial2/27/01/0002/ 2. http://mathworld.wolfram.com/DoubleFactorial.html """ if isinf(x): if x == inf: return x return nan return 2**(x/2)*(pi/2)**((cospi(x)-1)/4)*gamma(x/2+1) #---------------------------------------------------------------------------# # # # Hypergeometric functions # # # #---------------------------------------------------------------------------# class _mpq(tuple): @property def _mpf_(self): return (mpf(self[0])/self[1])._mpf_ def __add__(self, other): if isinstance(other, _mpq): a, b = self c, d = other return _mpq((a*d+b*c, b*d)) return NotImplemented def __sub__(self, other): if isinstance(other, _mpq): a, b = self c, d = other return _mpq((a*d-b*c, b*d)) return NotImplemented mpq_1 = _mpq((1,1)) mpq_0 = _mpq((0,1)) def parse_param(x): if isinstance(x, tuple): p, q = x return [[p, q]], [], [] if isinstance(x, (int, long)): return [[x, 1]], [], [] x = mpmathify(x) if isinstance(x, mpf): return [], [x._mpf_], [] if isinstance(x, mpc): return [], [], [x._mpc_] def _as_num(x): if isinstance(x, list): return _mpq(x) return x def hypsum(ar, af, ac, br, bf, bc, x): prec, rnd = prec_rounding if hasattr(x, "_mpf_") and not (ac or bc): v = libhyper.hypsum_internal(ar, af, ac, br, bf, bc, x._mpf_, None, prec, rnd) return make_mpf(v) else: if hasattr(x, "_mpc_"): re, im = x._mpc_ else: re, im = x._mpf_, libmpf.fzero v = libhyper.hypsum_internal(ar, af, ac, br, bf, bc, re, im, prec, rnd) return make_mpc(v) def eval_hyp2f1(a,b,c,z): prec, rnd = prec_rounding ar, af, ac = parse_param(a) br, bf, bc = parse_param(b) cr, cf, cc = parse_param(c) absz = abs(z) if absz == 1: # TODO: determine whether it actually does, and otherwise # return infinity instead print "Warning: 2F1 might not converge for |z| = 1" if absz <= 1: # All rational if ar and br and cr: return sum_hyp2f1_rat(ar[0], br[0], cr[0], z) return hypsum(ar+br, af+bf, ac+bc, cr, cf, cc, z) # Use 1/z transformation a = (ar and _as_num(ar[0])) or mpmathify(a) b = (br and _as_num(br[0])) or mpmathify(b) c = (cr and _as_num(cr[0])) or mpmathify(c) orig = mp.prec try: mp.prec = orig + 15 h1 = eval_hyp2f1(a, mpq_1-c+a, mpq_1-b+a, 1/z) h2 = eval_hyp2f1(b, mpq_1-c+b, mpq_1-a+b, 1/z) #s1 = G(c)*G(b-a)/G(b)/G(c-a) * (-z)**(-a) * h1 #s2 = G(c)*G(a-b)/G(a)/G(c-b) * (-z)**(-b) * h2 f1 = gammaprod([c,b-a],[b,c-a]) f2 = gammaprod([c,a-b],[a,c-b]) s1 = f1 * (-z)**(mpq_0-a) * h1 s2 = f2 * (-z)**(mpq_0-b) * h2 v = s1 + s2 finally: mp.prec = orig return +v def sum_hyp0f1_rat(a, z): prec, rnd = prec_rounding if hasattr(z, "_mpf_"): return make_mpf(libhyper.mpf_hyp0f1_rat(a, z._mpf_, prec, rnd)) else: return make_mpc(libhyper.mpc_hyp0f1_rat(a, z._mpc_, prec, rnd)) def sum_hyp1f1_rat(a, b, z): prec, rnd = prec_rounding if hasattr(z, "_mpf_"): return make_mpf(libhyper.mpf_hyp1f1_rat(a, b, z._mpf_, prec, rnd)) else: return make_mpc(libhyper.mpc_hyp1f1_rat(a, b, z._mpc_, prec, rnd)) def sum_hyp2f1_rat(a, b, c, z): prec, rnd = prec_rounding if hasattr(z, "_mpf_"): return make_mpf(libhyper.mpf_hyp2f1_rat(a, b, c, z._mpf_, prec, rnd)) else: return make_mpc(libhyper.mpc_hyp2f1_rat(a, b, c, z._mpc_, prec, rnd)) #---------------------------------------------------------------------------# # And now the user-friendly versions # #---------------------------------------------------------------------------# def hyper(a_s, b_s, z): r""" Evaluates the generalized hypergeometric function .. math :: \,_pF_q(a_1,\ldots,a_p; b_1,\ldots,b_q; z) = \sum_{n=0}^\infty \frac{(a_1)_n (a_2)_n \ldots (a_p)_n} {(b_1)_n(b_2)_n\ldots(b_q)_n} \frac{z^n}{n!} where `(x)_n` denotes the rising factorial (see :func:`rf`). The parameters lists ``a_s`` and ``b_s`` may contain integers, real numbers, complex numbers, as well as exact fractions given in the form of tuples `(p, q)`. :func:`hyper` is optimized to handle integers and fractions more efficiently than arbitrary floating-point parameters (since rational parameters are by far the most common). **Examples** We can compare the output of :func:`hyper` with :func:`nsum`:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> a,b,c,d = 2,3,4,5 >>> x = 0.25 >>> print hyper([a,b],[c,d],x) 1.078903941164934876086237 >>> fn = lambda n: rf(a,n)*rf(b,n)/rf(c,n)/rf(d,n)*x**n/fac(n) >>> print nsum(fn, [0, inf]) 1.078903941164934876086237 The parameters can be any combination of integers, fractions, floats and complex numbers:: >>> a, b, c, d, e = 1, (-1,2), pi, 3+4j, (2,3) >>> x = 0.2j >>> print hyper([a,b],[c,d,e],x) (0.9923571616434024810831887 - 0.005753848733883879742993122j) >>> b, e = -0.5, mpf(2)/3 >>> fn = lambda n: rf(a,n)*rf(b,n)/rf(c,n)/rf(d,n)/rf(e,n)*x**n/fac(n) >>> print nsum(fn, [0, inf]) (0.9923571616434024810831887 - 0.005753848733883879742993122j) """ p = len(a_s) q = len(b_s) z = mpmathify(z) degree = p, q if degree == (0, 1): br, bf, bc = parse_param(b_s[0]) if br: return sum_hyp0f1_rat(br[0], z) return hypsum([], [], [], br, bf, bc, z) if degree == (1, 1): ar, af, ac = parse_param(a_s[0]) br, bf, bc = parse_param(b_s[0]) if ar and br: a, b = ar[0], br[0] return sum_hyp1f1_rat(a, b, z) return hypsum(ar, af, ac, br, bf, bc, z) if degree == (2, 1): return eval_hyp2f1(a_s[0], a_s[1], b_s[0], z) ars, afs, acs, brs, bfs, bcs = [], [], [], [], [], [] for a in a_s: r, f, c = parse_param(a) ars += r afs += f acs += c for b in b_s: r, f, c = parse_param(b) brs += r bfs += f bcs += c return hypsum(ars, afs, acs, brs, bfs, bcs, z) def hyp0f1(a, z): r"""Hypergeometric function `\,_0F_1`. ``hyp0f1(a,z)`` is equivalent to ``hyper([],[a],z)``; see documentation for :func:`hyper` for more information.""" return hyper([], [a], z) def hyp1f1(a,b,z): r"""Hypergeometric function `\,_1F_1`. ``hyp1f1(a,b,z)`` is equivalent to ``hyper([a],[b],z)``; see documentation for :func:`hyper` for more information.""" return hyper([a], [b], z) def hyp2f1(a,b,c,z): r"""Hypergeometric function `\,_2F_1`. ``hyp2f1(a,b,c,z)`` is equivalent to ``hyper([a,b],[c],z)``; see documentation for :func:`hyper` for more information.""" return hyper([a,b], [c], z) def _lower_gamma(z, b): return hyp1f1(1, 1+z, b) * b**z * exp(-b) / z def _check_pos(x): return isinstance(x, mpf) and x > 0 @funcwrapper def gammainc(z, a=0, b=inf, regularized=False): r""" ``gammainc(z, a=0, b=inf)`` computes the (generalized) incomplete gamma function with integration limits `[a, b]`: .. math :: \Gamma(z,a,b) = \int_a^b t^{z-1} e^{-t} \, dt The generalized incomplete gamma function reduces to the following special cases when one or both endpoints are fixed: * `\Gamma(z,0,\infty)` is the standard ("complete") gamma function, `\Gamma(z)` (available directly as the mpmath function :func:`gamma`) * `\Gamma(z,a,\infty)` is the "upper" incomplete gamma function, `\Gamma(z,a)` * `\Gamma(z,0,b)` is the "lower" incomplete gamma function, `\gamma(z,b)`. Of course, we have `\Gamma(z,0,x) + \Gamma(z,x,\infty) = \Gamma(z)` for all `z` and `x`. Note however that some authors reverse the order of the arguments when defining the lower and upper incomplete gamma function, so one should be careful to get the correct definition. If also given the keyword argument ``regularized=True``, :func:`gammainc` computes the "regularized" incomplete gamma function .. math :: P(z,a,b) = \frac{\Gamma(z,a,b)}{\Gamma(z)}. **Examples** We can compare with numerical quadrature to verify that :func:`gammainc` computes the integral in the definition:: >>> from sympy.mpmath import * >>> mp.dps = 20 >>> print gammainc(2+3j, 4, 10) (0.009772126686277051606 - 0.077063730631298989245j) >>> print quad(lambda t: t**(2+3j-1) * exp(-t), [4, 10]) (0.009772126686277051606 - 0.077063730631298989245j) The incomplete gamma functions satisfy simple recurrence relations:: >>> mp.dps = 15 >>> z = 3.5 >>> a = 2 >>> print gammainc(z+1, a), z*gammainc(z,a) + a**z*exp(-a) 10.6013029693353 10.6013029693353 >>> print gammainc(z+1,0,a), z*gammainc(z,0,a) - a**z*exp(-a) 1.03042542723211 1.03042542723211 If `z` is an integer, the recurrence reduces the incomplete gamma function to `P(a) \exp(-a) + Q(b) \exp(-b)` where `P` and `Q` are polynomials:: >>> mp.dps = 15 >>> print gammainc(1, 2), exp(-2) 0.135335283236613 0.135335283236613 >>> mp.dps = 50 >>> identify(gammainc(6, 1, 2), ['exp(-1)', 'exp(-2)']) '(326*exp(-1) + (-872)*exp(-2))' The incomplete gamma functions reduce to functions such as the exponential integral Ei and the error function for special arguments:: >>> mp.dps = 15 >>> print gammainc(0, 4), -ei(-4) 0.00377935240984891 0.00377935240984891 >>> print gammainc(0.5, 0, 2), sqrt(pi)*erf(sqrt(2)) 1.6918067329452 1.6918067329452 """ if b == inf: if a == 0: v = gamma(z) else: if z == 0: # Reduces to exponential integral. Mind branch cuts. if _check_pos(a): return -ei(-a) else: return -ei(-a) + (log(-a)-log(-1/a))/2-log(a) # XXX: avoid poles v = gamma(z) - _lower_gamma(z, a) elif a == 0: v = _lower_gamma(z, b) else: if z == 0: # Reduces to exponential integral if _check_pos(a) and _check_pos(b): return ei(-b) - ei(-a) else: return ei(-b)-ei(-a) + \ (log(-a)-log(-1/a))/2-log(a) + \ (log(-1/b)-log(-b))/2+log(b) # XXX: avoid poles v = _lower_gamma(z, b) - _lower_gamma(z, a) if regularized: return v / gamma(z) else: return v erf = mpfunc("erf", libhyper.mpf_erf, libhyper.mpc_erf, "Error function, erf(z)") erf.__doc__ = r""" Computes the error function, `\mathrm{erf}(x)`. The error function is the normalized antiderivative of the Gaussian function `\exp(-t^2)`. More precisely, .. math:: \mathrm{erf}(x) = \frac{2}{\sqrt \pi} \int_0^x \exp(-t^2) \,dt **Basic examples** Simple values and limits include:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print erf(0) 0.0 >>> print erf(1) 0.842700792949715 >>> print erf(-1) -0.842700792949715 >>> print erf(inf) 1.0 >>> print erf(-inf) -1.0 For large real `x`, `\mathrm{erf}(x)` approaches 1 very rapidly:: >>> print erf(3) 0.999977909503001 >>> print erf(5) 0.999999999998463 The error function is an odd function:: >>> nprint(chop(taylor(erf, 0, 5))) [0.0, 1.12838, 0.0, -0.376126, 0.0, 0.112838] :func:`erf` implements arbitrary-precision evaluation and supports complex numbers:: >>> mp.dps = 50 >>> print erf(0.5) 0.52049987781304653768274665389196452873645157575796 >>> mp.dps = 25 >>> print erf(1+j) (1.316151281697947644880271 + 0.1904534692378346862841089j) **Related functions** See also :func:`erfc`, which is more accurate for large `x`, and :func:`erfi` which gives the antiderivative of `\exp(t^2)`. The Fresnel integrals :func:`fresnels` and :func:`fresnelc` are also related to the error function. """ erfc = mpfunc("erfc", libhyper.mpf_erfc, libhyper.mpc_erfc, "Complementary error function, erfc(z) = 1-erf(z)") erfc.__doc__ = r""" Computes the complementary error function, `\mathrm{erfc}(x) = 1-\mathrm{erf}(x)`. This function avoids cancellation that occurs when naively computing the complementary error function as ``1-erf(x)``:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print 1 - erf(10) 0.0 >>> print erfc(10) 2.08848758376254e-45 :func:`erfc` works accurately even for ludicrously large arguments:: >>> print erfc(10**10) 4.3504398860243e-43429448190325182776 """ @funcwrapper def erfi(z): r""" Computes the imaginary error function, `\mathrm{erfi}(x)`. The imaginary error function is defined in analogy with the error function, but with a positive sign in the integrand: .. math :: \mathrm{erfi}(x) = \frac{2}{\sqrt \pi} \int_0^x \exp(t^2) \,dt Whereas the error function rapidly converges to 1 as `x` grows, the imaginary error function rapidly diverges to infinity. The functions are related as `\mathrm{erfi}(x) = -i\,\mathrm{erf}(ix)` for all complex numbers `x`. **Examples** Basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print erfi(0) 0.0 >>> print erfi(1) 1.65042575879754 >>> print erfi(-1) -1.65042575879754 >>> print erfi(inf) +inf >>> print erfi(-inf) -inf Note the symmetry between erf and erfi:: >>> print erfi(3j) (0.0 + 0.999977909503001j) >>> print erf(3) 0.999977909503001 >>> print erf(1+2j) (-0.536643565778565 - 5.04914370344703j) >>> print erfi(2+1j) (-5.04914370344703 - 0.536643565778565j) **Possible issues** The current implementation of :func:`erfi` is much less efficient and accurate than the one for erf. """ return (2/sqrt(pi)*z) * sum_hyp1f1_rat((1,2),(3,2), z**2) @funcwrapper def erfinv(x): r""" Computes the inverse error function, satisfying .. math :: \mathrm{erf}(\mathrm{erfinv}(x)) = \mathrm{erfinv}(\mathrm{erf}(x)) = x. This function is defined only for `-1 \le x \le 1`. **Examples** Special values include:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print erfinv(0) 0.0 >>> print erfinv(1) +inf >>> print erfinv(-1) -inf The domain is limited to the standard interval:: >>> erfinv(2) Traceback (most recent call last): ... ValueError: erfinv(x) is defined only for -1 <= x <= 1 It is simple to check that :func:`erfinv` computes inverse values of :func:`erf` as promised:: >>> print erf(erfinv(0.75)) 0.75 >>> print erf(erfinv(-0.995)) -0.995 :func:`erfinv` supports arbitrary-precision evaluation:: >>> mp.dps = 50 >>> erf(3) mpf('0.99997790950300141455862722387041767962015229291260075') >>> erfinv(_) mpf('3.0') A definite integral involving the inverse error function:: >>> mp.dps = 15 >>> print quad(erfinv, [0, 1]) 0.564189583547756 >>> print 1/sqrt(pi) 0.564189583547756 The inverse error function can be used to generate random numbers with a Gaussian distribution (although this is a relatively inefficient algorithm):: >>> nprint([erfinv(2*rand()-1) for n in range(6)]) # doctest: +SKIP [-0.586747, 1.10233, -0.376796, 0.926037, -0.708142, -0.732012] """ if x.imag or (x < -1) or (x > 1): raise ValueError("erfinv(x) is defined only for -1 <= x <= 1") if isnan(x): return x if not x: return x if x == 1: return inf if x == -1: return -inf if abs(x) < 0.9: a = 0.53728*x**3 + 0.813198*x else: # An asymptotic formula u = log(2/pi/(abs(x)-1)**2) a = sign(x) * sqrt(u - log(u))/sqrt(2) from optimization import findroot return findroot(lambda t: erf(t)-x, a) @funcwrapper def npdf(x, mu=0, sigma=1): r""" ``npdf(x, mu=0, sigma=1)`` evaluates the probability density function of a normal distribution with mean value `\mu` and variance `\sigma^2`. Elementary properties of the probability distribution can be verified using numerical integration:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print quad(npdf, [-inf, inf]) 1.0 >>> print quad(lambda x: npdf(x, 3), [3, inf]) 0.5 >>> print quad(lambda x: npdf(x, 3, 2), [3, inf]) 0.5 See also :func:`ncdf`, which gives the cumulative distribution. """ sigma = mpmathify(sigma) return exp(-(x-mu)**2/(2*sigma**2)) / (sigma*sqrt(2*pi)) @funcwrapper def ncdf(x, mu=0, sigma=1): r""" ``ncdf(x, mu=0, sigma=1)`` evaluates the cumulative distribution function of a normal distribution with mean value `\mu` and variance `\sigma^2`. See also :func:`npdf`, which gives the probability density. Elementary properties include:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print ncdf(pi, mu=pi) 0.5 >>> print ncdf(-inf) 0.0 >>> print ncdf(+inf) 1.0 The cumulative distribution is the integral of the density function having identical mu and sigma:: >>> mp.dps = 15 >>> print diff(ncdf, 2) 0.053990966513188 >>> print npdf(2) 0.053990966513188 >>> print diff(lambda x: ncdf(x, 1, 0.5), 0) 0.107981933026376 >>> print npdf(0, 1, 0.5) 0.107981933026376 """ a = (x-mu)/(sigma*sqrt(2)) if a < 0: return erfc(-a)/2 else: return (1+erf(a))/2 def ei_as(a): extra = 10 mp.dps += extra s = k = p = 1 while abs(p) > eps: p = (p*k)/a s += p k += 1 s = (s * exp(a))/a mp.dps -= extra return s @funcwrapper def ei(z): r""" Computes the exponential integral or Ei-function, `\mathrm{Ei}(x)`. The exponential integral is defined as .. math :: \mathrm{Ei}(x) = \int_{-\infty\,}^x \frac{e^t}{t} \, dt. When the integration range includes `t = 0`, the exponential integral is interpreted as providing the Cauchy principal value. For real `x`, the Ei-function behaves roughly like `\mathrm{Ei}(x) \approx \exp(x) + \log(|x|)`. This function should not be confused with the family of related functions denoted by `E_n` which are also called "exponential integrals". **Basic examples** Some basic values and limits are:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print ei(0) -inf >>> print ei(1) 1.89511781635594 >>> print ei(inf) +inf >>> print ei(-inf) 0.0 For `x < 0`, the defining integral can be evaluated numerically as a reference:: >>> print ei(-4) -0.00377935240984891 >>> print quad(lambda t: exp(t)/t, [-inf, -4]) -0.00377935240984891 :func:`ei` supports complex arguments and arbitrary precision evaluation:: >>> mp.dps = 50 >>> mp.dps = 50 >>> print ei(pi) 10.928374389331410348638445906907535171566338835056 >>> mp.dps = 25 >>> print ei(3+4j) (-4.154091651642689822535359 + 4.294418620024357476985535j) **Related functions** The exponential integral is closely related to the logarithmic integral. See :func:`li` for additional information. The exponential integral is related to the hyperbolic and trigonometric integrals (see :func:`chi`, :func:`shi`, :func:`ci`, :func:`si`) similarly to how the ordinary exponential function is related to the hyperbolic and trigonometric functions:: >>> mp.dps = 15 >>> print ei(3) 9.93383257062542 >>> print chi(3) + shi(3) 9.93383257062542 >>> print ci(3j) - j*si(3j) - pi*j/2 (9.93383257062542 + 0.0j) Beware that logarithmic corrections, as in the last example above, are required to obtain the correct branch in general. For details, see [1]. The exponential integral is also a special case of the hypergeometric function `\,_2F_2`:: >>> z = 0.6 >>> print z*hyper([1,1],[2,2],z) + (ln(z)-ln(1/z))/2 + euler 0.769881289937359 >>> print ei(z) 0.769881289937359 For x large enough use the asymptotic expansion ei_as(x) = exp(x)/x * Sum(k!/x^k, (k,0,inf)) k!/x^k goes as exp(f(k)) f(k) = k*log(k/(x*e)) + log(k)/2, with extremal point in log(k/x) + 1/(2*k) = 0; therefore the smallest term of the asympotic series is k!/x^k ~= e^(-k - 1/2) requiring this to be equal to e^-prec one gets x ~= k ~= prec*log(2) so that one should use ei_as(x) for x > prec*log(2) **References** 1. Relations between Ei and other functions: http://functions.wolfram.com/GammaBetaErf/ExpIntegralEi/27/01/ 2. Abramowitz & Stegun, section 5: http://www.math.sfu.ca/~cbm/aands/page_228.htm 3. Asymptotic expansion for Ei: http://mathworld.wolfram.com/En-Function.html """ if z == inf: return z if z == -inf: return -mpf(0) if not z: return -inf if abs(z) > mp.prec * 0.7 + 50: r = ei_as(z) if z.imag > 0: r += j*pi elif z.imag < 0: r -= j*pi return r v = z*hypsum([[1,1],[1,1]],[],[],[[2,1],[2,1]],[],[],z) + \ (log(z)-log(1/z))/2 + euler if isinstance(z, mpf) and z < 0: return v.real return v @funcwrapper def li(z): r""" Computes the logarithmic integral or li-function `\mathrm{li}(x)`, defined by .. math :: \mathrm{li}(x) = \int_0^x \frac{1}{\log t} \, dt The logarithmic integral has a singularity at `x = 1`. Note that there is a second logarithmic integral, the Li function, defined by .. math :: \mathrm{Li}(x) = \int_2^x \frac{1}{\log t} \, dt This "offset logarithmic integral" can be computed via :func:`li` using the simple identity `\mathrm{Li}(x) = \mathrm{li}(x) - \mathrm{li}(2)`. The logarithmic integral should also not be confused with the polylogarithm (also denoted by Li), which is implemented as :func:`polylog`. **Examples** Some basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 30 >>> print li(0) 0.0 >>> print li(1) -inf >>> print li(1) -inf >>> print li(2) 1.04516378011749278484458888919 >>> print findroot(li, 2) 1.45136923488338105028396848589 >>> print li(inf) +inf The logarithmic integral can be evaluated for arbitrary complex arguments:: >>> mp.dps = 20 >>> print li(3+4j) (3.1343755504645775265 + 2.6769247817778742392j) The logarithmic integral is related to the exponential integral:: >>> print ei(log(3)) 2.1635885946671919729 >>> print li(3) 2.1635885946671919729 The logarithmic integral grows like `O(x/\log(x))`:: >>> mp.dps = 15 >>> x = 10**100 >>> print x/log(x) 4.34294481903252e+97 >>> print li(x) 4.3619719871407e+97 The prime number theorem states that the number of primes less than `x` is asymptotic to `\mathrm{li}(x)`. For example, it is known that there are exactly 1,925,320,391,606,803,968,923 prime numbers less than `10^{23}` [1]. The logarithmic integral provides a very accurate estimate:: >>> print li(2) + li(10**23) 1.92532039161405e+21 A definite integral is:: >>> print quad(li, [0, 1]) -0.693147180559945 >>> print -ln(2) -0.693147180559945 **References** 1. http://mathworld.wolfram.com/PrimeCountingFunction.html 2. http://mathworld.wolfram.com/LogarithmicIntegral.html """ if not z: return z if z == 1: return -inf return ei(log(z)) ci = mpfunc('ci', libhyper.mpf_ci, libhyper.mpc_ci, '') si = mpfunc('si', libhyper.mpf_si, libhyper.mpc_si, '') ci.__doc__ = r""" Computes the cosine integral, .. math :: \mathrm{Ci}(x) = -\int_x^{\infty} \frac{\cos t}{t}\,dt = \gamma + \log x + \int_0^x \frac{\cos t - 1}{t}\,dt **Examples** Some values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print ci(0) -inf >>> print ci(1) 0.3374039229009681346626462 >>> print ci(pi) 0.07366791204642548599010096 >>> print ci(inf) 0.0 >>> print ci(-inf) (0.0 + 3.141592653589793238462643j) >>> print ci(2+3j) (1.408292501520849518759125 - 2.983617742029605093121118j) The cosine integral behaves roughly like the sinc function (see :func:`sinc`) for large real `x`:: >>> print ci(10**10) -4.875060251748226537857298e-11 >>> print sinc(10**10) -4.875060250875106915277943e-11 >>> print chop(limit(ci, inf)) 0.0 It has infinitely many roots on the positive real axis:: >>> print findroot(ci, 1) 0.6165054856207162337971104 >>> print findroot(ci, 2) 3.384180422551186426397851 We can evaluate the defining integral as a reference:: >>> mp.dps = 15 >>> print -quadosc(lambda t: cos(t)/t, [5, inf], omega=1) -0.190029749656644 >>> print ci(5) -0.190029749656644 Some infinite series can be evaluated using the cosine integral:: >>> print nsum(lambda k: (-1)**k/(fac(2*k)*(2*k)), [1,inf]) -0.239811742000565 >>> print ci(1) - euler -0.239811742000565 """ si.__doc__ = r""" Computes the sine integral, .. math :: \mathrm{Si}(x) = \int_0^x \frac{\sin t}{t}\,dt. The sine integral is thus the antiderivative of the sinc function (see :func:`sinc`). **Examples** Some values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print si(0) 0.0 >>> print si(1) 0.9460830703671830149413533 >>> print si(-1) -0.9460830703671830149413533 >>> print si(pi) 1.851937051982466170361053 >>> print si(inf) 1.570796326794896619231322 >>> print si(-inf) -1.570796326794896619231322 >>> print si(2+3j) (4.547513889562289219853204 + 1.399196580646054789459839j) The sine integral approaches `\pi/2` for large real `x`:: >>> print si(10**10) 1.570796326707584656968511 >>> print pi/2 1.570796326794896619231322 We can evaluate the defining integral as a reference:: >>> mp.dps = 15 >>> print quad(sinc, [0, 5]) 1.54993124494467 >>> print si(5) 1.54993124494467 Some infinite series can be evaluated using the sine integral:: >>> print nsum(lambda k: (-1)**k/(fac(2*k+1)*(2*k+1)), [0,inf]) 0.946083070367183 >>> print si(1) 0.946083070367183 """ @funcwrapper def chi(z): r""" Computes the hyperbolic cosine integral, defined in analogy with the cosine integral (see :func:`ci`) as .. math :: \mathrm{Chi}(x) = -\int_x^{\infty} \frac{\cosh t}{t}\,dt = \gamma + \log x + \int_0^x \frac{\cosh t - 1}{t}\,dt Some values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print chi(0) -inf >>> print chi(1) 0.8378669409802082408946786 >>> print chi(inf) +inf >>> print findroot(chi, 0.5) 0.5238225713898644064509583 >>> print chi(2+3j) (-0.1683628683277204662429321 + 2.625115880451325002151688j) """ if not z: return -inf z2 = (z/2)**2 return euler + log(z) + \ z2*hypsum([[1,1],[1,1]],[],[],[[2,1],[2,1],[3,2]],[],[],z2) @funcwrapper def shi(z): r""" Computes the hyperbolic sine integral, defined in analogy with the sine integral (see :func:`si`) as .. math :: \mathrm{Shi}(x) = \int_0^x \frac{\sinh t}{t}\,dt. Some values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print shi(0) 0.0 >>> print shi(1) 1.057250875375728514571842 >>> print shi(-1) -1.057250875375728514571842 >>> print shi(inf) +inf >>> print shi(2+3j) (-0.1931890762719198291678095 + 2.645432555362369624818525j) """ z2 = (z/2)**2 return z*hypsum([[1,2]],[],[],[[3,2],[3,2]],[],[],z2) @funcwrapper def fresnels(z): r""" Computes the Fresnel sine integral .. math :: S(x) = \int_0^x \sin\left(\frac{\pi t^2}{2}\right) \,dt Note that some sources define this function without the normalization factor `\pi/2`. **Examples** Some basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print fresnels(0) 0.0 >>> print fresnels(inf) 0.5 >>> print fresnels(-inf) -0.5 >>> print fresnels(1) 0.4382591473903547660767567 >>> print fresnels(1+2j) (36.72546488399143842838788 + 15.58775110440458732748279j) Comparing with the definition:: >>> print fresnels(3) 0.4963129989673750360976123 >>> print quad(lambda t: sin(pi*t**2/2), [0,3]) 0.4963129989673750360976123 """ if z == inf: return mpf(0.5) if z == -inf: return mpf(-0.5) return pi*z**3/6*hypsum([[3,4]],[],[],[[3,2],[7,4]],[],[],-pi**2*z**4/16) @funcwrapper def fresnelc(z): r""" Computes the Fresnel cosine integral .. math :: C(x) = \int_0^x \cos\left(\frac{\pi t^2}{2}\right) \,dt Note that some sources define this function without the normalization factor `\pi/2`. **Examples** Some basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print fresnelc(0) 0.0 >>> print fresnelc(inf) 0.5 >>> print fresnelc(-inf) -0.5 >>> print fresnelc(1) 0.7798934003768228294742064 >>> print fresnelc(1+2j) (16.08787137412548041729489 - 36.22568799288165021578758j) Comparing with the definition:: >>> print fresnelc(3) 0.6057207892976856295561611 >>> print quad(lambda t: cos(pi*t**2/2), [0,3]) 0.6057207892976856295561611 """ if z == inf: return mpf(0.5) if z == -inf: return mpf(-0.5) return z*hypsum([[1,4]],[],[],[[1,2],[5,4]],[],[],-pi**2*z**4/16) @funcwrapper def airyai(z): r""" Computes the Airy function `\mathrm{Ai}(x)`, which is a solution of the Airy differential equation `y''-xy=0`. The Ai-function behaves roughly like a slowly decaying sine wave for `x < 0` and like a decreasing exponential for `x > 0`. Limits and values include:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print airyai(0), 1/(3**(2/3.)*gamma(2/3.)) 0.355028053887817 0.355028053887817 >>> print airyai(1) 0.135292416312881 >>> print airyai(-1) 0.535560883292352 >>> print airyai(inf) 0.0 >>> print airyai(-inf) 0.0 :func:`airyai` uses a series expansion around `x = 0`, so it is slow for extremely large arguments. Here are some evaluations for moderately large arguments:: >>> print airyai(-100) 0.176753393239553 >>> print airyai(100) 2.63448215208818e-291 >>> print airyai(50+50j) (-5.31790195707456e-68 - 1.16358800377071e-67j) >>> print airyai(-50+50j) (1.04124253736317e+158 + 3.3475255449236e+157j) The first negative root is:: >>> print findroot(airyai, -2) -2.33810741045977 We can verify the differential equation:: >>> for x in [-3.4, 0, 2.5, 1+2j]: ... print abs(diff(airyai, x, 2) - x*airyai(x)) < eps ... True True True True The Taylor series expansion around `x = 0` starts with the following coefficients (note that every third term is zero):: >>> nprint(chop(taylor(airyai, 0, 5))) [0.355028, -0.258819, 0.0, 5.91713e-2, -2.15683e-2, 0.0] The Airy functions are a special case of Bessel functions. For `x < 0`, we have:: >>> x = 3 >>> print airyai(-x) -0.378814293677658 >>> p = 2*(x**1.5)/3 >>> print sqrt(x)*(besselj(1/3.,p) + besselj(-1/3.,p))/3 -0.378814293677658 """ if z == inf or z == -inf: return 1/z if z.real > 2: # cancellation: both terms are ~ 2^(z^1.5), # result is ~ 2^(-z^1.5), so need ~2*z^1.5 extra bits mp.prec += 2*int(z.real**1.5) z3 = z**3 / 9 a = sum_hyp0f1_rat((2,3), z3) / (cbrt(9) * gamma(mpf(2)/3)) b = z * sum_hyp0f1_rat((4,3), z3) / (cbrt(3) * gamma(mpf(1)/3)) return a - b @funcwrapper def airybi(z): r""" Computes the Airy function `\mathrm{Bi}(x)`, which is a solution of the Airy differential equation `y''-xy=0`. The Bi-function behaves roughly like a slowly decaying sine wave for `x < 0` and like an increasing exponential for `x > 0`. Limits and values include:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print airybi(0), 1/(3**(1/6.)*gamma(2/3.)) 0.614926627446001 0.614926627446001 >>> print airybi(1) 1.20742359495287 >>> print airybi(-1) 0.103997389496945 >>> print airybi(inf) +inf >>> print airybi(-inf) 0.0 :func:`airyai` uses a series expansion around `x = 0`, so it is slow for extremely large arguments. Here are some evaluations for moderately large arguments:: >>> print airybi(-100) 0.0242738876801601 >>> print airybi(100) 6.0412239966702e+288 >>> print airybi(50+50j) (-5.32207626732144e+63 + 1.47845029116524e+65j) >>> print airybi(-50+50j) (-3.3475255449236e+157 + 1.04124253736317e+158j) The first negative root is:: >>> print findroot(airybi, -1) -1.17371322270913 We can verify the differential equation:: >>> for x in [-3.4, 0, 2.5, 1+2j]: ... print abs(diff(airybi, x, 2) - x*airybi(x)) < eps ... True True True True The Taylor series expansion around `x = 0` starts with the following coefficients (note that every third term is zero):: >>> nprint(chop(taylor(airybi, 0, 5))) [0.614927, 0.448288, 0.0, 0.102488, 3.73574e-2, 0.0] The Airy functions are a special case of Bessel functions. For `x < 0`, we have:: >>> x = 3 >>> print airybi(-x) -0.198289626374927 >>> p = 2*(x**1.5)/3 >>> print sqrt(x/3)*(besselj(-1/3.,p) - besselj(1/3.,p)) -0.198289626374926 """ if z == inf: return z if z == -inf: return 1/z z3 = z**3 / 9 rt = nthroot(3, 6) a = sum_hyp0f1_rat((2,3), z3) / (rt * gamma(mpf(2)/3)) b = z * rt * sum_hyp0f1_rat((4,3), z3) / gamma(mpf(1)/3) return a + b ellipk = mpfunc('ellipk', libhyper.mpf_ellipk, libhyper.mpc_ellipk, '') ellipe = mpfunc('ellipe', libhyper.mpf_ellipe, libhyper.mpc_ellipe, '') ellipk.__doc__ = \ r""" Evaluates the complete elliptic integral of the first kind, `K(m)`, defined by .. math :: K(m) = \int_0^{\pi/2} \frac{1}{\sqrt{1-m \sin^2 t}} dt. Note that the argument is the parameter `m = k^2`, not the modulus `k` which is sometimes used. Alternatively, in terms of a hypergeometric function, we have: .. math :: K(m) = \frac{\pi}{2} \,_2F_1(1/2, 1/2, 1, m) **Examples** Values and limits include:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print ellipk(0) 1.570796326794896619231322 >>> print ellipk(inf) (0.0 + 0.0j) >>> print ellipk(-inf) 0.0 >>> print ellipk(1) +inf >>> print ellipk(-1) 1.31102877714605990523242 >>> print ellipk(2) (1.31102877714605990523242 - 1.31102877714605990523242j) Verifying the defining integral and hypergeometric representation:: >>> print ellipk(0.5) 1.85407467730137191843385 >>> print quad(lambda t: (1-0.5*sin(t)**2)**-0.5, [0, pi/2]) 1.85407467730137191843385 >>> print pi/2*hyp2f1(0.5,0.5,1,0.5) 1.85407467730137191843385 Evaluation is supported for arbitrary complex `m`:: >>> print ellipk(3+4j) (0.9111955638049650086562171 + 0.6313342832413452438845091j) A definite integral:: >>> print quad(ellipk, [0, 1]) 2.0 """ ellipe.__doc__ = \ r""" Evaluates the complete elliptic integral of the second kind, `E(m)`, defined by .. math :: E(m) = \int_0^{\pi/2} \sqrt{1-m \sin^2 t} dt. Note that the argument is the parameter `m = k^2`, not the modulus `k` which is sometimes used. Alternatively, in terms of a hypergeometric function, we have: .. math :: E(m) = \frac{\pi}{2} \,_2F_1(1/2, -1/2, 1, m) **Examples** Basic values and limits:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print ellipe(0) 1.570796326794896619231322 >>> print ellipe(1) 1.0 >>> print ellipe(-1) 1.910098894513856008952381 >>> print ellipe(2) (0.5990701173677961037199612 + 0.5990701173677961037199612j) >>> print ellipe(inf) (0.0 + +infj) >>> print ellipe(-inf) +inf Verifying the defining integral and hypergeometric representation:: >>> print ellipe(0.5) 1.350643881047675502520175 >>> print quad(lambda t: sqrt(1-0.5*sin(t)**2), [0, pi/2]) 1.350643881047675502520175 >>> print pi/2*hyp2f1(0.5,-0.5,1,0.5) 1.350643881047675502520175 Evaluation is supported for arbitrary complex `m`:: >>> print ellipe(0.5+0.25j) (1.360868682163129682716687 - 0.1238733442561786843557315j) >>> print ellipe(3+4j) (1.499553520933346954333612 - 1.577879007912758274533309j) A definite integral:: >>> print quad(ellipe, [0,1]) 1.333333333333333333333333 """ def agm(a, b=1): r""" ``agm(a, b)`` computes the arithmetic-geometric mean of `a` and `b`, defined as the limit of the following iteration: .. math :: a_0 = a b_0 = b a_{n+1} = \frac{a_n+b_n}{2} b_{n+1} = \sqrt{a_n b_n} This function can be called with a single argument, computing `\mathrm{agm}(a,1) = \mathrm{agm}(1,a)`. **Examples** It is a well-known theorem that the geometric mean of two distinct positive numbers is less than the arithmetic mean. It follows that the arithmetic-geometric mean lies between the two means:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> a = mpf(3) >>> b = mpf(4) >>> print sqrt(a*b) 3.46410161513775 >>> print agm(a,b) 3.48202767635957 >>> print (a+b)/2 3.5 The arithmetic-geometric mean is scale-invariant:: >>> print agm(10*e, 10*pi) 29.261085515723 >>> print 10*agm(e, pi) 29.261085515723 As an order-of-magnitude estimate, `\mathrm{agm}(1,x) \approx x` for large `x`:: >>> print agm(10**10) 643448704.760133 >>> print agm(10**50) 1.34814309345871e+48 For tiny `x`, `\mathrm{agm}(1,x) \approx -\pi/(2 \log(x/4))`:: >>> print agm('0.01') 0.262166887202249 >>> print -pi/2/log('0.0025') 0.262172347753122 The arithmetic-geometric mean can also be computed for complex numbers:: >>> print agm(3, 2+j) (2.51055133276184 + 0.547394054060638j) The AGM iteration converges very quickly (each step doubles the number of correct digits), so :func:`agm` supports efficient high-precision evaluation:: >>> mp.dps = 10000 >>> a = agm(1,2) >>> str(a)[-10:] '1679581912' **Mathematical relations** The arithmetic-geometric mean may be used to evaluate the following two parametric definite integrals: .. math :: I_1 = \int_0^{\infty} \frac{1}{\sqrt{(x^2+a^2)(x^2+b^2)}} \,dx I_2 = \int_0^{\pi/2} \frac{1}{\sqrt{a^2 \cos^2(x) + b^2 \sin^2(x)}} \,dx We have:: >>> mp.dps = 15 >>> a = 3 >>> b = 4 >>> f1 = lambda x: ((x**2+a**2)*(x**2+b**2))**-0.5 >>> f2 = lambda x: ((a*cos(x))**2 + (b*sin(x))**2)**-0.5 >>> print quad(f1, [0, inf]) 0.451115405388492 >>> print quad(f2, [0, pi/2]) 0.451115405388492 >>> print pi/(2*agm(a,b)) 0.451115405388492 A formula for `\Gamma(1/4)`:: >>> print gamma(0.25) 3.62560990822191 >>> print sqrt(2*sqrt(2*pi**3)/agm(1,sqrt(2))) 3.62560990822191 **Possible issues** The branch cut chosen for complex `a` and `b` is somewhat arbitrary. """ if b == 1: return agm1(a) a = mpmathify(a) b = mpmathify(b) prec, rounding = prec_rounding if isinstance(a, mpf) and isinstance(b, mpf): try: v = libhyper.mpf_agm(a._mpf_, b._mpf_, prec, rounding) return make_mpf(v) except ComplexResult: pass if isinstance(a, mpf): a = (a._mpf_, libmpf.fzero) else: a = a._mpc_ if isinstance(b, mpf): b = (b._mpf_, libmpf.fzero) else: b = b._mpc_ return make_mpc(libhyper.mpc_agm(a, b, prec, rounding)) agm1 = mpfunc('agm1', libhyper.mpf_agm1, libhyper.mpc_agm1, 'Fast alias for agm(1,a) = agm(a,1)') @funcwrapper def jacobi(n, a, b, x): r""" ``jacobi(n, a, b, x)`` evaluates the Jacobi polynomial `P_n^{(a,b)}(x)`. The Jacobi polynomials are a special case of the hypergeometric function `\,_2F_1` given by: .. math :: P_n^{(a,b)}(x) = {n+a \choose n} \,_2F_1\left(-n,1+a+b+n,a+1,\frac{1-x}{2}\right). Note that this definition generalizes to nonintegral values of `n`. When `n` is an integer, the hypergeometric series terminates after a finite number of terms, giving a polynomial in `x`. **Evaluation of Jacobi polynomials** A special evaluation is `P_n^{(a,b)}(1) = {n+a \choose n}`:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print jacobi(4, 0.5, 0.25, 1) 2.4609375 >>> print binomial(4+0.5, 4) 2.4609375 A Jacobi polynomial of degree `n` is equal to its Taylor polynomial of degree `n`. The explicit coefficients of Jacobi polynomials can therefore be recovered easily using :func:`taylor`:: >>> for n in range(5): ... nprint(taylor(lambda x: jacobi(n,1,2,x), 0, n)) ... [1.0] [-0.5, 2.5] [-0.75, -1.5, 5.25] [0.5, -3.5, -3.5, 10.5] [0.625, 2.5, -11.25, -7.5, 20.625] For nonintegral `n`, the Jacobi "polynomial" is no longer a polynomial:: >>> nprint(taylor(lambda x: jacobi(0.5,1,2,x), 0, 4)) [0.309983, 1.84119, -1.26933, 1.26699, -1.34808] **Orthogonality** The Jacobi polynomials are orthogonal on the interval `[-1, 1]` with respect to the weight function `w(x) = (1-x)^a (1+x)^b`. That is, `w(x) P_n^{(a,b)}(x) P_m^{(a,b)}(x)` integrates to zero if `m \ne n` and to a nonzero number if `m = n`. The orthogonality is easy to verify using numerical quadrature:: >>> P = jacobi >>> f = lambda x: (1-x)**a * (1+x)**b * P(m,a,b,x) * P(n,a,b,x) >>> a = 2 >>> b = 3 >>> m, n = 3, 4 >>> print chop(quad(f, [-1, 1]), 1) 0.0 >>> m, n = 4, 4 >>> print quad(f, [-1, 1]) 1.9047619047619 **Differential equation** The Jacobi polynomials are solutions of the differential equation .. math :: (1-x^2) y'' + (b-a-(a+b+2)x) y' + n (n+a+b+1) y = 0. We can verify that :func:`jacobi` approximately satisfies this equation:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> a = 2.5 >>> b = 4 >>> n = 3 >>> y = lambda x: jacobi(n,a,b,x) >>> x = pi >>> A0 = n*(n+a+b+1)*y(x) >>> A1 = (b-a-(a+b+2)*x)*diff(y,x) >>> A2 = (1-x**2)*diff(y,x,2) >>> nprint(A2 + A1 + A0, 1) 4.0e-12 The difference of order `10^{-12}` is as close to zero as it could be at 15-digit working precision, since the terms are large:: >>> print A0, A1, A2 26560.2328981879 -21503.7641037294 -5056.46879445852 """ return binomial(n+a,n) * hyp2f1(-n,1+n+a+b,a+1,(1-x)/2) @funcwrapper def legendre(n, x): r""" ``legendre(n, x)`` evaluates the Legendre polynomial `P_n(x)`. The Legendre polynomials are given by the formula .. math :: P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 -1)^n. Alternatively, they can be computed recursively using .. math :: P_0(x) = 1 P_1(x) = x (n+1) P_{n+1}(x) = (2n+1) x P_n(x) - n P_{n-1}(x). A third definition is in terms of the hypergeometric function `\,_2F_1`, whereby they can be generalized to arbitrary `n`: .. math :: P_n(x) = \,_2F_1\left(-n, n+1, 1, \frac{1-x}{2}\right) **Basic evaluation** The Legendre polynomials assume fixed values at the points `x = -1` and `x = 1`:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> nprint([legendre(n, 1) for n in range(6)]) [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] >>> nprint([legendre(n, -1) for n in range(6)]) [1.0, -1.0, 1.0, -1.0, 1.0, -1.0] The coefficients of Legendre polynomials can be recovered using degree-`n` Taylor expansion:: >>> for n in range(5): ... nprint(chop(taylor(lambda x: legendre(n, x), 0, n))) ... [1.0] [0.0, 1.0] [-0.5, 0.0, 1.5] [0.0, -1.5, 0.0, 2.5] [0.375, 0.0, -3.75, 0.0, 4.375] The roots of Legendre polynomials are located symmetrically on the interval `[-1, 1]`:: >>> for n in range(5): ... nprint(polyroots(taylor(lambda x: legendre(n, x), 0, n)[::-1])) ... [] [0.0] [-0.57735, 0.57735] [-0.774597, 0.0, 0.774597] [-0.861136, -0.339981, 0.339981, 0.861136] An example of an evaluation for arbitrary `n`:: >>> print legendre(0.75, 2+4j) (1.94952805264875 + 2.1071073099422j) **Orthogonality** The Legendre polynomials are orthogonal on `[-1, 1]` with respect to the trivial weight `w(x) = 1`. That is, `P_m(x) P_n(x)` integrates to zero if `m \ne n` and to `2/(2n+1)` if `m = n`:: >>> m, n = 3, 4 >>> print quad(lambda x: legendre(m,x)*legendre(n,x), [-1, 1]) 0.0 >>> m, n = 4, 4 >>> print quad(lambda x: legendre(m,x)*legendre(n,x), [-1, 1]) 0.222222222222222 **Differential equation** The Legendre polynomials satisfy the differential equation .. math :: ((1-x^2) y')' + n(n+1) y' = 0. We can verify this numerically:: >>> n = 3.6 >>> x = 0.73 >>> P = legendre >>> A = diff(lambda t: (1-t**2)*diff(lambda u: P(n,u), t), x) >>> B = n*(n+1)*P(n,x) >>> nprint(A+B,1) 9.0e-16 """ if isint(n): n = int(n) if x == -1: # TODO: hyp2f1 should handle this if isint(n): return (-1)**(n + (n>=0)) * mpf(-1) if not int(floor(re(n))) % 2: return -inf return inf return hyp2f1(-n,n+1,1,(1-x)/2) @funcwrapper def chebyt(n, x): r""" ``chebyt(n, x)`` evaluates the Chebyshev polynomial of the first kind `T_n(x)`, defined by the identity .. math :: T_n(\cos x) = \cos(n x). The Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials, and by extension of the hypergeometric function `\,_2F_1`. They can thus also be evaluated for nonintegral `n`. **Basic evaluation** The coefficients of the `n`-th polynomial can be recovered using using degree-`n` Taylor expansion:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(5): ... nprint(chop(taylor(lambda x: chebyt(n, x), 0, n))) ... [1.0] [0.0, 1.0] [-1.0, 0.0, 2.0] [0.0, -3.0, 0.0, 4.0] [1.0, 0.0, -8.0, 0.0, 8.0] **Orthogonality** The Chebyshev polynomials of the first kind are orthogonal on the interval `[-1, 1]` with respect to the weight function `w(x) = 1/\sqrt{1-x^2}`:: >>> f = lambda x: chebyt(m,x)*chebyt(n,x)/sqrt(1-x**2) >>> m, n = 3, 4 >>> nprint(quad(f, [-1, 1]),1) 0.0 >>> m, n = 4, 4 >>> print quad(f, [-1, 1]) 1.57079632596448 """ return hyp2f1(-n,n,0.5,(1-x)/2) @funcwrapper def chebyu(n, x): r""" ``chebyu(n, x)`` evaluates the Chebyshev polynomial of the second kind `U_n(x)`, defined by the identity .. math :: U_n(\cos x) = \frac{\sin((n+1)x)}{\sin(x)}. The Chebyshev polynomials of the second kind are a special case of the Jacobi polynomials, and by extension of the hypergeometric function `\,_2F_1`. They can thus also be evaluated for nonintegral `n`. **Basic evaluation** The coefficients of the `n`-th polynomial can be recovered using using degree-`n` Taylor expansion:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(5): ... nprint(chop(taylor(lambda x: chebyu(n, x), 0, n))) ... [1.0] [0.0, 2.0] [-1.0, 0.0, 4.0] [0.0, -4.0, 0.0, 8.0] [1.0, 0.0, -12.0, 0.0, 16.0] **Orthogonality** The Chebyshev polynomials of the second kind are orthogonal on the interval `[-1, 1]` with respect to the weight function `w(x) = \sqrt{1-x^2}`:: >>> f = lambda x: chebyu(m,x)*chebyu(n,x)*sqrt(1-x**2) >>> m, n = 3, 4 >>> print quad(f, [-1, 1]) 0.0 >>> m, n = 4, 4 >>> print quad(f, [-1, 1]) 1.5707963267949 """ return (n+1) * hyp2f1(-n, n+2, 1.5, (1-x)/2) @funcwrapper def besselj(v, x): r""" ``besselj(n,x)`` computes the Bessel function of the first kind `J_n(x)`. Bessel functions of the first kind are defined as solutions of the differential equation .. math :: x^2 y'' + x y' + (x^2 - n^2) y = 0 which appears, among other things, when solving the radial part of Laplace's equation in cylindrical coordinates. This equation has two solutions for given `n`, where the `J_n`-function is the solution that is nonsingular at `x = 0`. For positive integer `n`, `J_n(x)` behaves roughly like a sine (odd `n`) or cosine (even `n`) multiplied by a magnitude factor that decays slowly as `x \to \pm\infty`. Generally, `J_n` is a special case of the hypergeometric function `\,_0F_1`: .. math :: J_n(x) = \frac{x^n}{2^n \Gamma(n+1)} \,_0F_1\left(n+1,-\frac{x^2}{4}\right) **Examples** Evaluation is supported for arbitrary arguments, and at arbitrary precision:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print besselj(2, 1000) -0.024777229528606 >>> print besselj(4, 0.75) 0.000801070086542314 >>> print besselj(2, 1000j) (-2.48071721019185e+432 + 0.0j) >>> mp.dps = 25 >>> print besselj(0.75j, 3+4j) (-2.778118364828153309919653 - 1.5863603889018621585533j) >>> mp.dps = 50 >>> print besselj(1, pi) 0.28461534317975275734531059968613140570981118184947 The Bessel functions of the first kind satisfy simple symmetries around `x = 0`:: >>> mp.dps = 15 >>> nprint([besselj(n,0) for n in range(5)]) [1.0, 0.0, 0.0, 0.0, 0.0] >>> nprint([besselj(n,pi) for n in range(5)]) [-0.304242, 0.284615, 0.485434, 0.333458, 0.151425] >>> nprint([besselj(n,-pi) for n in range(5)]) [-0.304242, -0.284615, 0.485434, -0.333458, 0.151425] Roots of Bessel functions are often used:: >>> nprint([findroot(j0, k) for k in [2, 5, 8, 11, 14]]) [2.40483, 5.52008, 8.65373, 11.7915, 14.9309] >>> nprint([findroot(j1, k) for k in [3, 7, 10, 13, 16]]) [3.83171, 7.01559, 10.1735, 13.3237, 16.4706] The roots are not periodic, but the distance between successive roots asymptotically approaches `2 \pi`. Bessel functions of the first kind have the following normalization:: >>> print quadosc(j0, [0, inf], period=2*pi) 1.0 >>> print quadosc(j1, [0, inf], period=2*pi) 1.0 For `n = 1/2` or `n = -1/2`, the Bessel function reduces to a trigonometric function:: >>> x = 10 >>> print besselj(0.5, x), sqrt(2/(pi*x))*sin(x) -0.13726373575505 -0.13726373575505 >>> print besselj(-0.5, x), sqrt(2/(pi*x))*cos(x) -0.211708866331398 -0.211708866331398 """ if isint(v): v = int(v) if isinstance(x, mpf): return make_mpf(libhyper.mpf_besseljn(v, x._mpf_, mp.prec)) if isinstance(x, mpc): return make_mpc(libhyper.mpc_besseljn(v, x._mpc_, mp.prec)) hx = x/2 return hx**v * hyp0f1(v+1, -hx**2) / factorial(v) def j0(x): """Computes the Bessel function `J_0(x)`. See :func:`besselj`.""" return besselj(0, x) def j1(x): """Computes the Bessel function `J_1(x)`. See :func:`besselj`.""" return besselj(1, x) @funcwrapper def bessely(n,x): r""" ``bessely(n,x)`` computes the Bessel function of the second kind, .. math :: Y_n(x) = \frac{J_n(x) \cos(\pi n) - J_{-n}(x)}{\sin(\pi n)}. For `n` an integer, this formula should be understood as a limit. **Examples** Some values of `Y_n(x)`:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print bessely(0,0), bessely(1,0), bessely(2,0) -inf -inf -inf >>> print bessely(1, pi) 0.3588729167767189594679827 >>> print bessely(0.5, 3+4j) (9.242861436961450520325216 - 3.085042824915332562522402j) """ intdist = abs(n.imag) + abs(n.real-floor(n.real+0.5)) if not intdist: h = +eps mp.prec *= 2 n += h else: mp.prec += -int(log(intdist, 2)+1) return (besselj(n,x)*cospi(n) - besselj(-n,x))/sinpi(n) @funcwrapper def besseli(n,x): r""" ``besseli(n,x)`` computes the modified Bessel function of the first kind, .. math :: I_n(x) = i^{-n} J_n(ix) **Examples** Some values of `I_n(x)`:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print besseli(0,0) 1.0 >>> print besseli(1,0) 0.0 >>> print besseli(0,1) 1.266065877752008335598245 >>> print besseli(3.5, 2+3j) (-0.2904369752642538144289025 - 0.4469098397654815837307006j) For integers `n`, the following integral representation holds:: >>> mp.dps = 15 >>> n = 3 >>> x = 2.3 >>> print quad(lambda t: exp(x*cos(t))*cos(n*t), [0,pi])/pi 0.349223221159309 >>> print besseli(n,x) 0.349223221159309 """ if isint(n): n = abs(int(n)) hx = x/2 return hx**n * hyp0f1(n+1, hx**2) / factorial(n) @funcwrapper def besselk(n,x): r""" ``besseli(n,x)`` computes the modified Bessel function of the second kind, .. math :: K_n(x) = \frac{\pi}{2} \frac{I_{-n}(x)-I_{n}(x)}{\sin(\pi n)} For `n` an integer, this formula should be understood as a limit. **Examples** Some values and limits of `K_n(x)`:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print besselk(0,0) +inf >>> print besselk(1,0) +inf >>> print besselk(0,1) 0.4210244382407083333356274 >>> print besselk(3.5, 2+3j) (-0.02090732889633760668464128 + 0.2464022641351420167819697j) """ intdist = abs(n.imag) + abs(n.real-floor(n.real+0.5)) if not intdist: h = +eps mp.prec *= 2 n += h else: mp.prec += -int(log(intdist, 2)+1) return pi*(besseli(-n,x)-besseli(n,x))/(2*sinpi(n)) def hankel1(n,x): r""" ``hankel1(n,x)`` computes the Hankel function of the first kind, which is the complex combination of Bessel functions given by .. math :: H_n^{(1)}(x) = J_n(x) + i Y_n(x). **Examples** The Hankel function is generally complex-valued:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print hankel1(2, pi) (0.4854339326315091097054957 - 0.0999007139290278787734903j) >>> print hankel1(3.5, pi) (0.2340002029630507922628888 - 0.6419643823412927142424049j) """ return besselj(n,x) + j*bessely(n,x) def hankel2(n,x): r""" ``hankel2(n,x)`` computes the Hankel function of the second kind, which is the complex combination of Bessel functions given by .. math :: H_n^{(2)}(x) = J_n(x) - i Y_n(x). **Examples** The Hankel function is generally complex-valued:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print hankel2(2, pi) (0.4854339326315091097054957 + 0.0999007139290278787734903j) >>> print hankel2(3.5, pi) (0.2340002029630507922628888 + 0.6419643823412927142424049j) """ return besselj(n,x) - j*bessely(n,x) @funcwrapper def lambertw(z, k=0, approx=None): r""" The Lambert W function `W(z)` is defined as the inverse function of `w \exp(w)`. In other words, the value of `W(z)` is such that `z = W(z) \exp(W(z))` for any complex number `z`. The Lambert W function is a multivalued function with infinitely many branches. Each branch gives a separate solution of the equation `w \exp(w)`. All branches are supported by :func:`lambertw`: * ``lambertw(z)`` gives the principal solution (branch 0) * ``lambertw(z, k)`` gives the solution on branch `k` The Lambert W function has two partially real branches: the principal branch (`k = 0`) is real for real `z > -1/e`, and the `k = -1` branch is real for `-1/e < z < 0`. All branches except `k = 0` have a logarithmic singularity at `z = 0`. **Basic examples** The Lambert W function is the inverse of `w \exp(w)`:: >>> from sympy.mpmath import * >>> mp.dps = 35 >>> w = lambertw(1) >>> print w 0.56714329040978387299996866221035555 >>> print w*exp(w) 1.0 Any branch gives a valid inverse:: >>> w = lambertw(1, k=3) >>> print w # doctest: +NORMALIZE_WHITESPACE (-2.8535817554090378072068187234910812 + 17.113535539412145912607826671159289j) >>> print w*exp(w) (1.0 + 3.5075477124212226194278700785075126e-36j) **Applications to equation-solving** The Lambert W function may be used to solve various kinds of equations, such as finding the value of the infinite power tower `z^{z^{z^{\ldots}}}`:: >>> def tower(z, n): ... if n == 0: ... return z ... return z ** tower(z, n-1) ... >>> tower(0.5, 100) 0.641185744504986 >>> mp.dps = 50 >>> print -lambertw(-log(0.5))/log(0.5) 0.6411857445049859844862004821148236665628209571911 **Properties** The Lambert W function grows roughly like the natural logarithm for large arguments:: >>> mp.dps = 15 >>> print lambertw(1000) 5.2496028524016 >>> print log(1000) 6.90775527898214 >>> print lambertw(10**100) 224.843106445119 >>> print log(10**100) 230.258509299405 The principal branch of the Lambert W function has a rational Taylor series expansion around `z = 0`:: >>> nprint(taylor(lambertw, 0, 6), 10) [0.0, 1.0, -1.0, 1.5, -2.666666667, 5.208333333, -10.8] Some special values and limits are:: >>> mp.dps = 15 >>> print lambertw(0) 0.0 >>> print lambertw(1) 0.567143290409784 >>> print lambertw(e) 1.0 >>> print lambertw(inf) +inf >>> print lambertw(0, k=-1) -inf >>> print lambertw(0, k=3) -inf >>> print lambertw(inf, k=3) (+inf + 18.8495559215388j) The `k = 0` and `k = -1` branches join at `z = -1/e` where `W(z) = -1` for both branches. Since `-1/e` can only be represented approximately with mpmath numbers, evaluating the Lambert W function at this point only gives `-1` approximately:: >>> mp.dps = 25 >>> print lambertw(-1/e, 0) -0.999999999999837133022867 >>> print lambertw(-1/e, -1) -1.00000000000016286697718 If `-1/e` happens to round in the negative direction, there might be a small imaginary part:: >>> mp.dps = 15 >>> print lambertw(-1/e) (-1.0 + 8.22007971511612e-9j) **Possible issues** The evaluation can become inaccurate very close to the branch point at `-1/e`. In some corner cases, :func:`lambertw` might currently fail to converge, or can end up on the wrong branch. **Algorithm** Halley's iteration is used to invert `w \exp(w)`, using a first-order asymptotic approximation (`O(\log(w))` or `O(w)`) as the initial estimate. The definition, implementation and choice of branches is based on Corless et al, "On the Lambert W function", Adv. Comp. Math. 5 (1996) 329-359, available online here: http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf TODO: use a series expansion when extremely close to the branch point at `-1/e` and make sure that the proper branch is chosen there """ if isnan(z): return z mp.prec += 20 # We must be extremely careful near the singularities at -1/e and 0 u = exp(-1) if abs(z) <= u: if not z: # w(0,0) = 0; for all other branches we hit the pole if not k: return z return -inf if not k: w = z # For small real z < 0, the -1 branch behaves roughly like log(-z) elif k == -1 and not z.imag and z.real < 0: w = log(-z) # Use a simple asymptotic approximation. else: w = log(z) # The branches are roughly logarithmic. This approximation # gets better for large |k|; need to check that this always # works for k ~= -1, 0, 1. if k: w += k * 2*pi*j elif k == 0 and z.imag and abs(z) <= 0.6: w = z else: if z == inf: if k == 0: return z else: return z + 2*k*pi*j if z == -inf: return (-z) + (2*k+1)*pi*j # Simple asymptotic approximation as above w = log(z) if k: w += k * 2*pi*j # Use Halley iteration to solve w*exp(w) = z two = mpf(2) weps = ldexp(eps, 15) for i in xrange(100): ew = exp(w) wew = w*ew wewz = wew-z wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two)) if abs(wn-w) < weps*abs(wn): return wn else: w = wn print "Warning: Lambert W iteration failed to converge:", z return wn @funcwrapper def barnesg(z): r""" Evaluates the Barnes G-function, which generalizes the superfactorial (:func:`superfac`) and by extension also the hyperfactorial (:func:`hyperfac`) to the complex numbers in an analogous way to how the gamma function generalizes the ordinary factorial. The Barnes G-function may be defined in terms of a Weierstrass product: .. math :: G(z+1) = (2\pi)^{z/2} e^{-[z(z+1)+\gamma z^2]/2} \prod_{n=1}^\infty \left[\left(1+\frac{z}{n}\right)^ne^{-z+z^2/(2n)}\right] For positive integers `n`, we have have relation to superfactorials `G(n) = \mathrm{sf}(n-2) = 0! \cdot 1! \cdots (n-2)!`. **Examples** Some elementary values and limits of the Barnes G-function:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print barnesg(1), barnesg(2), barnesg(3) 1.0 1.0 1.0 >>> print barnesg(4) 2.0 >>> print barnesg(5) 12.0 >>> print barnesg(6) 288.0 >>> print barnesg(7) 34560.0 >>> print barnesg(8) 24883200.0 >>> print barnesg(inf) +inf >>> print barnesg(0), barnesg(-1), barnesg(-2) 0.0 0.0 0.0 Closed-form values are known for some rational arguments:: >>> print barnesg('1/2') 0.603244281209446 >>> print sqrt(exp(0.25+log(2)/12)/sqrt(pi)/glaisher**3) 0.603244281209446 >>> print barnesg('1/4') 0.29375596533861 >>> print nthroot(exp('3/8')/exp(catalan/pi)/ ... gamma(0.25)**3/sqrt(glaisher)**9, 4) 0.29375596533861 The Barnes G-function satisfies the functional equation `G(z+1) = \Gamma(z) G(z)`:: >>> z = pi >>> print barnesg(z+1) 2.39292119327948 >>> print gamma(z)*barnesg(z) 2.39292119327948 The asymptotic growth rate of the Barnes G-function is related to the Glaisher-Kinkelin constant:: >>> print limit(lambda n: barnesg(n+1)/(n**(n**2/2-mpf(1)/12)* ... (2*pi)**(n/2)*exp(-3*n**2/4)), inf) 0.847536694177301 >>> print exp('1/12')/glaisher 0.847536694177301 The Barnes G-function can be differentiated in closed form:: >>> z = 3 >>> print diff(barnesg, z) 0.264507203401607 >>> print barnesg(z)*((z-1)*psi(0,z)-z+(log(2*pi)+1)/2) 0.264507203401607 Evaluation is supported for arbitrary arguments and at arbitrary precision:: >>> print barnesg(6.5) 2548.7457695685 >>> print barnesg(-pi) 0.00535976768353037 >>> print barnesg(3+4j) (-0.000676375932234244 - 4.42236140124728e-5j) >>> mp.dps = 50 >>> print barnesg(1/sqrt(2)) 0.81305501090451340843586085064413533788206204124732 >>> q = barnesg(10j) >>> print q.real 0.000000000021852360840356557241543036724799812371995850552234 >>> print q.imag -0.00000000000070035335320062304849020654215545839053210041457588 **References** 1. Whittaker & Watson, *A Course of Modern Analysis*, Cambridge University Press, 4th edition (1927), p.264 2. http://en.wikipedia.org/wiki/Barnes_G-function 3. http://mathworld.wolfram.com/BarnesG-Function.html """ if isinf(z): if z == inf: return z return nan if isnan(z): return z if (not z.imag) and z.real <= 0 and isint(z.real): return z*0 # Account for size (would not be needed if computing log(G)) if abs(z) > 5: mp.dps += 2*log(abs(z),2) # Estimate terms for asymptotic expansion N = mp.dps // 2 + 5 G = 1 while re(z) < N: G /= gamma(z) z += 1 z -= 1 s = mpf(1)/12 s -= log(glaisher) s += z*log(2*pi)/2 s += (z**2/2-mpf(1)/12)*log(z) s -= 3*z**2/4 z2k = z2 = z**2 for k in xrange(1, N+1): t = bernoulli(2*k+2) / (4*k*(k+1)*z2k) if abs(t) < eps: #print k, N # check how many terms were needed break z2k *= z2 s += t #if k == N: # print "warning: series for barnesg failed to converge" return G*exp(s) def superfac(z): r""" Computes the superfactorial, defined as the product of consecutive factorials .. math :: \mathrm{sf}(n) = \prod_{k=1}^n k! For general complex `z`, `\mathrm{sf}(z)` is defined in terms of the Barnes G-function (see :func:`barnesg`). **Examples** The first few superfactorials are (OEIS A000178):: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(10): ... print n, superfac(n) ... 0 1.0 1 1.0 2 2.0 3 12.0 4 288.0 5 34560.0 6 24883200.0 7 125411328000.0 8 5.05658474496e+15 9 1.83493347225108e+21 Superfactorials grow very rapidly:: >>> print superfac(1000) 3.24570818422368e+1177245 >>> print superfac(10**10) 2.61398543581249e+467427913956904067453 Evaluation is supported for arbitrary arguments:: >>> mp.dps = 25 >>> print superfac(pi) 17.20051550121297985285333 >>> print superfac(2+3j) (-0.005915485633199789627466468 + 0.008156449464604044948738263j) >>> print diff(superfac, 1) 0.2645072034016070205673056 **References** 1. http://www.research.att.com/~njas/sequences/A000178 """ return barnesg(z+2) @funcwrapper def hyperfac(z): r""" Computes the hyperfactorial, defined for integers as the product .. math :: H(n) = \prod_{k=1}^n k^k. The hyperfactorial satisfies the recurrence formula `H(z) = z^z H(z-1)`. It can be defined more generally in terms of the Barnes G-function (see :func:`barnesg`) and the gamma function by the formula .. math :: H(z) = \frac{\Gamma(z+1)^z}{G(z)}. The extension to complex numbers can also be done via the integral representation .. math :: H(z) = (2\pi)^{-z/2} \exp \left[ {z+1 \choose 2} + \int_0^z \log(t!)\,dt \right]. **Examples** The rapidly-growing sequence of hyperfactorials begins (OEIS A002109):: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(10): ... print n, hyperfac(n) ... 0 1.0 1 1.0 2 4.0 3 108.0 4 27648.0 5 86400000.0 6 4031078400000.0 7 3.3197663987712e+18 8 5.56964379417266e+25 9 2.15779412229419e+34 Some even larger hyperfactorials are:: >>> print hyperfac(1000) 5.46458120882585e+1392926 >>> print hyperfac(10**10) 4.60408207642219e+489142638002418704309 The hyperfactorial can be evaluated for arbitrary arguments:: >>> print hyperfac(0.5) 0.880449235173423 >>> print diff(hyperfac, 1) 0.581061466795327 >>> print hyperfac(pi) 205.211134637462 >>> print hyperfac(-10+1j) (3.01144471378225e+46 - 2.45285242480185e+46j) The recurrence property of the hyperfactorial holds generally:: >>> z = 3-4*j >>> print hyperfac(z) (-4.49795891462086e-7 - 6.33262283196162e-7j) >>> print z**z * hyperfac(z-1) (-4.49795891462086e-7 - 6.33262283196162e-7j) >>> z = mpf(-0.6) >>> print chop(z**z * hyperfac(z-1)) 1.28170142849352 >>> print hyperfac(z) 1.28170142849352 The hyperfactorial may also be computed using the integral definition:: >>> z = 2.5 >>> print hyperfac(z) 15.9842119922237 >>> print (2*pi)**(-z/2)*exp(binomial(z+1,2) + ... quad(lambda t: loggamma(t+1), [0, z])) 15.9842119922237 :func:`hyperfac` supports arbitrary-precision evaluation:: >>> mp.dps = 50 >>> print hyperfac(10) 215779412229418562091680268288000000000000000.0 >>> print hyperfac(1/sqrt(2)) 0.89404818005227001975423476035729076375705084390942 **References** 1. http://www.research.att.com/~njas/sequences/A002109 2. http://mathworld.wolfram.com/Hyperfactorial.html """ # XXX: estimate needed extra bits accurately if z == inf: return z if abs(z) > 5: extra = 4*int(log(abs(z),2)) else: extra = 0 mp.prec += extra if not z.imag and z.real < 0 and isint(z.real): n = int(re(z)) h = hyperfac(-n-1) if ((n+1)//2) & 1: h = -h if isinstance(z, mpc): return h + 0j return h zp1 = z+1 # Wrong branch cut #v = gamma(zp1)**z #mp.prec -= extra #return v / barnesg(zp1) v = exp(z*loggamma(zp1)) mp.prec -= extra return v / barnesg(zp1) @funcwrapper def loggamma(z): r""" Computes the log-gamma function. Unlike `\ln(\Gamma(z))`, which has infinitely many complex branch cuts, the log-gamma function only has a single branch cut along the negative half-axis. The functions are identical only on (and very close to) the positive half-axis; elsewhere they differ by `2 n \pi i` (the real parts agree):: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print loggamma(13.2), log(gamma(13.2)) 20.494004194566 20.494004194566 >>> print loggamma(3+4j) (-1.75662678460378 + 4.74266443803466j) >>> print log(gamma(3+4j)) (-1.75662678460378 - 1.54052086914493j) Note: this is a placeholder implementation. It is slower than :func:`gamma`, and is in particular *not* faster than :func:`gamma` for large arguments. """ a = z.real b = z.imag if not b and a > 0: return log(gamma(z)) u = arg(z) w = log(gamma(z)) if b: gi = -b - u/2 + a*u + b*log(abs(z)) n = floor((gi-w.imag)/(2*pi)+0.5) * (2*pi) return w + n*j elif a < 0: n = int(floor(a)) w += (n-(n%2))*pi*j return w @funcwrapper def siegeltheta(t): r""" Computes the Riemann-Siegel theta function, .. math :: \theta(t) = \frac{ \log\Gamma\left(\frac{1+2it}{4}\right) - \log\Gamma\left(\frac{1-2it}{4}\right) }{2i} - \frac{\log \pi}{2} t. The Riemann-Siegel theta function is important in providing the phase factor for the Z-function (see :func:`siegelz`). Evaluation is supported for real and complex arguments:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print siegeltheta(0) 0.0 >>> print siegeltheta(inf) +inf >>> print siegeltheta(-inf) -inf >>> print siegeltheta(1) -1.767547952812290388302216 >>> print siegeltheta(10+0.25j) (-3.068638039426838572528867 + 0.05804937947429712998395177j) The Riemann-Siegel theta function has odd symmetry around `t = 0`, two local extreme points and three real roots including 0 (located symmetrically):: >>> nprint(chop(taylor(siegeltheta, 0, 5))) [0.0, -2.68609, 0.0, 2.69433, 0.0, -6.40218] >>> print findroot(diffun(siegeltheta), 7) 6.28983598883690277966509 >>> print findroot(siegeltheta, 20) 17.84559954041086081682634 For large `t`, there is a famous asymptotic formula for `\theta(t)`, to first order given by:: >>> t = mpf(10**6) >>> print siegeltheta(t) 5488816.353078403444882823 >>> print -t*log(2*pi/t)/2-t/2 5488816.745777464310273645 """ if t.imag: # XXX: cancellation occurs a = loggamma(0.25+0.5j*t) b = loggamma(0.25-0.5j*t) return -log(pi)/2*t - 0.5j*(a-b) else: if isinf(t): return t return loggamma(0.25+0.5j*t).imag - log(pi)/2*t @funcwrapper def grampoint(n): r""" Gives the `n`-th Gram point `g_n`, defined as the solution to the equation `\theta(g_n) = \pi n` where `\theta(t)` is the Riemann-Siegel theta function (:func:`siegeltheta`). The first few Gram points are:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print grampoint(0) 17.84559954041086081682634 >>> print grampoint(1) 23.17028270124630927899664 >>> print grampoint(2) 27.67018221781633796093849 >>> print grampoint(3) 31.71797995476405317955149 Checking the definition:: >>> print siegeltheta(grampoint(3)) 9.42477796076937971538793 >>> print 3*pi 9.42477796076937971538793 A large Gram point:: >>> print grampoint(10**10) 3293531632.728335454561153 Gram points are useful when studying the Z-function (:func:`siegelz`). See the documentation of that function for additional examples. :func:`grampoint` can solve the defining equation for nonintegral `n`. There is a fixed point where `g(x) = x`:: >>> print findroot(lambda x: grampoint(x) - x, 10000) 9146.698193171459265866198 **References** 1. http://mathworld.wolfram.com/GramPoint.html """ # Asymptotic expansion, from # http://mathworld.wolfram.com/GramPoint.html g = 2*pi*exp(1+lambertw((8*n+1)/(8*e))) from optimization import findroot return findroot(lambda t: siegeltheta(t)-pi*n, g) @funcwrapper def siegelz(t): r""" Computes the Z-function, also known as the Riemann-Siegel Z function, .. math :: Z(t) = e^{i \theta(t)} \zeta(1/2+it) where `\zeta(s)` is the Riemann zeta function (:func:`zeta`) and where `\theta(t)` denotes the Riemann-Siegel theta function (see :func:`siegeltheta`). Evaluation is supported for real and complex arguments:: >>> from sympy.mpmath import * >>> mp.dps = 25 >>> print siegelz(1) -0.7363054628673177346778998 >>> print siegelz(3+4j) (-0.1852895764366314976003936 - 0.2773099198055652246992479j) The Z-function has a Maclaurin expansion:: >>> nprint(chop(taylor(siegelz, 0, 4))) [-1.46035, 0.0, 2.73588, 0.0, -8.39357] The Z-function `Z(t)` is equal to `\pm |\zeta(s)|` on the critical strip `s = 1/2+it` (i.e. for real arguments `t` to `Z`). Its zeros coincide with those of the Riemann zeta function:: >>> print findroot(siegelz, 14) 14.13472514173469379045725 >>> print findroot(siegelz, 20) 21.02203963877155499262848 >>> print findroot(zeta, 0.5+14j) (0.5 + 14.13472514173469379045725j) >>> print findroot(zeta, 0.5+20j) (0.5 + 21.02203963877155499262848j) Since the Z-function is real-valued on the critical strip (and unlike `|\zeta(s)|` analytic), it is useful for investigating the zeros of the Riemann zeta function. For example, one can use a root-finding algorithm based on sign changes:: >>> print findroot(siegelz, [100, 200], solver='bisect') 176.4414342977104188888926 To locate roots, Gram points `g_n` which can be computed by :func:`grampoint` are useful. If `(-1)^n Z(g_n)` is positive for two consecutive `n`, then `Z(t)` must have a zero between those points:: >>> g10 = grampoint(10) >>> g11 = grampoint(11) >>> (-1)**10 * siegelz(g10) > 0 True >>> (-1)**11 * siegelz(g11) > 0 True >>> print findroot(siegelz, [g10, g11], solver='bisect') 56.44624769706339480436776 >>> print g10, g11 54.67523744685325626632663 57.54516517954725443703014 """ v = exp(j*siegeltheta(t))*zeta(0.5+j*t) if isinstance(t, mpf): return v.real return v @funcwrapper def bernpoly(n, z): """ Evaluates the Bernoulli polynomial `B_n(z)`. The first few Bernoulli polynomials are:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> for n in range(6): ... nprint(chop(taylor(lambda x: bernpoly(n,x), 0, n))) ... [1.0] [-0.5, 1.0] [0.166667, -1.0, 1.0] [0.0, 0.5, -1.5, 1.0] [-3.33333e-2, 0.0, 1.0, -2.0, 1.0] [0.0, -0.166667, 0.0, 1.66667, -2.5, 1.0] At `z = 0`, the Bernoulli polynomial evaluates to a Bernoulli number (see :func:`bernoulli`):: >>> print bernpoly(12, 0), bernoulli(12) -0.253113553113553 -0.253113553113553 >>> print bernpoly(13, 0), bernoulli(13) 0.0 0.0 """ n = int(n) assert n >= 0 # XXX: optimize return sum(binomial(n,k)*bernoulli(k)*z**(n-k) for k in xrange(0,n+1)) # TODO: this should be implemented low-level def polylog_series(s, z): tol = +eps l = mpf(0) k = 1 zk = z while 1: term = zk / k**s l += term if abs(term) < tol: break zk *= z k += 1 return l def polylog_continuation(n, z): if n < 0: return z*0 a = -(2*pi*j)**n/fac(n) * bernpoly(n, log(z)/(2*pi*j)) if isinstance(z, mpf) and z < 0: a = a.real if z.imag < 0 or (z.imag == 0 and z.real >= 1): a -= 2*pi*j*log(z)**(n-1)/fac(n-1) return a def polylog_unitcircle(n, z): tol = +eps if n > 1: l = mpf(0) logz = log(z) logmz = mpf(1) m = 0 while 1: if (n-m) != 1: term = zeta(n-m) * logmz / fac(m) if term and abs(term) < tol: break l += term logmz *= logz m += 1 l += log(z)**(n-1)/fac(n-1)*(harmonic(n-1)-log(-log(z))) elif n < 1: # else l = fac(-n)*(-log(z))**(n-1) logz = log(z) logkz = mpf(1) k = 0 while 1: b = bernoulli(k-n+1) if b: term = b*logkz/(fac(k)*(k-n+1)) if abs(term) < tol: break l -= term logkz *= logz k += 1 else: raise ValueError if isinstance(z, mpf) and z < 0: l = l.real return l @funcwrapper def polylog(s, z): r""" Computes the polylogarithm, defined by the sum .. math :: \mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s}. This series is convergent only for `|z| < 1`, so elsewhere the analytic continuation is implied. The polylogarithm should not be confused with the logarithmic integral (also denoted by Li or li), which is implemented as :func:`li`. **Examples** The polylogarithm satisfies a huge number of functional identities. A sample of polylogarithm evaluations is shown below:: >>> from sympy.mpmath import * >>> mp.dps = 15 >>> print polylog(1,0.5), log(2) 0.693147180559945 0.693147180559945 >>> print polylog(2,0.5), (pi**2-6*log(2)**2)/12 0.582240526465012 0.582240526465012 >>> print polylog(2,-phi), -log(phi)**2-pi**2/10 -1.21852526068613 -1.21852526068613 >>> print polylog(3,0.5), 7*zeta(3)/8-pi**2*log(2)/12+log(2)**3/6 0.53721319360804 0.53721319360804 :func:`polylog` can evaluate the analytic continuation of the polylogarithm when `s` is an integer:: >>> print polylog(2, 10) (0.536301287357863 - 7.23378441241546j) >>> print polylog(2, -10) -4.1982778868581 >>> print polylog(2, 10j) (-3.05968879432873 + 3.71678149306807j) >>> print polylog(-2, 10) -0.150891632373114 >>> print polylog(-2, -10) 0.067618332081142 >>> print polylog(-2, 10j) (0.0384353698579347 + 0.0912451798066779j) Some more examples, with arguments on the unit circle (note that the series definition cannot be used for computation here):: >>> print polylog(2,j) (-0.205616758356028 + 0.915965594177219j) >>> print j*catalan-pi**2/48 (-0.205616758356028 + 0.915965594177219j) >>> print polylog(3,exp(2*pi*j/3)) (-0.534247512515375 + 0.765587078525922j) >>> print -4*zeta(3)/9 + 2*j*pi**3/81 (-0.534247512515375 + 0.765587078525921j) Polylogarithms of different order are related by integration and differentiation:: >>> s, z = 3, 0.5 >>> print polylog(s+1, z) 0.517479061673899 >>> print quad(lambda t: polylog(s,t)/t, [0, z]) 0.517479061673899 >>> print z*diff(lambda t: polylog(s+2,t), z) 0.517479061673899 Taylor series expansions around `z = 0` are:: >>> for n in range(-3, 4): ... nprint(taylor(lambda x: polylog(n,x), 0, 5)) ... [0.0, 1.0, 8.0, 27.0, 64.0, 125.0] [0.0, 1.0, 4.0, 9.0, 16.0, 25.0] [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] [0.0, 1.0, 1.0, 1.0, 1.0, 1.0] [0.0, 1.0, 0.5, 0.333333, 0.25, 0.2] [0.0, 1.0, 0.25, 0.111111, 6.25e-2, 4.0e-2] [0.0, 1.0, 0.125, 3.7037e-2, 1.5625e-2, 8.0e-3] The series defining the polylogarithm is simultaneously a Taylor series and an L-series. For certain values of `z`, the polylogarithm reduces to a pure zeta function:: >>> print polylog(pi, 1), zeta(pi) 1.17624173838258 1.17624173838258 >>> print polylog(pi, -1), -altzeta(pi) -0.909670702980385 -0.909670702980385 Evaluation for arbitrary, nonintegral `s` is supported for `z` within the unit circle: >>> print polylog(3+4j, 0.25) (0.24258605789446 - 0.00222938275488344j) >>> print nsum(lambda k: 0.25**k / k**(3+4j), [1,inf]) (0.24258605789446 - 0.00222938275488344j) **References** 1. Richard Crandall, "Note on fast polylogarithm computation" http://people.reed.edu/~crandall/papers/Polylog.pdf 2. http://en.wikipedia.org/wiki/Polylogarithm 3. http://mathworld.wolfram.com/Polylogarithm.html """ if z == 1: return zeta(s) if z == -1: return -altzeta(s) if s == 0: return z/(1-z) if s == 1: return -log(1-z) if s == -1: return z/(1-z)**2 if abs(z) <= 0.75 or (not isint(s) and abs(z) < 0.99): return polylog_series(s, z) if abs(z) >= 1.4 and isint(s): return (-1)**(s+1)*polylog_series(s, 1/z) + polylog_continuation(s, z) if isint(s): return polylog_unitcircle(int(s), z) raise NotImplementedError("polylog for arbitrary s and z") # This could perhaps be used in some cases #from quadrature import quad #return quad(lambda t: t**(s-1)/(exp(t)/z-1),[0,inf])/gamma(s) if __name__ == '__main__': import doctest doctest.testmod()
gnulinooks/sympy
sympy/mpmath/functions.py
Python
bsd-3-clause
166,515
[ "Gaussian" ]
9da3d36483a990e4b6ee2708f6c9fdf093965c3d22f8c44db8faa152945f5093
################################################################################ # # Copyright (c) 2012 The MadGraph Development team and Contributors # # This file is a part of the MadGraph 5 project, an application which # automatically generates Feynman diagrams and matrix elements for arbitrary # high-energy processes in the Standard Model and beyond. # # It is subject to the MadGraph license which should accompany this # distribution. # # For more information, please visit: http://madgraph.phys.ucl.ac.be # ################################################################################ """ This part is not part of the UFO Model but only of MG5 suite. This files defines how the restrict card can be build automatically """ import models.build_restriction_lib as build_restrict_lib all_categories = [] first_category = build_restrict_lib.Category('sm customization') all_categories.append(first_category) first_category.add_options(name='light mass = 0 (u d s c e mu)', # name default=True, # default rules=[('MASS',[1], 0.0), ('MASS',[2], 0.0), ('MASS',[3], 0.0), ('MASS',[11], 0.0), ('MASS',[13], 0.0)] ) first_category.add_options(name='b mass = 0', default=False, rules=[('MASS',[5], 0.0)] ) first_category.add_options(name='tau mass = 0', default=False, rules=[('MASS',[15], 0.0)] ) sec_category = build_restrict_lib.Category('mssm customization') all_categories.append(sec_category) sec_category.add_options(name='diagonal usqmix matrices', default=False, # default rules=[('USQMIX',[1,1], 1.0), ('USQMIX',[2,2], 1.0), ('USQMIX',[3,3], 1.0), ('USQMIX',[4,4], 1.0), ('USQMIX',[5,5], 1.0), ('USQMIX',[6,6], 1.0), ('USQMIX',[3,6], 0.0), ('USQMIX',[6,3], 0.0)] ) sec_category.add_options(name='diagonal dsqmix matrices', default=False, # default rules=[('DSQMIX',[1,1], 1.0), ('DSQMIX',[2,2], 1.0), ('DSQMIX',[3,3], 1.0), ('DSQMIX',[4,4], 1.0), ('DSQMIX',[5,5], 1.0), ('DSQMIX',[6,6], 1.0), ('DSQMIX',[3,6], 0.0), ('DSQMIX',[6,3], 0.0)] ) sec_category.add_options(name='diagonal selmix matrices', default=False, # default rules=[('SELMIX',[1,1], 1.0), ('SELMIX',[2,2], 1.0), ('SELMIX',[3,3], 1.0), ('SELMIX',[4,4], 1.0), ('SELMIX',[5,5], 1.0), ('SELMIX',[6,6], 1.0), ('SELMIX',[3,6], 0.0), ('SELMIX',[6,3], 0.0)] )
cms-externals/sherpa
Examples/UFO_MSSM/MSSM/build_restrict.py
Python
gpl-3.0
3,624
[ "VisIt" ]
3f3e74a186d66137fb903453705c6ace4ccb5430600ba7c1c63869fb973a0429
# Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Analysis classes for batteries """ import math from collections import defaultdict import scipy.constants as const from pymatgen.core.periodic_table import Element, Species from pymatgen.core.structure import Composition __author__ = "Anubhav Jain" __copyright__ = "Copyright 2011, The Materials Project" __credits__ = ["Shyue Ping Ong", "Geoffroy Hautier"] __version__ = "1.0" __maintainer__ = "Anubhav Jain" __email__ = "[email protected]" __date__ = "Sep 20, 2011" EV_PER_ATOM_TO_J_PER_MOL = const.e * const.N_A ELECTRON_TO_AMPERE_HOURS = EV_PER_ATOM_TO_J_PER_MOL / 3600 class BatteryAnalyzer: """ A suite of methods for starting with an oxidized structure and determining its potential as a battery """ def __init__(self, struc_oxid, cation="Li"): """ Pass in a structure for analysis Arguments: struc_oxid: a Structure object; oxidation states *must* be assigned for this structure; disordered structures should be OK cation: a String symbol or Element for the cation. It must be positively charged, but can be 1+/2+/3+ etc. """ for site in struc_oxid: if not hasattr(site.specie, "oxi_state"): raise ValueError("BatteryAnalyzer requires oxidation states assigned to structure!") self.struc_oxid = struc_oxid self.comp = self.struc_oxid.composition # shortcut for later if not isinstance(cation, Element): self.cation = Element(cation) self.cation_charge = self.cation.max_oxidation_state @property def max_cation_removal(self): """ Maximum number of cation A that can be removed while maintaining charge-balance. Returns: integer amount of cation. Depends on cell size (this is an 'extrinsic' function!) """ # how much 'spare charge' is left in the redox metals for oxidation? oxid_pot = sum( (Element(spec.symbol).max_oxidation_state - spec.oxi_state) * self.comp[spec] for spec in self.comp if is_redox_active_intercalation(Element(spec.symbol)) ) oxid_limit = oxid_pot / self.cation_charge # the number of A that exist in the structure for removal num_cation = self.comp[Species(self.cation.symbol, self.cation_charge)] return min(oxid_limit, num_cation) @property def max_cation_insertion(self): """ Maximum number of cation A that can be inserted while maintaining charge-balance. No consideration is given to whether there (geometrically speaking) are Li sites to actually accommodate the extra Li. Returns: integer amount of cation. Depends on cell size (this is an 'extrinsic' function!) """ # how much 'spare charge' is left in the redox metals for reduction? lowest_oxid = defaultdict(lambda: 2, {"Cu": 1}) # only Cu can go down to 1+ oxid_pot = sum( (spec.oxi_state - min(e for e in Element(spec.symbol).oxidation_states if e >= lowest_oxid[spec.symbol])) * self.comp[spec] for spec in self.comp if is_redox_active_intercalation(Element(spec.symbol)) ) return oxid_pot / self.cation_charge def _get_max_cap_ah(self, remove, insert): """ Give max capacity in mAh for inserting and removing a charged cation This method does not normalize the capacity and intended as a helper method """ num_cations = 0 if remove: num_cations += self.max_cation_removal if insert: num_cations += self.max_cation_insertion return num_cations * self.cation_charge * ELECTRON_TO_AMPERE_HOURS def get_max_capgrav(self, remove=True, insert=True): """ Give max capacity in mAh/g for inserting and removing a charged cation Note that the weight is normalized to the most lithiated state, thus removal of 1 Li from LiFePO4 gives the same capacity as insertion of 1 Li into FePO4. Args: remove: (bool) whether to allow cation removal insert: (bool) whether to allow cation insertion Returns: max grav capacity in mAh/g """ weight = self.comp.weight if insert: weight += self.max_cation_insertion * self.cation.atomic_mass return self._get_max_cap_ah(remove, insert) / (weight / 1000) def get_max_capvol(self, remove=True, insert=True, volume=None): """ Give max capacity in mAh/cc for inserting and removing a charged cation into base structure. Args: remove: (bool) whether to allow cation removal insert: (bool) whether to allow cation insertion volume: (float) volume to use for normalization (default=volume of initial structure) Returns: max vol capacity in mAh/cc """ vol = volume if volume else self.struc_oxid.volume return self._get_max_cap_ah(remove, insert) * 1000 * 1e24 / (vol * const.N_A) def get_removals_int_oxid(self): """ Returns a set of delithiation steps, e.g. set([1.0 2.0 4.0]) etc. in order to produce integer oxidation states of the redox metals. If multiple redox metals are present, all combinations of reduction/oxidation are tested. Note that having more than 3 redox metals will likely slow down the algorithm. Examples: LiFePO4 will return [1.0] Li4Fe3Mn1(PO4)4 will return [1.0, 2.0, 3.0, 4.0]) Li6V4(PO4)6 will return [4.0, 6.0]) *note that this example is not normalized* Returns: array of integer cation removals. If you double the unit cell, your answers will be twice as large! """ # the elements that can possibly be oxidized oxid_els = [Element(spec.symbol) for spec in self.comp if is_redox_active_intercalation(spec)] numa = set() for oxid_el in oxid_els: numa = numa.union(self._get_int_removals_helper(self.comp.copy(), oxid_el, oxid_els, numa)) # convert from num A in structure to num A removed num_cation = self.comp[Species(self.cation.symbol, self.cation_charge)] return {num_cation - a for a in numa} def _get_int_removals_helper(self, spec_amts_oxi, oxid_el, oxid_els, numa): """ This is a helper method for get_removals_int_oxid! Args: spec_amts_oxi - a dict of species to their amounts in the structure oxid_el - the element to oxidize oxid_els - the full list of elements that might be oxidized numa - a running set of numbers of A cation at integer oxidation steps Returns: a set of numbers A; steps for for oxidizing oxid_el first, then the other oxid_els in this list """ # If Mn is the oxid_el, we have a mixture of Mn2+, Mn3+, determine the minimum oxidation state for Mn # this is the state we want to oxidize! oxid_old = min(spec.oxi_state for spec in spec_amts_oxi if spec.symbol == oxid_el.symbol) oxid_new = math.floor(oxid_old + 1) # if this is not a valid solution, break out of here and don't add anything to the list if oxid_new > oxid_el.max_oxidation_state: return numa # update the spec_amts_oxi map to reflect that the oxidation took place spec_old = Species(oxid_el.symbol, oxid_old) spec_new = Species(oxid_el.symbol, oxid_new) specamt = spec_amts_oxi[spec_old] spec_amts_oxi = {sp: amt for sp, amt in spec_amts_oxi.items() if sp != spec_old} spec_amts_oxi[spec_new] = specamt spec_amts_oxi = Composition(spec_amts_oxi) # determine the amount of cation A in the structure needed for charge balance and add it to the list oxi_noA = sum( spec.oxi_state * spec_amts_oxi[spec] for spec in spec_amts_oxi if spec.symbol not in self.cation.symbol ) a = max(0, -oxi_noA / self.cation_charge) numa = numa.union({a}) # recursively try the other oxidation states if a == 0: return numa for ox in oxid_els: numa = numa.union(self._get_int_removals_helper(spec_amts_oxi.copy(), ox, oxid_els, numa)) return numa def is_redox_active_intercalation(element): """ True if element is redox active and interesting for intercalation materials Args: element: Element object """ ns = [ "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Nb", "Mo", "W", "Sb", "Sn", "Bi", ] return element.symbol in ns
vorwerkc/pymatgen
pymatgen/apps/battery/analyzer.py
Python
mit
8,942
[ "pymatgen" ]
c771ce5efde01c889efe773aa67c750e4c34e8bfb006acce36c3986613ad2376
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Seasonal model.""" # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python import bijectors as tfb from tensorflow_probability.python import distributions as tfd from tensorflow_probability.python.internal import distribution_util as dist_util from tensorflow_probability.python.internal import docstring_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.sts.internal import util as sts_util from tensorflow_probability.python.sts.structural_time_series import Parameter from tensorflow_probability.python.sts.structural_time_series import StructuralTimeSeries seasonal_init_args = """ Args: num_timesteps: Scalar `int` `Tensor` number of timesteps to model with this distribution. num_seasons: Scalar Python `int` number of seasons. drift_scale: Scalar (any additional dimensions are treated as batch dimensions) `float` `Tensor` indicating the standard deviation of the change in effect between consecutive occurrences of a given season. This is assumed to be the same for all seasons. initial_state_prior: instance of `tfd.MultivariateNormal` representing the prior distribution on latent states; must have event shape `[num_seasons]`. observation_noise_scale: Scalar (any additional dimensions are treated as batch dimensions) `float` `Tensor` indicating the standard deviation of the observation noise. Default value: 0. num_steps_per_season: Python `int` number of steps in each season. This may be either a scalar (shape `[]`), in which case all seasons have the same length, or a NumPy array of shape `[num_seasons]`, in which seasons have different length, but remain constant around different cycles, or a NumPy array of shape `[num_cycles, num_seasons]`, in which num_steps_per_season for each season also varies in different cycle (e.g., a 4 years cycle with leap day). Default value: 1. name: Python `str` name prefixed to ops created by this class. Default value: "SeasonalStateSpaceModel". **linear_gaussian_ssm_kwargs: Optional additional keyword arguments to to the base `tfd.LinearGaussianStateSpaceModel` constructor. Raises: ValueError: if `num_steps_per_season` has invalid shape (neither scalar nor `[num_seasons]`). """ class SeasonalStateSpaceModel(tfd.LinearGaussianStateSpaceModel): """State space model for a seasonal effect. A state space model (SSM) posits a set of latent (unobserved) variables that evolve over time with dynamics specified by a probabilistic transition model `p(z[t+1] | z[t])`. At each timestep, we observe a value sampled from an observation model conditioned on the current state, `p(x[t] | z[t])`. The special case where both the transition and observation models are Gaussians with mean specified as a linear function of the inputs, is known as a linear Gaussian state space model and supports tractable exact probabilistic calculations; see `tfp.distributions.LinearGaussianStateSpaceModel` for details. A seasonal effect model is a special case of a linear Gaussian SSM. The latent states represent an unknown effect from each of several 'seasons'; these are generally not meteorological seasons, but represent regular recurring patterns such as hour-of-day or day-of-week effects. The effect of each season drifts from one occurrence to the next, following a Gaussian random walk: ```python effects[season, occurrence[i]] = ( effects[season, occurrence[i-1]] + Normal(loc=0., scale=drift_scale)) ``` The latent state has dimension `num_seasons`, containing one effect for each seasonal component. The parameters `drift_scale` and `observation_noise_scale` are each (a batch of) scalars. The batch shape of this `Distribution` is the broadcast batch shape of these parameters and of the `initial_state_prior`. Note: there is no requirement that the effects sum to zero. #### Mathematical Details The seasonal effect model implements a `tfp.distributions.LinearGaussianStateSpaceModel` with `latent_size = num_seasons` and `observation_size = 1`. The latent state is organized so that the *current* seasonal effect is always in the first (zeroth) dimension. The transition model rotates the latent state to shift to a new effect at the end of each season: ``` transition_matrix[t] = (permutation_matrix([1, 2, ..., num_seasons-1, 0]) if season_is_changing(t) else eye(num_seasons) transition_noise[t] ~ Normal(loc=0., scale_diag=( [drift_scale, 0, ..., 0] if season_is_changing(t) else [0, 0, ..., 0])) ``` where `season_is_changing(t)` is `True` if ``t `mod` sum(num_steps_per_season)`` is in the set of final days for each season, given by `cumsum(num_steps_per_season) - 1`. The observation model always picks out the effect for the current season, i.e., the first element of the latent state: ``` observation_matrix = [[1., 0., ..., 0.]] observation_noise ~ Normal(loc=0, scale=observation_noise_scale) ``` #### Examples A state-space model with day-of-week seasonality on hourly data: ```python day_of_week = SeasonalStateSpaceModel( num_timesteps=30, num_seasons=7, drift_scale=0.1, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.ones([7], dtype=tf.float32), num_steps_per_season=24) ``` A model with basic month-of-year seasonality on daily data, demonstrating seasons of varying length: ```python month_of_year = SeasonalStateSpaceModel( num_timesteps=2 * 365, # 2 years num_seasons=12, drift_scale=0.1, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.ones([12], dtype=tf.float32)), num_steps_per_season=[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], initial_step=22) ``` Note that we've used `initial_step=22` to denote that the model begins on January 23 (steps are zero-indexed). This version works over time periods not involving a leap year. A general implementation of month-of-year seasonality would require additional logic: ```python num_days_per_month = np.array( [[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], [31, 29, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], # year with leap day [31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], [31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31]]) month_of_year = SeasonalStateSpaceModel( num_timesteps=4 * 365 + 2, # 8 years with leap days num_seasons=12, drift_scale=0.1, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.ones([12], dtype=tf.float32)), num_steps_per_season=num_days_per_month, initial_step=22) ``` """ @docstring_util.expand_docstring(seasonal_init_args=seasonal_init_args) def __init__(self, num_timesteps, num_seasons, drift_scale, initial_state_prior, observation_noise_scale=0., num_steps_per_season=1, name=None, **linear_gaussian_ssm_kwargs): # pylint: disable=g-doc-args """Build a seasonal effect state space model. {seasonal_init_args} """ parameters = dict(locals()) parameters.update(linear_gaussian_ssm_kwargs) del parameters['linear_gaussian_ssm_kwargs'] with tf.name_scope(name or 'SeasonalStateSpaceModel') as name: # The initial state prior determines the dtype of sampled values. # Other model parameters must have the same dtype. dtype = initial_state_prior.dtype drift_scale = tf.convert_to_tensor( value=drift_scale, name='drift_scale', dtype=dtype) observation_noise_scale = tf.convert_to_tensor( value=observation_noise_scale, name='observation_noise_scale', dtype=dtype) # Coerce `num_steps_per_season` to a canonical form, an array of # `num_seasons` integers. num_steps_per_season = np.squeeze(np.asarray(num_steps_per_season)) if num_steps_per_season.ndim == 0: # scalar case num_steps_per_season = np.tile(num_steps_per_season, num_seasons) elif ((num_steps_per_season.ndim <= 2) # 1D and 2D case and (num_steps_per_season.shape[-1] != num_seasons)): raise ValueError('num_steps_per_season must either be scalar (shape [])' ' or have the last dimension equal to [num_seasons] = ' '[{}] (saw: shape {})'.format( num_seasons, num_steps_per_season.shape)) is_last_day_of_season = build_is_last_day_of_season(num_steps_per_season) seasonal_transition_matrix = build_seasonal_transition_matrix( num_seasons=num_seasons, is_last_day_of_season=is_last_day_of_season, dtype=dtype) seasonal_transition_noise = build_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season) observation_matrix = tf.concat([ tf.ones([1, 1], dtype=dtype), tf.zeros([1, num_seasons-1], dtype=dtype)], axis=-1) self._drift_scale = drift_scale self._observation_noise_scale = observation_noise_scale self._num_seasons = num_seasons self._num_steps_per_season = num_steps_per_season super(SeasonalStateSpaceModel, self).__init__( num_timesteps=num_timesteps, transition_matrix=seasonal_transition_matrix, transition_noise=seasonal_transition_noise, observation_matrix=observation_matrix, observation_noise=tfd.MultivariateNormalDiag( scale_diag=observation_noise_scale[..., tf.newaxis]), initial_state_prior=initial_state_prior, name=name, **linear_gaussian_ssm_kwargs) self._parameters = parameters @property def drift_scale(self): """Standard deviation of the drift in effects between seasonal cycles.""" return self._drift_scale @property def observation_noise_scale(self): """Standard deviation of the observation noise.""" return self._observation_noise_scale @property def num_seasons(self): """Number of seasons.""" return self._num_seasons @property def num_steps_per_season(self): """Number of steps in each season.""" return self._num_steps_per_season class ConstrainedSeasonalStateSpaceModel(tfd.LinearGaussianStateSpaceModel): """Seasonal state space model with effects constrained to sum to zero. See `SeasonalStateSpaceModel` for background. #### Mathematical details The constrained model implements a reparameterization of the naive `SeasonalStateSpaceModel`. Instead of directly representing the seasonal effects in the latent space, the latent space of the constrained model represents the difference between each effect and the mean effect. The following discussion assumes familiarity with the mathematical details of `SeasonalStateSpaceModel`. *Reparameterization and constraints*: let the seasonal effects at a given timestep be `E = [e_1, ..., e_N]`. The difference between each effect `e_i` and the mean effect is `z_i = e_i - sum_i(e_i)/N`. By itself, this transformation is not invertible because recovering the absolute effects requires that we know the mean as well. To fix this, we'll define `z_N = sum_i(e_i)/N` as the mean effect. It's easy to see that this is invertible: given the mean effect and the differences of the first `N - 1` effects from the mean, it's easy to solve for all `N` effects. Formally, we've defined the invertible linear reparameterization `Z = R E`, where ``` R = [1 - 1/N, -1/N, ..., -1/N -1/N, 1 - 1/N, ..., -1/N, ... 1/N, 1/N, ..., 1/N] ``` represents the change of basis from 'effect coordinates' E to 'residual coordinates' Z. The `Z`s form the latent space of the `ConstrainedSeasonalStateSpaceModel`. To constrain the mean effect `z_N` to zero, we fix the prior to zero, `p(z_N) ~ N(0., 0)`, and after the transition at each timestep we project `z_N` back to zero. Note that this projection is linear: to set the Nth dimension to zero, we simply multiply by the identity matrix with a missing element in the bottom right, i.e., `Z_constrained = P Z`, where `P = eye(N) - scatter((N-1, N-1), 1)`. *Model*: concretely, suppose a naive seasonal effect model has initial state prior `N(m, S)`, transition matrix `F` and noise covariance `Q`, and observation matrix `H`. Then the corresponding constrained seasonal effect model has initial state prior `N(P R m, P R S R' P')`, transition matrix `P R F R^-1` and noise covariance `F R Q R' F'`, and observation matrix `H R^-1`, where the change-of-basis matrix `R` and constraint projection matrix `P` are as defined above. This follows directly from applying the reparameterization `Z = R E`, and then enforcing the zero-sum constraint on the prior and transition noise covariances. In practice, because the sum of effects `z_N` is constrained to be zero, it will never contribute a term to any linear operation on the latent space, so we can drop that dimension from the model entirely. `ConstrainedSeasonalStateSpaceModel` does this, so that it implements the `N - 1` dimension latent space `z_1, ..., z_[N-1]`. Note that since we constrained the mean effect to be zero, the latent `z_i`'s now recover their interpretation as the *actual* effects, `z_i = e_i` for `i = `1, ..., N - 1`, even though they were originally defined as residuals. The `N`th effect is represented only implicitly, as the nonzero mean of the first `N - 1` effects. Although the computational represention is not symmetric across all `N` effects, we derived the `ConstrainedSeasonalStateSpaceModel` by starting with a symmetric representation and imposing only a symmetric constraint (the zero-sum constraint), so the probability model remains symmetric over all `N` seasonal effects. #### Examples A constrained state-space model with day-of-week seasonality on hourly data: ```python day_of_week = ConstrainedSeasonalStateSpaceModel( num_timesteps=30, num_seasons=7, drift_scale=0.1, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.ones([7-1], dtype=tf.float32)), num_steps_per_season=24) ``` A model with basic month-of-year seasonality on daily data, demonstrating seasons of varying length: ```python month_of_year = ConstrainedSeasonalStateSpaceModel( num_timesteps=2 * 365, # 2 years num_seasons=12, drift_scale=0.1, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.ones([12-1], dtype=tf.float32)), num_steps_per_season=[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], initial_step=22) ``` Note that we've used `initial_step=22` to denote that the model begins on January 23 (steps are zero-indexed). This version works over time periods not involving a leap year. A general implementation of month-of-year seasonality would require additional logic: ```python num_days_per_month = np.array( [[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], [31, 29, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], # year with leap day [31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], [31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31]]) month_of_year = ConstrainedSeasonalStateSpaceModel( num_timesteps=4 * 365 + 2, # 8 years with leap days num_seasons=12, drift_scale=0.1, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.ones([12-1], dtype=tf.float32)), num_steps_per_season=num_days_per_month, initial_step=22) ``` """ def __init__(self, num_timesteps, num_seasons, drift_scale, initial_state_prior, observation_noise_scale=1e-4, # Avoid degeneracy. num_steps_per_season=1, name=None, **linear_gaussian_ssm_kwargs): # pylint: disable=g-doc-args """Build a seasonal effect state space model with a zero-sum constraint. {seasonal_init_args} """ parameters = dict(locals()) parameters.update(linear_gaussian_ssm_kwargs) del parameters['linear_gaussian_ssm_kwargs'] with tf.name_scope(name or 'ConstrainedSeasonalStateSpaceModel') as name: # The initial state prior determines the dtype of sampled values. # Other model parameters must have the same dtype. dtype = initial_state_prior.dtype drift_scale = tf.convert_to_tensor( value=drift_scale, name='drift_scale', dtype=dtype) observation_noise_scale = tf.convert_to_tensor( value=observation_noise_scale, name='observation_noise_scale', dtype=dtype) # Coerce `num_steps_per_season` to a canonical form, an array of # `num_seasons` integers. num_steps_per_season = np.squeeze(np.asarray(num_steps_per_season)) if num_steps_per_season.ndim == 0: # scalar case num_steps_per_season = np.tile(num_steps_per_season, num_seasons) elif ((num_steps_per_season.ndim <= 2) # 1D and 2D case and (num_steps_per_season.shape[-1] != num_seasons)): raise ValueError('num_steps_per_season must either be scalar (shape [])' ' or have the last dimension equal to [num_seasons] = ' '[{}] (saw: shape {})'.format( num_seasons, num_steps_per_season.shape)) is_last_day_of_season = build_is_last_day_of_season(num_steps_per_season) [ effects_to_residuals, residuals_to_effects ] = build_effects_to_residuals_matrix(num_seasons, dtype=dtype) seasonal_transition_matrix = build_seasonal_transition_matrix( num_seasons=num_seasons, is_last_day_of_season=is_last_day_of_season, dtype=dtype, basis_change_matrix=effects_to_residuals, basis_change_matrix_inv=residuals_to_effects) seasonal_transition_noise = build_constrained_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season) observation_matrix = tf.concat( [tf.ones([1, 1], dtype=dtype), tf.zeros([1, num_seasons-1], dtype=dtype)], axis=-1) observation_matrix = tf.matmul(observation_matrix, residuals_to_effects) self._drift_scale = drift_scale self._observation_noise_scale = observation_noise_scale self._num_seasons = num_seasons self._num_steps_per_season = num_steps_per_season super(ConstrainedSeasonalStateSpaceModel, self).__init__( num_timesteps=num_timesteps, transition_matrix=seasonal_transition_matrix, transition_noise=seasonal_transition_noise, observation_matrix=observation_matrix, observation_noise=tfd.MultivariateNormalDiag( scale_diag=observation_noise_scale[..., tf.newaxis]), initial_state_prior=initial_state_prior, name=name, **linear_gaussian_ssm_kwargs) self._parameters = parameters @property def drift_scale(self): """Standard deviation of the drift in effects between seasonal cycles.""" return self._drift_scale @property def observation_noise_scale(self): """Standard deviation of the observation noise.""" return self._observation_noise_scale @property def num_seasons(self): """Number of seasons.""" return self._num_seasons @property def num_steps_per_season(self): """Number of steps in each season.""" return self._num_steps_per_season def build_is_last_day_of_season(num_steps_per_season): """Build utility method to compute whether the season is changing.""" num_steps_per_cycle = np.sum(num_steps_per_season) changepoints = np.cumsum(np.ravel(num_steps_per_season)) - 1 def is_last_day_of_season(t): t_ = dist_util.maybe_get_static_value(t) if t_ is not None: # static case step_in_cycle = t_ % num_steps_per_cycle return any(step_in_cycle == changepoints) else: step_in_cycle = tf.math.floormod(t, num_steps_per_cycle) return tf.reduce_any(tf.equal(step_in_cycle, changepoints)) return is_last_day_of_season def build_effects_to_residuals_matrix(num_seasons, dtype): """Build change-of-basis matrices for constrained seasonal effects. This method builds the matrix that transforms seasonal effects into effect residuals (differences from the mean effect), and additionally projects these residuals onto the subspace where the mean effect is zero. See `ConstrainedSeasonalStateSpaceModel` for mathematical details. Args: num_seasons: scalar `int` number of seasons. dtype: TensorFlow `dtype` for the returned values. Returns: effects_to_residuals: `Tensor` of shape `[num_seasons-1, num_seasons]`, such that `differences_from_mean_effect = matmul(effects_to_residuals, seasonal_effects)`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `effects_to_residuals = P * R`. residuals_to_effects: the (pseudo)-inverse of the above; a `Tensor` of shape `[num_seasons, num_seasons-1]`. In the notation of `ConstrainedSeasonalStateSpaceModel`, this is `residuals_to_effects = R^{-1} * P'`. """ # Build the matrix that converts effects `e_i` into differences from the mean # effect `(e_i - sum(e_i)) / num_seasons`, with the mean effect in the last # row so that the transformation is invertible. effects_to_residuals_fullrank = np.eye(num_seasons) - 1./num_seasons effects_to_residuals_fullrank[-1, :] = 1./num_seasons # compute mean effect residuals_to_effects_fullrank = np.linalg.inv(effects_to_residuals_fullrank) # Drop the final dimension, effectively setting the mean effect to zero. effects_to_residuals = effects_to_residuals_fullrank[:-1, :] residuals_to_effects = residuals_to_effects_fullrank[:, :-1] # Return Tensor values of the specified dtype. effects_to_residuals = tf.cast( effects_to_residuals, dtype=dtype, name='effects_to_residuals') residuals_to_effects = tf.cast( residuals_to_effects, dtype=dtype, name='residuals_to_effects') return effects_to_residuals, residuals_to_effects def build_seasonal_transition_matrix( num_seasons, is_last_day_of_season, dtype, basis_change_matrix=None, basis_change_matrix_inv=None): """Build a function computing transitions for a seasonal effect model.""" with tf.name_scope('build_seasonal_transition_matrix'): # If the season is changing, the transition matrix permutes the latent # state to shift all seasons up by a dimension, and sends the current # season's effect to the bottom. seasonal_permutation = np.concatenate( [np.arange(1, num_seasons), [0]], axis=0) seasonal_permutation_matrix = tf.constant( np.eye(num_seasons)[seasonal_permutation], dtype=dtype) # Optionally transform the transition matrix into a reparameterized space, # enforcing the zero-sum constraint for ConstrainedSeasonalStateSpaceModel. if basis_change_matrix is not None: seasonal_permutation_matrix = tf.matmul( basis_change_matrix, tf.matmul(seasonal_permutation_matrix, basis_change_matrix_inv)) identity_matrix = tf.eye( ps.shape(seasonal_permutation_matrix)[-1], dtype=dtype) def seasonal_transition_matrix(t): return tf.linalg.LinearOperatorFullMatrix( matrix=dist_util.pick_scalar_condition( is_last_day_of_season(t), seasonal_permutation_matrix, identity_matrix)) return seasonal_transition_matrix def build_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season): """Build the transition noise model for a SeasonalStateSpaceModel.""" # If the current season has just ended, increase the variance of its effect # following drift_scale. (the just-ended seasonal effect will always be the # bottom element of the vector). Otherwise, do nothing. drift_scale_diag = tf.stack( [tf.zeros_like(drift_scale)] * (num_seasons - 1) + [drift_scale], axis=-1) def seasonal_transition_noise(t): noise_scale_diag = dist_util.pick_scalar_condition( is_last_day_of_season(t), drift_scale_diag, tf.zeros_like(drift_scale_diag)) return tfd.MultivariateNormalDiag( loc=tf.zeros(num_seasons, dtype=drift_scale.dtype), scale_diag=noise_scale_diag) return seasonal_transition_noise def build_constrained_seasonal_transition_noise( drift_scale, num_seasons, is_last_day_of_season): """Build transition noise distribution for a ConstrainedSeasonalSSM.""" # Conceptually, this method takes the noise covariance on effects L @ L' # computed by `build_seasonal_transition_noise`, with scale factor # L = [ 0, 0, ..., 0 # ... # 0, 0, ..., drift_scale], # and transforms it to act on the constrained-residual representation. # # The resulting noise covariance M @ M' is equivalent to # M @ M' = effects_to_residuals @ LL' @ residuals_to_effects # where `@` is matrix multiplication. However because this matrix is # rank-deficient, we can't take its Cholesky decomposition directly, so we'll # construct its lower-triangular scale factor `M` by hand instead. # # Concretely, let `M = P @ R @ L` be the scale factor in the # transformed space, with matrices `R`, `P` applying the reparameterization # and zero-mean constraint respectively as defined in the # "Mathematical Details" section of `ConstrainedSeasonalStateSpaceModel`. It's # easy to see (*) that the implied covariance # `M @ M' = P @ R @ L @ L' @ R' @ P'` is just the constant matrix # `M @ M' = [ 1, 1, ..., 1, 0 # 1, 1, ..., 1, 0 # ... # 1, 1, ..., 1, 0 # 0, 0, ..., 0, 0] * (drift_scale / num_seasons)**2` # with zeros in the final row and column. So we can directly construct # the lower-triangular factor # `Q = [ 1, 0, ... 0 # 1, 0, ..., 0 # ... # 1, 0, ..., 0 # 0, 0, ..., 0 ] * drift_scale/num_seasons` # such that Q @ Q' = M @ M'. In practice, we don't reify the final row and # column full of zeroes, i.e., we construct # `Q[:num_seasons-1, :num_seasons-1]` as the scale-TriL covariance factor. # # (*) Argument: `L` is zero everywhere but the last column, so `R @ L` will be # too. Since the last column of `R` is the constant `-1/num_seasons`, `R @ L` # is simply the matrix with constant `-drift_scale/num_seasons` in the final # column (except the final row, which is negated) and zero in all other # columns, and `M = P @ R @ L` additionally zeroes out the final row. Then # M @ M' is just the outer product of that final column with itself (since all # other columns are zero), which gives the matrix shown above. drift_scale_tril_nonzeros = tf.concat([ tf.ones([num_seasons - 1, 1], dtype=drift_scale.dtype), tf.zeros([num_seasons - 1, num_seasons - 2], dtype=drift_scale.dtype)], axis=-1) drift_scale_tril = (drift_scale_tril_nonzeros * drift_scale[..., tf.newaxis, tf.newaxis] / num_seasons) # Inject transition noise iff it is the last day of the season. def seasonal_transition_noise(t): noise_scale_tril = dist_util.pick_scalar_condition( is_last_day_of_season(t), drift_scale_tril, tf.zeros_like(drift_scale_tril)) return tfd.MultivariateNormalTriL( loc=tf.zeros(num_seasons-1, dtype=drift_scale.dtype), scale_tril=noise_scale_tril) return seasonal_transition_noise class Seasonal(StructuralTimeSeries): """Formal representation of a seasonal effect model. A seasonal effect model posits a fixed set of recurring, discrete 'seasons', each of which is active for a fixed number of timesteps and, while active, contributes a different effect to the time series. These are generally not meteorological seasons, but represent regular recurring patterns such as hour-of-day or day-of-week effects. Each season lasts for a fixed number of timesteps. The effect of each season drifts from one occurrence to the next following a Gaussian random walk: ```python effects[season, occurrence[i]] = ( effects[season, occurrence[i-1]] + Normal(loc=0., scale=drift_scale)) ``` The `drift_scale` parameter governs the standard deviation of the random walk; for example, in a day-of-week model it governs the change in effect from this Monday to next Monday. #### Examples A seasonal effect model representing day-of-week seasonality on hourly data: ```python day_of_week = tfp.sts.Seasonal(num_seasons=7, num_steps_per_season=24, observed_time_series=y, name='day_of_week') ``` A seasonal effect model representing month-of-year seasonality on daily data, with explicit priors: ```python month_of_year = tfp.sts.Seasonal( num_seasons=12, num_steps_per_season=[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], drift_scale_prior=tfd.LogNormal(loc=-1., scale=0.1), initial_effect_prior=tfd.Normal(loc=0., scale=5.), name='month_of_year') ``` Note that this version works over time periods not involving a leap year. A general implementation of month-of-year seasonality would require additional logic: ```python num_days_per_month = np.array( [[31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], [31, 29, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], # year with leap day [31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31], [31, 28, 31, 30, 30, 31, 31, 31, 30, 31, 30, 31]]) month_of_year = tfp.sts.Seasonal( num_seasons=12, num_steps_per_season=num_days_per_month, drift_scale_prior=tfd.LogNormal(loc=-1., scale=0.1), initial_effect_prior=tfd.Normal(loc=0., scale=5.), name='month_of_year') ``` A model representing both day-of-week and hour-of-day seasonality, on hourly data: ``` day_of_week = tfp.sts.Seasonal(num_seasons=7, num_steps_per_season=24, observed_time_series=y, name='day_of_week') hour_of_day = tfp.sts.Seasonal(num_seasons=24, num_steps_per_season=1, observed_time_series=y, name='hour_of_day') model = tfp.sts.Sum(components=[day_of_week, hour_of_day], observed_time_series=y) ``` """ def __init__(self, num_seasons, num_steps_per_season=1, allow_drift=True, drift_scale_prior=None, initial_effect_prior=None, constrain_mean_effect_to_zero=True, observed_time_series=None, name=None): """Specify a seasonal effects model. Args: num_seasons: Scalar Python `int` number of seasons. num_steps_per_season: Python `int` number of steps in each season. This may be either a scalar (shape `[]`), in which case all seasons have the same length, or a NumPy array of shape `[num_seasons]`, in which seasons have different length, but remain constant around different cycles, or a NumPy array of shape `[num_cycles, num_seasons]`, in which num_steps_per_season for each season also varies in different cycle (e.g., a 4 years cycle with leap day). Default value: 1. allow_drift: optional Python `bool` specifying whether the seasonal effects can drift over time. Setting this to `False` removes the `drift_scale` parameter from the model. This is mathematically equivalent to `drift_scale_prior = tfd.Deterministic(0.)`, but removing drift directly is preferred because it avoids the use of a degenerate prior. Default value: `True`. drift_scale_prior: optional `tfd.Distribution` instance specifying a prior on the `drift_scale` parameter. If `None`, a heuristic default prior is constructed based on the provided `observed_time_series`. Default value: `None`. initial_effect_prior: optional `tfd.Distribution` instance specifying a normal prior on the initial effect of each season. This may be either a scalar `tfd.Normal` prior, in which case it applies independently to every season, or it may be multivariate normal (e.g., `tfd.MultivariateNormalDiag`) with event shape `[num_seasons]`, in which case it specifies a joint prior across all seasons. If `None`, a heuristic default prior is constructed based on the provided `observed_time_series`. Default value: `None`. constrain_mean_effect_to_zero: if `True`, use a model parameterization that constrains the mean effect across all seasons to be zero. This constraint is generally helpful in identifying the contributions of different model components and can lead to more interpretable posterior decompositions. It may be undesirable if you plan to directly examine the latent space of the underlying state space model. Default value: `True`. observed_time_series: optional `float` `Tensor` of shape `batch_shape + [T, 1]` (omitting the trailing unit dimension is also supported when `T > 1`), specifying an observed time series. Any `NaN`s are interpreted as missing observations; missingness may be also be explicitly specified by passing a `tfp.sts.MaskedTimeSeries` instance. Any priors not explicitly set will be given default values according to the scale of the observed time series (or batch of time series). Default value: `None`. name: the name of this model component. Default value: 'Seasonal'. """ init_parameters = dict(locals()) with tf.name_scope(name or 'Seasonal') as name: _, observed_stddev, observed_initial = ( sts_util.empirical_statistics(observed_time_series) if observed_time_series is not None else (0., 1., 0.)) # Heuristic default priors. Overriding these may dramatically # change inference performance and results. if initial_effect_prior is None: initial_effect_prior = tfd.Normal( loc=observed_initial, scale=tf.abs(observed_initial) + observed_stddev) dtype = initial_effect_prior.dtype if drift_scale_prior is None: scale_factor = tf.convert_to_tensor(.01, dtype=dtype) drift_scale_prior = tfd.LogNormal( loc=tf.math.log(scale_factor * observed_stddev), scale=3.) if isinstance(initial_effect_prior, tfd.Normal): initial_state_prior = tfd.MultivariateNormalDiag( loc=tf.stack([initial_effect_prior.mean()] * num_seasons, axis=-1), scale_diag=tf.stack([initial_effect_prior.stddev()] * num_seasons, axis=-1)) else: initial_state_prior = initial_effect_prior if constrain_mean_effect_to_zero: # Transform the prior to the residual parameterization used by # `ConstrainedSeasonalStateSpaceModel`, imposing a zero-sum constraint. # This doesn't change the marginal prior on individual effects, but # does introduce dependence between the effects. (effects_to_residuals, _) = build_effects_to_residuals_matrix( num_seasons, dtype=dtype) effects_to_residuals_linop = tf.linalg.LinearOperatorFullMatrix( effects_to_residuals) # Use linop so that matmul broadcasts. initial_state_prior_loc = effects_to_residuals_linop.matvec( initial_state_prior.mean()) scale_linop = effects_to_residuals_linop.matmul( initial_state_prior.scale) # returns LinearOperator initial_state_prior = tfd.MultivariateNormalTriL( loc=initial_state_prior_loc, scale_tril=tf.linalg.cholesky( scale_linop.matmul(scale_linop.to_dense(), adjoint_arg=True))) self._constrain_mean_effect_to_zero = constrain_mean_effect_to_zero self._initial_state_prior = initial_state_prior self._num_seasons = num_seasons self._num_steps_per_season = num_steps_per_season parameters = [] if allow_drift: parameters.append(Parameter( 'drift_scale', drift_scale_prior, tfb.Chain([tfb.Scale(scale=observed_stddev), tfb.Softplus(low=dtype_util.eps(dtype))]))) self._allow_drift = allow_drift super(Seasonal, self).__init__( parameters, latent_size=(num_seasons - 1 if self.constrain_mean_effect_to_zero else num_seasons), init_parameters=init_parameters, name=name) @property def allow_drift(self): """Whether the seasonal effects are allowed to drift over time.""" return self._allow_drift @property def constrain_mean_effect_to_zero(self): """Whether to constrain the mean effect to zero.""" return self._constrain_mean_effect_to_zero @property def num_seasons(self): """Number of seasons.""" return self._num_seasons @property def num_steps_per_season(self): """Number of steps per season.""" return self._num_steps_per_season @property def initial_state_prior(self): """Prior distribution on the initial latent state (level and scale).""" return self._initial_state_prior def _make_state_space_model(self, num_timesteps, param_map, initial_state_prior=None, **linear_gaussian_ssm_kwargs): if initial_state_prior is None: initial_state_prior = self.initial_state_prior if not self.allow_drift: param_map['drift_scale'] = 0. linear_gaussian_ssm_kwargs.update(param_map) if self.constrain_mean_effect_to_zero: return ConstrainedSeasonalStateSpaceModel( num_timesteps=num_timesteps, num_seasons=self.num_seasons, num_steps_per_season=self.num_steps_per_season, initial_state_prior=initial_state_prior, **linear_gaussian_ssm_kwargs) else: return SeasonalStateSpaceModel( num_timesteps=num_timesteps, num_seasons=self.num_seasons, num_steps_per_season=self.num_steps_per_season, initial_state_prior=initial_state_prior, **linear_gaussian_ssm_kwargs)
tensorflow/probability
tensorflow_probability/python/sts/components/seasonal.py
Python
apache-2.0
40,275
[ "Gaussian" ]
276e3113b9347e8216305fe68abcc8a685fc5166a173e8c745100fdc84f0d9fc
# $Id$ # # Copyright (C) 2007,2008 Greg Landrum # # @@ All Rights Reserved @@ # import os,sys import io import unittest from rdkit.six.moves import cPickle from rdkit import RDConfig from rdkit import DataStructs as ds def feq(v1,v2,tol=1e-4): return abs(v1-v2)<tol class TestCase(unittest.TestCase): def setUp(self) : pass def test1Int(self): """ """ v1 = ds.IntSparseIntVect(5) self.assertRaises(IndexError,lambda:v1[5]) v1[0]=1 v1[2]=2 v1[3]=3 self.assertTrue(v1==v1) self.assertTrue(v1.GetLength()==5) v2= ds.IntSparseIntVect(5) self.assertTrue(v1!=v2) v2|=v1 self.assertTrue(v2==v1) v3=v2|v1 self.assertTrue(v3==v1) onVs = v1.GetNonzeroElements() self.assertTrue(onVs=={0:1,2:2,3:3}) def test2Long(self): """ """ l=1<<42 v1 = ds.LongSparseIntVect(l) self.assertRaises(IndexError,lambda:v1[l]) v1[0]=1 v1[2]=2 v1[1<<35]=3 self.assertTrue(v1==v1) self.assertTrue(v1.GetLength()==l) v2= ds.LongSparseIntVect(l) self.assertTrue(v1!=v2) v2|=v1 self.assertTrue(v2==v1) v3=v2|v1 self.assertTrue(v3==v1) onVs = v1.GetNonzeroElements() self.assertTrue(onVs=={0:1,2:2,1<<35:3}) def test3Pickle1(self): """ """ l=1<<42 v1 = ds.LongSparseIntVect(l) self.assertRaises(IndexError,lambda:v1[l+1]) v1[0]=1 v1[2]=2 v1[1<<35]=3 self.assertTrue(v1==v1) v2= cPickle.loads(cPickle.dumps(v1)) self.assertTrue(v2==v1) v3= ds.LongSparseIntVect(v2.ToBinary()) self.assertTrue(v2==v3) self.assertTrue(v1==v3) #cPickle.dump(v1,file('lsiv.pkl','wb+')) with open( os.path.join(RDConfig.RDBaseDir, 'Code/DataStructs/Wrap/testData/lsiv.pkl'), 'r' ) as tf: buf = tf.read().replace('\r\n', '\n').encode('utf-8') tf.close() with io.BytesIO(buf) as f: v3 = cPickle.load(f) self.assertTrue(v3==v1) def test3Pickle2(self): """ """ l=1<<21 v1 = ds.IntSparseIntVect(l) self.assertRaises(IndexError,lambda:v1[l+1]) v1[0]=1 v1[2]=2 v1[1<<12]=3 self.assertTrue(v1==v1) v2= cPickle.loads(cPickle.dumps(v1)) self.assertTrue(v2==v1) v3= ds.IntSparseIntVect(v2.ToBinary()) self.assertTrue(v2==v3) self.assertTrue(v1==v3) #cPickle.dump(v1,file('isiv.pkl','wb+')) with open( os.path.join(RDConfig.RDBaseDir, 'Code/DataStructs/Wrap/testData/isiv.pkl'), 'r' ) as tf: buf = tf.read().replace('\r\n', '\n').encode('utf-8') tf.close() with io.BytesIO(buf) as f: v3 = cPickle.load(f) self.assertTrue(v3==v1) def test4Update(self): """ """ v1 = ds.IntSparseIntVect(5) self.assertRaises(IndexError,lambda:v1[6]) v1[0]=1 v1[2]=2 v1[3]=3 self.assertTrue(v1==v1) v2 = ds.IntSparseIntVect(5) v2.UpdateFromSequence((0,2,3,3,2,3)) self.assertTrue(v1==v2) def test5Dice(self): """ """ v1 = ds.IntSparseIntVect(5) v1[4]=4; v1[0]=2; v1[3]=1; self.assertTrue(feq(ds.DiceSimilarity(v1,v1),1.0)) v1 = ds.IntSparseIntVect(5) v1[0]=2; v1[2]=1; v1[3]=4; v1[4]=6; v2 = ds.IntSparseIntVect(5) v2[1]=2; v2[2]=3; v2[3]=4; v2[4]=4; self.assertTrue(feq(ds.DiceSimilarity(v1,v2),18.0/26.)) self.assertTrue(feq(ds.DiceSimilarity(v2,v1),18.0/26.)) def test6BulkDice(self): """ """ sz=10 nToSet=5 nVs=6 import random vs = [] for i in range(nVs): v = ds.IntSparseIntVect(sz) for j in range(nToSet): v[random.randint(0,sz-1)]=random.randint(1,10) vs.append(v) baseDs = [ds.DiceSimilarity(vs[0],vs[x]) for x in range(1,nVs)] bulkDs = ds.BulkDiceSimilarity(vs[0],vs[1:]) for i in range(len(baseDs)): self.assertTrue(feq(baseDs[i],bulkDs[i])) def test6BulkTversky(self): """ """ sz=10 nToSet=5 nVs=6 import random vs = [] for i in range(nVs): v = ds.IntSparseIntVect(sz) for j in range(nToSet): v[random.randint(0,sz-1)]=random.randint(1,10) vs.append(v) baseDs = [ds.TverskySimilarity(vs[0],vs[x],.5,.5) for x in range(1,nVs)] bulkDs = ds.BulkTverskySimilarity(vs[0],vs[1:],0.5,0.5) diceDs = [ds.DiceSimilarity(vs[0],vs[x]) for x in range(1,nVs)] for i in range(len(baseDs)): self.assertTrue(feq(baseDs[i],bulkDs[i])) self.assertTrue(feq(baseDs[i],diceDs[i])) bulkDs = ds.BulkTverskySimilarity(vs[0],vs[1:],1.0,1.0) taniDs = [ds.TanimotoSimilarity(vs[0],vs[x]) for x in range(1,nVs)] for i in range(len(bulkDs)): self.assertTrue(feq(bulkDs[i],taniDs[i])) taniDs = ds.BulkTanimotoSimilarity(vs[0],vs[1:]) for i in range(len(bulkDs)): self.assertTrue(feq(bulkDs[i],taniDs[i])) if __name__ == '__main__': unittest.main()
soerendip42/rdkit
Code/DataStructs/Wrap/testSparseIntVect.py
Python
bsd-3-clause
4,950
[ "RDKit" ]
63cb78c8bd2cdf90fb2c4cb5519011a6d477da100c05f1090a592b4bbd38875b
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, OneTypeList, Struct from sfepy.discrete.fem.mesh import Mesh from sfepy.discrete.fem.meshio import MeshIO from sfepy.solvers.ts import TimeStepper from sfepy.base.ioutils import get_trunk, write_dict_hdf5 import six from six.moves import range def _linearize(out, fields, linearization): new = {} for key, val in six.iteritems(out): field = fields[val.field_name] new.update(field.create_output(val.data, var_name=key, dof_names=val.dofs, key=key, linearization=linearization)) return new def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None, fields=None, linearization=None): """Dump a multi-time-step results file into a sequence of VTK files.""" def _save_step(suffix, out, mesh): if linearization is not None: output('linearizing...') out = _linearize(out, fields, linearization) output('...done') for key, val in six.iteritems(out): lmesh = val.get('mesh', mesh) lmesh.write(output_filename_trunk + '_' + key + suffix, io='auto', out={key : val}) if hasattr(val, 'levels'): output('max. refinement per group:', val.levels) else: mesh.write(output_filename_trunk + suffix, io='auto', out=out) output('dumping to VTK...') io = MeshIO.any_from_filename(filename) mesh = Mesh.from_file(filename, io=io) if output_filename_trunk is None: output_filename_trunk = get_trunk(filename) try: ts = TimeStepper(*io.read_time_stepper()) all_steps, times, nts, dts = extract_times(filename) except ValueError: output('no time stepping info found, assuming single step') out = io.read_data(0) if out is not None: _save_step('.vtk', out, mesh) ret = None else: ts.times = times ts.n_step = times.shape[0] if steps is None: ii0 = nm.searchsorted(all_steps, step0) iterator = ((all_steps[ii], times[ii]) for ii in range(ii0, len(times))) else: iterator = [(step, ts.times[step]) for step in steps] max_step = all_steps.max() for step, time in iterator: output(ts.format % (step, max_step)) out = io.read_data(step) if out is None: break _save_step('.' + ts.suffix % step + '.vtk', out, mesh) ret = ts.suffix output('...done') return ret def extract_times(filename): """ Read true time step data from individual time steps. Returns ------- steps : array The time steps. times : array The times of the time steps. nts : array The normalized times of the time steps, in [0, 1]. dts : array The true time deltas. """ io = MeshIO.any_from_filename(filename) steps, times, nts = io.read_times() dts = nm.ediff1d(times, to_end=0) return steps, times, nts, dts def extract_time_history(filename, extract, verbose=True): """Extract time history of a variable from a multi-time-step results file. Parameters ---------- filename : str The name of file to extract from. extract : str The description of what to extract in a string of comma-separated description items. A description item consists of: name of the variable to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or elements (given by the mode). Example: 'u n 10 15, p e 0' means variable 'u' in nodes 10, 15 and variable 'p' in element 0. verbose : bool Verbosity control. Returns ------- ths : dict The time histories in a dict with variable names as keys. If a nodal variable is requested in elements, its value is a dict of histories in the element nodes. ts : TimeStepper instance The time stepping information. """ output('extracting selected data...', verbose=verbose) output('selection:', extract, verbose=verbose) ## # Parse extractions. pes = OneTypeList(Struct) for chunk in extract.split(','): aux = chunk.strip().split() pes.append(Struct(var=aux[0], mode=aux[1], indx=map(int, aux[2:]))) ## # Verify array limits. mesh = Mesh.from_file(filename) for pe in pes: if pe.mode == 'n': for ii in pe.indx: if (ii < 0) or (ii >= mesh.n_nod): raise ValueError('node index 0 <= %d < %d!' % (ii, mesh.n_nod)) if pe.mode == 'e': for ii, ie in enumerate(pe.indx[:]): if (ie < 0) or (ie >= mesh.n_el): raise ValueError('element index 0 <= %d < %d!' % (ie, mesh.n_el)) pe.indx[ii] = ie ## # Extract data. io = MeshIO.any_from_filename(filename) ths = {} for pe in pes: mode, nname = io.read_data_header(pe.var) output(mode, nname, verbose=verbose) if ((pe.mode == 'n' and mode == 'vertex') or (pe.mode == 'e' and mode == 'cell')): th = io.read_time_history(nname, pe.indx) elif pe.mode == 'e' and mode == 'vertex': conn = mesh.conns[0] th = {} for iel in pe.indx: ips = conn[iel] th[iel] = io.read_time_history(nname, ips) else: raise ValueError('cannot extract cell data %s in nodes!' % pe.var) ths[pe.var] = th output('...done', verbose=verbose) ts = TimeStepper(*io.read_time_stepper()) # Force actual times. steps, times, nts, dts = extract_times(filename) ts.times = times ts.nt = nts return ths, ts def average_vertex_var_in_cells(ths_in): """Average histories in the element nodes for each nodal variable originally requested in elements.""" ths = dict.fromkeys(list(ths_in.keys())) for var, th in six.iteritems(ths_in): aux = dict.fromkeys(list(th.keys())) for ir, data in six.iteritems(th): if isinstance(data, dict): for ic, ndata in six.iteritems(data): if aux[ir] is None: aux[ir] = ndata else: aux[ir] += ndata aux[ir] /= float(len(data)) else: aux[ir] = data ths[var] = aux return ths def save_time_history(ths, ts, filename_out): """Save time history and time-stepping information in a HDF5 file.""" ths.update({'times' : ts.times, 'dt' : ts.dt}) write_dict_hdf5(filename_out, ths) def guess_time_units(times): """ Given a vector of times in seconds, return suitable time units and new vector of times suitable for plotting. Parameters ---------- times : array The vector of times in seconds. Returns ------- new_times : array The vector of times in `units`. units : str The time units. """ times = nm.asarray(times) if (times[-1] / 60.0 / 60.0) > 10.0: units = 'hours' new_times = times / 60.0 / 60.0 elif (times[-1] / 60.0) > 10.0: units = 'min.' new_times = times / 60.0 else: units = 's' new_times = times return new_times, units
vlukes/sfepy
sfepy/postprocess/time_history.py
Python
bsd-3-clause
7,716
[ "VTK" ]
1d8cfda61776faccdb6ff12237cc6cb0d850521cfdbccda1048fd56966141924
# -*- coding: utf-8 -*- # Copyright (C) 2012, Almar Klein, Ant1, Marius van Voorden # # This code is subject to the (new) BSD license: # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <organization> nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Module images2gif Provides functionality for reading and writing animated GIF images. Use writeGif to write a series of numpy arrays or PIL images as an animated GIF. Use readGif to read an animated gif as a series of numpy arrays. Note that since July 2004, all patents on the LZW compression patent have expired. Therefore the GIF format may now be used freely. Acknowledgements ---------------- Many thanks to Ant1 for: * noting the use of "palette=PIL.Image.ADAPTIVE", which significantly improves the results. * the modifications to save each image with its own palette, or optionally the global palette (if its the same). Many thanks to Marius van Voorden for porting the NeuQuant quantization algorithm of Anthony Dekker to Python (See the NeuQuant class for its license). Many thanks to Alex Robinson for implementing the concept of subrectangles, which (depening on image content) can give a very significant reduction in file size. This code is based on gifmaker (in the scripts folder of the source distribution of PIL) Usefull links ------------- * http://tronche.com/computer-graphics/gif/ * http://en.wikipedia.org/wiki/Graphics_Interchange_Format * http://www.w3.org/Graphics/GIF/spec-gif89a.txt """ # todo: This module should be part of imageio (or at least based on) import os, time try: import PIL from PIL import Image from PIL.GifImagePlugin import getheader, getdata except ImportError: PIL = None try: import numpy as np except ImportError: np = None def get_cKDTree(): try: from scipy.spatial import cKDTree except ImportError: cKDTree = None return cKDTree # getheader gives a 87a header and a color palette (two elements in a list). # getdata()[0] gives the Image Descriptor up to (including) "LZW min code size". # getdatas()[1:] is the image data itself in chuncks of 256 bytes (well # technically the first byte says how many bytes follow, after which that # amount (max 255) follows). def checkImages(images): """ checkImages(images) Check numpy images and correct intensity range etc. The same for all movie formats. """ # Init results images2 = [] for im in images: if PIL and isinstance(im, PIL.Image.Image): # We assume PIL images are allright images2.append(im) elif np and isinstance(im, np.ndarray): # Check and convert dtype if im.dtype == np.uint8: images2.append(im) # Ok elif im.dtype in [np.float32, np.float64]: im = im.copy() im[im<0] = 0 im[im>1] = 1 im *= 255 images2.append( im.astype(np.uint8) ) else: im = im.astype(np.uint8) images2.append(im) # Check size if im.ndim == 2: pass # ok elif im.ndim == 3: if im.shape[2] not in [3,4]: raise ValueError('This array can not represent an image.') else: raise ValueError('This array can not represent an image.') else: raise ValueError('Invalid image type: ' + str(type(im))) # Done return images2 def intToBin(i): """ Integer to two bytes """ # devide in two parts (bytes) i1 = i % 256 i2 = int( i/256) # make string (little endian) return chr(i1) + chr(i2) class GifWriter: """ GifWriter() Class that contains methods for helping write the animated GIF file. """ def getheaderAnim(self, im): """ getheaderAnim(im) Get animation header. To replace PILs getheader()[0] """ bb = "GIF89a" bb += intToBin(im.size[0]) bb += intToBin(im.size[1]) bb += "\x87\x00\x00" return bb def getImageDescriptor(self, im, xy=None): """ getImageDescriptor(im, xy=None) Used for the local color table properties per image. Otherwise global color table applies to all frames irrespective of whether additional colors comes in play that require a redefined palette. Still a maximum of 256 color per frame, obviously. Written by Ant1 on 2010-08-22 Modified by Alex Robinson in Janurari 2011 to implement subrectangles. """ # Defaule use full image and place at upper left if xy is None: xy = (0,0) # Image separator, bb = '\x2C' # Image position and size bb += intToBin( xy[0] ) # Left position bb += intToBin( xy[1] ) # Top position bb += intToBin( im.size[0] ) # image width bb += intToBin( im.size[1] ) # image height # packed field: local color table flag1, interlace0, sorted table0, # reserved00, lct size111=7=2^(7+1)=256. bb += '\x87' # LZW minimum size code now comes later, begining of [image data] blocks return bb def getAppExt(self, loops=float('inf')): """ getAppExt(loops=float('inf')) Application extention. This part specifies the amount of loops. If loops is 0 or inf, it goes on infinitely. """ if loops==0 or loops==float('inf'): loops = 2**16-1 #bb = "" # application extension should not be used # (the extension interprets zero loops # to mean an infinite number of loops) # Mmm, does not seem to work if True: bb = "\x21\xFF\x0B" # application extension bb += "NETSCAPE2.0" bb += "\x03\x01" bb += intToBin(loops) bb += '\x00' # end return bb def getGraphicsControlExt(self, duration=0.1, dispose=2): """ getGraphicsControlExt(duration=0.1, dispose=2) Graphics Control Extension. A sort of header at the start of each image. Specifies duration and transparancy. Dispose ------- * 0 - No disposal specified. * 1 - Do not dispose. The graphic is to be left in place. * 2 - Restore to background color. The area used by the graphic must be restored to the background color. * 3 - Restore to previous. The decoder is required to restore the area overwritten by the graphic with what was there prior to rendering the graphic. * 4-7 -To be defined. """ bb = '\x21\xF9\x04' bb += chr((dispose & 3) << 2) # low bit 1 == transparency, # 2nd bit 1 == user input , next 3 bits, the low two of which are used, # are dispose. bb += intToBin( int(duration*100) ) # in 100th of seconds bb += '\x00' # no transparant color bb += '\x00' # end return bb def handleSubRectangles(self, images, subRectangles): """ handleSubRectangles(images) Handle the sub-rectangle stuff. If the rectangles are given by the user, the values are checked. Otherwise the subrectangles are calculated automatically. """ if isinstance(subRectangles, (tuple,list)): # xy given directly # Check xy xy = subRectangles if xy is None: xy = (0,0) if hasattr(xy, '__len__'): if len(xy) == len(images): xy = [xxyy for xxyy in xy] else: raise ValueError("len(xy) doesn't match amount of images.") else: xy = [xy for im in images] xy[0] = (0,0) else: # Calculate xy using some basic image processing # Check Numpy if np is None: raise RuntimeError("Need Numpy to use auto-subRectangles.") # First make numpy arrays if required for i in range(len(images)): im = images[i] if isinstance(im, Image.Image): tmp = im.convert() # Make without palette a = np.asarray(tmp) if len(a.shape)==0: raise MemoryError("Too little memory to convert PIL image to array") images[i] = a # Determine the sub rectangles images, xy = self.getSubRectangles(images) # Done return images, xy def getSubRectangles(self, ims): """ getSubRectangles(ims) Calculate the minimal rectangles that need updating each frame. Returns a two-element tuple containing the cropped images and a list of x-y positions. Calculating the subrectangles takes extra time, obviously. However, if the image sizes were reduced, the actual writing of the GIF goes faster. In some cases applying this method produces a GIF faster. """ # Check image count if len(ims) < 2: return ims, [(0,0) for i in ims] # We need numpy if np is None: raise RuntimeError("Need Numpy to calculate sub-rectangles. ") # Prepare ims2 = [ims[0]] xy = [(0,0)] t0 = time.time() # Iterate over images prev = ims[0] for im in ims[1:]: # Get difference, sum over colors diff = np.abs(im-prev) if diff.ndim==3: diff = diff.sum(2) # Get begin and end for both dimensions X = np.argwhere(diff.sum(0)) Y = np.argwhere(diff.sum(1)) # Get rect coordinates if X.size and Y.size: x0, x1 = X[0], X[-1]+1 y0, y1 = Y[0], Y[-1]+1 else: # No change ... make it minimal x0, x1 = 0, 2 y0, y1 = 0, 2 # Cut out and store im2 = im[y0:y1,x0:x1] prev = im ims2.append(im2) xy.append((x0,y0)) # Done #print('%1.2f seconds to determine subrectangles of %i images' % # (time.time()-t0, len(ims2)) ) return ims2, xy def convertImagesToPIL(self, images, dither, nq=0): """ convertImagesToPIL(images, nq=0) Convert images to Paletted PIL images, which can then be written to a single animaged GIF. """ # Convert to PIL images images2 = [] for im in images: if isinstance(im, Image.Image): images2.append(im) elif np and isinstance(im, np.ndarray): if im.ndim==3 and im.shape[2]==3: im = Image.fromarray(im,'RGB') elif im.ndim==3 and im.shape[2]==4: im = Image.fromarray(im[:,:,:3],'RGB') elif im.ndim==2: im = Image.fromarray(im,'L') images2.append(im) # Convert to paletted PIL images images, images2 = images2, [] if nq >= 1: # NeuQuant algorithm for im in images: im = im.convert("RGBA") # NQ assumes RGBA nqInstance = NeuQuant(im, int(nq)) # Learn colors from image if dither: im = im.convert("RGB").quantize(palette=nqInstance.paletteImage()) else: im = nqInstance.quantize(im) # Use to quantize the image itself images2.append(im) else: # Adaptive PIL algorithm AD = Image.ADAPTIVE for im in images: im = im.convert('P', palette=AD, dither=dither) images2.append(im) # Done return images2 def writeGifToFile(self, fp, images, durations, loops, xys, disposes): """ writeGifToFile(fp, images, durations, loops, xys, disposes) Given a set of images writes the bytes to the specified stream. """ # Obtain palette for all images and count each occurance palettes, occur = [], [] for im in images: palettes.append( getheader(im)[1] ) for palette in palettes: occur.append( palettes.count( palette ) ) # Select most-used palette as the global one (or first in case no max) globalPalette = palettes[ occur.index(max(occur)) ] # Init frames = 0 firstFrame = True for im, palette in zip(images, palettes): if firstFrame: # Write header # Gather info header = self.getheaderAnim(im) appext = self.getAppExt(loops) # Write fp.write(header.encode('utf-8')) fp.write(globalPalette) fp.write(appext.encode('utf-8')) # Next frame is not the first firstFrame = False if True: # Write palette and image data # Gather info data = getdata(im) imdes, data = data[0], data[1:] graphext = self.getGraphicsControlExt(durations[frames], disposes[frames]) # Make image descriptor suitable for using 256 local color palette lid = self.getImageDescriptor(im, xys[frames]) # Write local header if (palette != globalPalette) or (disposes[frames] != 2): # Use local color palette fp.write(graphext.encode('utf-8')) fp.write(lid) # write suitable image descriptor fp.write(palette) # write local color table fp.write('\x08') # LZW minimum size code else: # Use global color palette fp.write(graphext.encode('utf-8')) fp.write(imdes) # write suitable image descriptor # Write image data for d in data: fp.write(d) # Prepare for next round frames = frames + 1 fp.write(";".encode('utf-8')) # end gif return frames ## Exposed functions def writeGif(filename, images, duration=0.1, repeat=True, dither=False, nq=0, subRectangles=True, dispose=None): """ writeGif(filename, images, duration=0.1, repeat=True, dither=False, nq=0, subRectangles=True, dispose=None) Write an animated gif from the specified images. Parameters ---------- filename : string The name of the file to write the image to. images : list Should be a list consisting of PIL images or numpy arrays. The latter should be between 0 and 255 for integer types, and between 0 and 1 for float types. duration : scalar or list of scalars The duration for all frames, or (if a list) for each frame. repeat : bool or integer The amount of loops. If True, loops infinitetely. dither : bool Whether to apply dithering nq : integer If nonzero, applies the NeuQuant quantization algorithm to create the color palette. This algorithm is superior, but slower than the standard PIL algorithm. The value of nq is the quality parameter. 1 represents the best quality. 10 is in general a good tradeoff between quality and speed. When using this option, better results are usually obtained when subRectangles is False. subRectangles : False, True, or a list of 2-element tuples Whether to use sub-rectangles. If True, the minimal rectangle that is required to update each frame is automatically detected. This can give significant reductions in file size, particularly if only a part of the image changes. One can also give a list of x-y coordinates if you want to do the cropping yourself. The default is True. dispose : int How to dispose each frame. 1 means that each frame is to be left in place. 2 means the background color should be restored after each frame. 3 means the decoder should restore the previous frame. If subRectangles==False, the default is 2, otherwise it is 1. """ # Check PIL if PIL is None: raise RuntimeError("Need PIL to write animated gif files.") # Check images images = checkImages(images) # Instantiate writer object gifWriter = GifWriter() # Check loops if repeat is False: loops = 1 elif repeat is True: loops = 0 # zero means infinite else: loops = int(repeat) # Check duration if hasattr(duration, '__len__'): if len(duration) == len(images): duration = [d for d in duration] else: raise ValueError("len(duration) doesn't match amount of images.") else: duration = [duration for im in images] # Check subrectangles if subRectangles: images, xy = gifWriter.handleSubRectangles(images, subRectangles) defaultDispose = 1 # Leave image in place else: # Normal mode xy = [(0,0) for im in images] defaultDispose = 2 # Restore to background color. # Check dispose if dispose is None: dispose = defaultDispose if hasattr(dispose, '__len__'): if len(dispose) != len(images): raise ValueError("len(xy) doesn't match amount of images.") else: dispose = [dispose for im in images] # Make images in a format that we can write easy images = gifWriter.convertImagesToPIL(images, dither, nq) # Write fp = open(filename, 'wb') try: gifWriter.writeGifToFile(fp, images, duration, loops, xy, dispose) finally: fp.close() def readGif(filename, asNumpy=True): """ readGif(filename, asNumpy=True) Read images from an animated GIF file. Returns a list of numpy arrays, or, if asNumpy is false, a list if PIL images. """ # Check PIL if PIL is None: raise RuntimeError("Need PIL to read animated gif files.") # Check Numpy if np is None: raise RuntimeError("Need Numpy to read animated gif files.") # Check whether it exists if not os.path.isfile(filename): raise IOError('File not found: '+str(filename)) # Load file using PIL pilIm = PIL.Image.open(filename) pilIm.seek(0) # Read all images inside images = [] try: while True: # Get image as numpy array tmp = pilIm.convert() # Make without palette a = np.asarray(tmp) if len(a.shape)==0: raise MemoryError("Too little memory to convert PIL image to array") # Store, and next images.append(a) pilIm.seek(pilIm.tell()+1) except EOFError: pass # Convert to normal PIL images if needed if not asNumpy: images2 = images images = [] for im in images2: images.append( PIL.Image.fromarray(im) ) # Done return images class NeuQuant: """ NeuQuant(image, samplefac=10, colors=256) samplefac should be an integer number of 1 or higher, 1 being the highest quality, but the slowest performance. With avalue of 10, one tenth of all pixels are used during training. This value seems a nice tradeof between speed and quality. colors is the amount of colors to reduce the image to. This should best be a power of two. See also: http://members.ozemail.com.au/~dekker/NEUQUANT.HTML License of the NeuQuant Neural-Net Quantization Algorithm --------------------------------------------------------- Copyright (c) 1994 Anthony Dekker Ported to python by Marius van Voorden in 2010 NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See "Kohonen neural networks for optimal colour quantization" in "network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of the algorithm. See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML Any party obtaining a copy of these files from the author, directly or indirectly, is granted, free of charge, a full and unrestricted irrevocable, world-wide, paid up, royalty-free, nonexclusive right and license to deal in this software and documentation files (the "Software"), including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons who receive copies from any such party to do so, with the only requirement being that this copyright notice remain intact. """ NCYCLES = None # Number of learning cycles NETSIZE = None # Number of colours used SPECIALS = None # Number of reserved colours used BGCOLOR = None # Reserved background colour CUTNETSIZE = None MAXNETPOS = None INITRAD = None # For 256 colours, radius starts at 32 RADIUSBIASSHIFT = None RADIUSBIAS = None INITBIASRADIUS = None RADIUSDEC = None # Factor of 1/30 each cycle ALPHABIASSHIFT = None INITALPHA = None # biased by 10 bits GAMMA = None BETA = None BETAGAMMA = None network = None # The network itself colormap = None # The network itself netindex = None # For network lookup - really 256 bias = None # Bias and freq arrays for learning freq = None pimage = None # Four primes near 500 - assume no image has a length so large # that it is divisible by all four primes PRIME1 = 499 PRIME2 = 491 PRIME3 = 487 PRIME4 = 503 MAXPRIME = PRIME4 pixels = None samplefac = None a_s = None def setconstants(self, samplefac, colors): self.NCYCLES = 100 # Number of learning cycles self.NETSIZE = colors # Number of colours used self.SPECIALS = 3 # Number of reserved colours used self.BGCOLOR = self.SPECIALS-1 # Reserved background colour self.CUTNETSIZE = self.NETSIZE - self.SPECIALS self.MAXNETPOS = self.NETSIZE - 1 self.INITRAD = self.NETSIZE/8 # For 256 colours, radius starts at 32 self.RADIUSBIASSHIFT = 6 self.RADIUSBIAS = 1 << self.RADIUSBIASSHIFT self.INITBIASRADIUS = self.INITRAD * self.RADIUSBIAS self.RADIUSDEC = 30 # Factor of 1/30 each cycle self.ALPHABIASSHIFT = 10 # Alpha starts at 1 self.INITALPHA = 1 << self.ALPHABIASSHIFT # biased by 10 bits self.GAMMA = 1024.0 self.BETA = 1.0/1024.0 self.BETAGAMMA = self.BETA * self.GAMMA self.network = np.empty((self.NETSIZE, 3), dtype='float64') # The network itself self.colormap = np.empty((self.NETSIZE, 4), dtype='int32') # The network itself self.netindex = np.empty(256, dtype='int32') # For network lookup - really 256 self.bias = np.empty(self.NETSIZE, dtype='float64') # Bias and freq arrays for learning self.freq = np.empty(self.NETSIZE, dtype='float64') self.pixels = None self.samplefac = samplefac self.a_s = {} def __init__(self, image, samplefac=10, colors=256): # Check Numpy if np is None: raise RuntimeError("Need Numpy for the NeuQuant algorithm.") # Check image if image.size[0] * image.size[1] < NeuQuant.MAXPRIME: raise IOError("Image is too small") if image.mode != "RGBA": raise IOError("Image mode should be RGBA.") # Initialize self.setconstants(samplefac, colors) self.pixels = np.fromstring(image.tostring(), np.uint32) self.setUpArrays() self.learn() self.fix() self.inxbuild() def writeColourMap(self, rgb, outstream): for i in range(self.NETSIZE): bb = self.colormap[i,0]; gg = self.colormap[i,1]; rr = self.colormap[i,2]; outstream.write(rr if rgb else bb) outstream.write(gg) outstream.write(bb if rgb else rr) return self.NETSIZE def setUpArrays(self): self.network[0,0] = 0.0 # Black self.network[0,1] = 0.0 self.network[0,2] = 0.0 self.network[1,0] = 255.0 # White self.network[1,1] = 255.0 self.network[1,2] = 255.0 # RESERVED self.BGCOLOR # Background for i in range(self.SPECIALS): self.freq[i] = 1.0 / self.NETSIZE self.bias[i] = 0.0 for i in range(self.SPECIALS, self.NETSIZE): p = self.network[i] p[:] = (255.0 * (i-self.SPECIALS)) / self.CUTNETSIZE self.freq[i] = 1.0 / self.NETSIZE self.bias[i] = 0.0 # Omitted: setPixels def altersingle(self, alpha, i, b, g, r): """Move neuron i towards biased (b,g,r) by factor alpha""" n = self.network[i] # Alter hit neuron n[0] -= (alpha*(n[0] - b)) n[1] -= (alpha*(n[1] - g)) n[2] -= (alpha*(n[2] - r)) def geta(self, alpha, rad): try: return self.a_s[(alpha, rad)] except KeyError: length = rad*2-1 mid = length/2 q = np.array(list(range(mid-1,-1,-1))+list(range(-1,mid))) a = alpha*(rad*rad - q*q)/(rad*rad) a[mid] = 0 self.a_s[(alpha, rad)] = a return a def alterneigh(self, alpha, rad, i, b, g, r): if i-rad >= self.SPECIALS-1: lo = i-rad start = 0 else: lo = self.SPECIALS-1 start = (self.SPECIALS-1 - (i-rad)) if i+rad <= self.NETSIZE: hi = i+rad end = rad*2-1 else: hi = self.NETSIZE end = (self.NETSIZE - (i+rad)) a = self.geta(alpha, rad)[start:end] p = self.network[lo+1:hi] p -= np.transpose(np.transpose(p - np.array([b, g, r])) * a) #def contest(self, b, g, r): # """ Search for biased BGR values # Finds closest neuron (min dist) and updates self.freq # finds best neuron (min dist-self.bias) and returns position # for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative # self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])""" # # i, j = self.SPECIALS, self.NETSIZE # dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1) # bestpos = i + np.argmin(dists) # biasdists = dists - self.bias[i:j] # bestbiaspos = i + np.argmin(biasdists) # self.freq[i:j] -= self.BETA * self.freq[i:j] # self.bias[i:j] += self.BETAGAMMA * self.freq[i:j] # self.freq[bestpos] += self.BETA # self.bias[bestpos] -= self.BETAGAMMA # return bestbiaspos def contest(self, b, g, r): """ Search for biased BGR values Finds closest neuron (min dist) and updates self.freq finds best neuron (min dist-self.bias) and returns position for frequently chosen neurons, self.freq[i] is high and self.bias[i] is negative self.bias[i] = self.GAMMA*((1/self.NETSIZE)-self.freq[i])""" i, j = self.SPECIALS, self.NETSIZE dists = abs(self.network[i:j] - np.array([b,g,r])).sum(1) bestpos = i + np.argmin(dists) biasdists = dists - self.bias[i:j] bestbiaspos = i + np.argmin(biasdists) self.freq[i:j] *= (1-self.BETA) self.bias[i:j] += self.BETAGAMMA * self.freq[i:j] self.freq[bestpos] += self.BETA self.bias[bestpos] -= self.BETAGAMMA return bestbiaspos def specialFind(self, b, g, r): for i in range(self.SPECIALS): n = self.network[i] if n[0] == b and n[1] == g and n[2] == r: return i return -1 def learn(self): biasRadius = self.INITBIASRADIUS alphadec = 30 + ((self.samplefac-1)/3) lengthcount = self.pixels.size samplepixels = lengthcount / self.samplefac delta = samplepixels / self.NCYCLES alpha = self.INITALPHA i = 0; rad = biasRadius >> self.RADIUSBIASSHIFT if rad <= 1: rad = 0 print("Beginning 1D learning: samplepixels = %1.2f rad = %i" % (samplepixels, rad) ) step = 0 pos = 0 if lengthcount%NeuQuant.PRIME1 != 0: step = NeuQuant.PRIME1 elif lengthcount%NeuQuant.PRIME2 != 0: step = NeuQuant.PRIME2 elif lengthcount%NeuQuant.PRIME3 != 0: step = NeuQuant.PRIME3 else: step = NeuQuant.PRIME4 i = 0 printed_string = '' while i < samplepixels: if i%100 == 99: tmp = '\b'*len(printed_string) printed_string = str((i+1)*100/samplepixels)+"%\n" print(tmp + printed_string) p = self.pixels[pos] r = (p >> 16) & 0xff g = (p >> 8) & 0xff b = (p ) & 0xff if i == 0: # Remember background colour self.network[self.BGCOLOR] = [b, g, r] j = self.specialFind(b, g, r) if j < 0: j = self.contest(b, g, r) if j >= self.SPECIALS: # Don't learn for specials a = (1.0 * alpha) / self.INITALPHA self.altersingle(a, j, b, g, r) if rad > 0: self.alterneigh(a, rad, j, b, g, r) pos = (pos+step)%lengthcount i += 1 if i%delta == 0: alpha -= alpha / alphadec biasRadius -= biasRadius / self.RADIUSDEC rad = biasRadius >> self.RADIUSBIASSHIFT if rad <= 1: rad = 0 finalAlpha = (1.0*alpha)/self.INITALPHA print("Finished 1D learning: final alpha = %1.2f!" % finalAlpha) def fix(self): for i in range(self.NETSIZE): for j in range(3): x = int(0.5 + self.network[i,j]) x = max(0, x) x = min(255, x) self.colormap[i,j] = x self.colormap[i,3] = i def inxbuild(self): previouscol = 0 startpos = 0 for i in range(self.NETSIZE): p = self.colormap[i] q = None smallpos = i smallval = p[1] # Index on g # Find smallest in i..self.NETSIZE-1 for j in range(i+1, self.NETSIZE): q = self.colormap[j] if q[1] < smallval: # Index on g smallpos = j smallval = q[1] # Index on g q = self.colormap[smallpos] # Swap p (i) and q (smallpos) entries if i != smallpos: p[:],q[:] = q, p.copy() # smallval entry is now in position i if smallval != previouscol: self.netindex[previouscol] = (startpos+i) >> 1 for j in range(previouscol+1, smallval): self.netindex[j] = i previouscol = smallval startpos = i self.netindex[previouscol] = (startpos+self.MAXNETPOS) >> 1 for j in range(previouscol+1, 256): # Really 256 self.netindex[j] = self.MAXNETPOS def paletteImage(self): """ PIL weird interface for making a paletted image: create an image which already has the palette, and use that in Image.quantize. This function returns this palette image. """ if self.pimage is None: palette = [] for i in range(self.NETSIZE): palette.extend(self.colormap[i][:3]) palette.extend([0]*(256-self.NETSIZE)*3) # a palette image to use for quant self.pimage = Image.new("P", (1, 1), 0) self.pimage.putpalette(palette) return self.pimage def quantize(self, image): """ Use a kdtree to quickly find the closest palette colors for the pixels """ if get_cKDTree(): return self.quantize_with_scipy(image) else: print('Scipy not available, falling back to slower version.') return self.quantize_without_scipy(image) def quantize_with_scipy(self, image): w,h = image.size px = np.asarray(image).copy() px2 = px[:,:,:3].reshape((w*h,3)) cKDTree = get_cKDTree() kdtree = cKDTree(self.colormap[:,:3],leafsize=10) result = kdtree.query(px2) colorindex = result[1] print("Distance: %1.2f" % (result[0].sum()/(w*h)) ) px2[:] = self.colormap[colorindex,:3] return Image.fromarray(px).convert("RGB").quantize(palette=self.paletteImage()) def quantize_without_scipy(self, image): """" This function can be used if no scipy is availabe. It's 7 times slower though. """ w,h = image.size px = np.asarray(image).copy() memo = {} for j in range(w): for i in range(h): key = (px[i,j,0],px[i,j,1],px[i,j,2]) try: val = memo[key] except KeyError: val = self.convert(*key) memo[key] = val px[i,j,0],px[i,j,1],px[i,j,2] = val return Image.fromarray(px).convert("RGB").quantize(palette=self.paletteImage()) def convert(self, *color): i = self.inxsearch(*color) return self.colormap[i,:3] def inxsearch(self, r, g, b): """Search for BGR values 0..255 and return colour index""" dists = (self.colormap[:,:3] - np.array([r,g,b])) a= np.argmin((dists*dists).sum(1)) return a if __name__ == '__main__': im = np.zeros((200,200), dtype=np.uint8) im[10:30,:] = 100 im[:,80:120] = 255 im[-50:-40,:] = 50 images = [im*1.0, im*0.8, im*0.6, im*0.4, im*0] writeGif('lala3.gif',images, duration=0.5, dither=0)
wangtai/py_gif_processor
images2gif.py
Python
apache-2.0
37,041
[ "NEURON" ]
ca51e40e66ce11c34ec9064a87fd98d694c56cd3601a928578ceaef75c786917
"""Classes to handle SAXS (Small Angle X-ray Scattering) data""" import _modeller from modeller.util.modobject import modobject from modeller.util import modlist, array __docformat__ = "epytext en" class SAXSList(modlist.LinkList): """A list of L{saxsdata} objects""" def __init__(self, edat): self.__edat = edat self.__list = [] modlist.LinkList.__init__(self) def _insfunc(self, indx, obj): _modeller.mod_saxsdata_pt_new(self.__edat, indx, obj.modpt) self.__list.insert(indx, obj) def __len__(self): return len(self.__list) def _getfunc(self, indx): return self.__list[indx] def _delfunc(self, indx): del self.__list[indx] _modeller.mod_saxsdata_pt_del(self.__edat, indx) class saxsdata(modobject): """Holds all SAXS (Small Angle X-ray Scattering) data""" __modpt = None env = None def __init__(self, env, **vars): self.__modpt = _modeller.mod_saxsdata_new() self.env = env.copy() def __setstate__(self, d): self.__dict__.update(d) self.__modpt = _modeller.mod_saxsdata_new() def __del__(self): if self.__modpt: _modeller.mod_saxsdata_free(self.__modpt) def __get_modpt(self): return self.__modpt def write(self, file): """Write SAXS data, which is currently in memory """ fh=open(file,'w') for ii in range(0,self.ns): fh.write('%10.7f ' % self.s[ii] + '%15.5f ' % self.intensity[ii] +'%15.5f\n' % self.int_exp[ii] ) fh.close() def pr_score(self, mdl, maxr, filename=None, use_err=False, rfact=False): """Calculates P(r) score of a model by comparing model P(r) to expt data saxs.pr_exp. @param mdl: model @param maxr: maximum radius to score P(r) in A @param filename: filename of P(r) model to write (scaled to expt data) @param use_err: use experimental error? @param rfact: use rfactor as score? @return: (pr score, scaling factor of model P(r) to match expt. P(r))""" from math import sqrt sum_e = 0.0 sum_mm = 0.0 sum_em = 0.0 sum_ee = 0.0 mdl.saxs_pr(self, filename='None') imaxr = min( int(maxr/self.dr_exp)+1, len(self.p_r_exp)) if (rfact): for ii in range(0, imaxr): sum_mm = sum_mm + self.p_r_resamp[ii] sum_ee = sum_ee + self.p_r_exp[ii] scf = sum_ee/sum_mm sum_ee = 0.0 for ii in range(0, imaxr): sum_em = sum_em + abs(self.p_r_exp[ii]-scf*self.p_r_resamp[ii]) sum_ee = sum_ee + abs(self.p_r_exp[ii]) psc = sum_em/sum_ee else: if (use_err): for ii in range(0, imaxr): sum_mm = sum_mm + self.p_r_resamp[ii]*self.p_r_resamp[ii]/self.p_r_sig[ii] sum_em = sum_em + self.p_r_exp[ii]*self.p_r_resamp[ii]/self.p_r_sig[ii] sum_ee = sum_ee + self.p_r_exp[ii]*self.p_r_exp[ii]/self.p_r_sig[ii] else: for ii in range(0, imaxr): sum_mm = sum_mm + self.p_r_resamp[ii]*self.p_r_resamp[ii] sum_em = sum_em + self.p_r_exp[ii]*self.p_r_resamp[ii] sum_ee = sum_ee + self.p_r_exp[ii]*self.p_r_exp[ii] norm_e = sqrt(sum_ee) scf = sum_em / sum_mm scf_norm = scf / norm_e #psc = sum_mm*scf*scf + sum_ee - 2.*scf * sum_em #psc = psc / (sqrt(sum_ee)) psc = sum_mm*scf_norm*scf_norm + 1 - 2.*scf_norm * sum_em / norm_e if (filename): fhandle=open(filename, 'w') for ii in range(0, len(self.p_r_exp)): tmp = scf*self.p_r_resamp[ii] fhandle.write('%10.5f ' % self.r_exp[ii] + ' %15.6f\n' % tmp) fhandle.close() return (psc, scf) def ini_saxs(self, atmsel, filename='$(LIB)/formfactors-int_tab_solvation.lib', s_min=0.0, s_max=2.0, maxs=100, nmesh=100, natomtyp=15, represtyp='heav', wswitch='uniform', s_hybrid=0.0, s_low=0.0, s_hi=2.0, spaceflag='real', rho_solv=0.334, use_lookup=True, nr=5000, dr=0.1, nr_exp=300, dr_exp=1.0, use_offset=False, use_rolloff=False, use_conv=False, mixflag=False, pr_smooth=False): """Initialize saxsdata @param atmsel: selection of atoms @param s_min: minimum frequency in reciprocal space in A^-1 @param s_max: maximum frequency in reciprocal space in A^-1 @param maxs: maximum number of frequencies @param nmesh: actual number of frequencies (<= maxs) @param natomtyp: number of 'atoms', i.e. scattering centers @param represtyp: representation: 'heav', 'allh', or 'CA' @param filename: filename of the library for formfactors @param wswitch: character for filter of scoring function options: 'unity', 'sq', or 'hybrid' @param s_hybrid: frequency above which $ s^2$ weighting is applied if wswitch='hybrid' @param s_low: bandpass filter in A^-1 - lower cutoff @param s_hi: bandpass filter in A^-1 - higher cutoff @param spaceflag: how should I(s) be computed? 'real' space via P(r) or 'reciprocal'? 'real' is more than a magnitude faster but less accurate for high resolution @param rho_solv: electron density of solvent; default=0.334 e/A^-3 (H_2O) @param use_lookup: use lookup tables for SINC and COS function - significant increase in speed for 'reciprocal' mode @param nr: number of points for P(r) sampling @param dr: spacing (sampling) of P(r) in A @param nr_exp: number of points for P_exp(r) sampling @param dr_exp: spacing (sampling) of P(r) in A @param use_offset: allow for additive constant in expt. spectrum @param use_rolloff: allow for Gaussian rolloff of model spectrum @param use_conv: convolute with nitrogen formfactor to mimic hydr layer @param mixflag: different conformations present? implemented for HtpG project @param pr_smooth: smoothing of P(r)""" (inds, mdl) = atmsel.get_atom_indices() return _modeller.mod_saxs_ini(self.modpt, mdl.modpt, inds, s_min, s_max, maxs, nmesh, natomtyp, represtyp, filename, wswitch, s_hybrid, s_low, s_hi, spaceflag, rho_solv, use_lookup, nr, dr, nr_exp, dr_exp, use_offset, use_rolloff, use_conv, mixflag, pr_smooth) def saxs_read(self, filename): """Read in experimental SAXS data""" return _modeller.mod_saxs_read(self.modpt, filename) def read(self, saxsfilename, atmsel, formfacfilename='$(LIB)/formfactors-int_tab_solvation.lib', natomtyp=15, represtyp='heav', wswitch='uniform', s_hybrid=0.0, s_low=None, s_hi=None, spaceflag='real', rho_solv=0.334, use_lookup=True, nr=5000, dr=0.1, nr_exp=300, dr_exp=1.0, use_offset=False, use_rolloff=False, use_conv=False, mixflag=False, pr_smooth=False): """Read in experimental SAXS data and initialize saxsdata @param saxsfilename: Name of file containing SAXS spectrum @param atmsel: selection of atoms @param s_min: minimum frequency in reciprocal space in A^-1 @param s_max: maximum frequency in reciprocal space in A^-1 @param natomtyp: number of 'atoms', i.e. scattering centers @param represtyp: representation: 'heav', 'allh', or 'CA' @param formfacfilename: filename of the library for formfactors @param wswitch: character for filter of scoring function options: 'unity', 'sq', or 'hybrid' @param s_hybrid: frequency above which $ s^2$ weighting is applied if wswitch='hybrid' @param s_low: bandpass filter in A^-1 - lower cutoff @param s_hi: bandpass filter in A^-1 - higher cutoff @param spaceflag: how should I(s) be computed? 'real' space via P(r) or 'reciprocal'? 'real' is more than a magnitude faster but less accurate for high resolution @param rho_solv: electron density of solvent; default=0.334 e/A^-3 (H_2O) @param use_lookup: use lookup tables for SINC and COS function - significant increase in speed for 'reciprocal' mode @param nr: number of points for P(r) sampling @param dr: spacing (sampling) of P(r) in A @param nr_exp: number of points for P_exp(r) sampling @param dr_exp: spacing (sampling) of P(r) in A @param use_offset: allow for additive constant in expt. spectrum @param use_rolloff: allow for Gaussian rolloff of model spectrum @param use_conv: convolute with nitrogen formfactor to mimic hydr layer @param mixflag: different conformations present? implemented for HtpG project @param pr_smooth: smoothing of P(r)""" try: fh = open(saxsfilename,'r') except: print "file "+saxsfilename+" not found :(" return fh.close() ns = 0 s_min = 10. s_max = 0. for line in open(saxsfilename,'r'): s = line.split() # '#' is comment if (not s[0][0] == '#'): ns = ns +1 if ( float(s[0]) > s_max): s_max = float(s[0]) if ( float(s[0]) < s_min): s_min = float(s[0]) if (not s_low): s_low = s_min - .001 if (not s_hi): s_hi = s_max + .001 print "s_min="+str(s_min)+", s_max="+str(s_max) print "s_low="+str(s_low)+", s_hi="+str(s_hi) self.ini_saxs(atmsel, filename=formfacfilename, s_min=s_min, s_max=s_max, maxs=ns, nmesh=ns, natomtyp=natomtyp, represtyp=represtyp, wswitch=wswitch, s_hybrid=s_hybrid, s_low=s_low, s_hi=s_hi, spaceflag=spaceflag, rho_solv=rho_solv, use_lookup=use_lookup, nr=nr, dr=dr, nr_exp=nr_exp, dr_exp=dr_exp, use_offset=use_offset, use_rolloff=use_rolloff, use_conv=use_conv, mixflag=mixflag, pr_smooth=pr_smooth) self.saxs_read(saxsfilename) def saxs_pr_read(self, filename): """Read in experimental P(r)""" return _modeller.mod_saxs_pr_read(self.modpt, filename) def __get_s_hybrid(self): return _modeller.mod_saxsdata_s_hybrid_get(self.modpt) def __set_s_hybrid(self, val): return _modeller.mod_saxsdata_s_hybrid_set(self.modpt, val) def __get_s_max(self): return _modeller.mod_saxsdata_s_max_get(self.modpt) def __set_s_max(self, val): return _modeller.mod_saxsdata_s_max_set(self.modpt, val) def __get_s_min(self): return _modeller.mod_saxsdata_s_min_get(self.modpt) def __set_s_min(self, val): return _modeller.mod_saxsdata_s_min_set(self.modpt, val) def __get_s_low(self): return _modeller.mod_saxsdata_s_low_get(self.modpt) def __set_s_low(self, val): return _modeller.mod_saxsdata_s_low_set(self.modpt, val) def __get_s_hi(self): return _modeller.mod_saxsdata_s_hi_get(self.modpt) def __set_s_hi(self, val): return _modeller.mod_saxsdata_s_hi_set(self.modpt, val) def __get_normsq_exp(self): return _modeller.mod_saxsdata_normsq_exp_get(self.modpt) def __set_normsq_exp(self, val): return _modeller.mod_saxsdata_normsq_exp_set(self.modpt, val) def __get_ns(self): return _modeller.mod_saxsdata_ns_get(self.modpt) def __get_nr(self): return _modeller.mod_saxsdata_nr_get(self.modpt) def __get_nr_exp(self): return _modeller.mod_saxsdata_nr_exp_get(self.modpt) def __set_nr_exp(self): return _modeller.mod_saxsdata_nr_exp_set(self.modpt, val) def __get_dr(self): return _modeller.mod_saxsdata_dr_get(self.modpt) def __get_dr_exp(self): return _modeller.mod_saxsdata_dr_exp_get(self.modpt) def __set_dr_exp(self): return _modeller.mod_saxsdata_dr_exp_set(self.modpt, val) def __get_c(self): return _modeller.mod_saxsdata_c_get(self.modpt) def __set_c(self, val): return _modeller.mod_saxsdata_c_set(self.modpt, val) def __get_rolloff(self): return _modeller.mod_saxsdata_rolloff_get(self.modpt) def __set_rolloff(self): return _modeller.mod_saxsdata_rolloff(self.modpt, val) def __get_bfac(self): return _modeller.mod_saxsdata_bfac_get(self.modpt) def __set_bfac(self): return _modeller.mod_saxsdata_bfac(self.modpt, val) def __get_chi_sq(self): return _modeller.mod_saxsdata_chi_sq_get(self.modpt) def __set_chi_sq(self, val): return _modeller.mod_saxsdata_chi_sq_set(self.modpt, val) def __get_rho_solv(self): return _modeller.mod_saxsdata_rho_solv_get(self.modpt) def __set_rho_solv(self, val): return _modeller.mod_saxsdata_rho_solv_set(self.modpt, val) def __get_offset(self): return _modeller.mod_saxsdata_offset_get(self.modpt) def __set_offset(self): return _modeller.mod_saxsdata_offset(self.modpt, val) def __get_intensity(self): ptarr = _modeller.mod_saxsdata_intensity_get(self.modpt) return array.Double1DArray(ptarr, self.__get_ns) def __set_intensity(self, val): modlist.set_fixlist(self.intensity, val) def __get_int_exp(self): ptarr = _modeller.mod_saxsdata_int_exp_get(self.modpt) return array.Double1DArray(ptarr, self.__get_ns) def __set_int_exp(self, val): modlist.set_fixlist(self.int_exp, val) def __get_s(self): ptarr = _modeller.mod_saxsdata_s_get(self.modpt) return array.Double1DArray(ptarr, self.__get_ns) def __set_s(self, val): modlist.set_fixlist(self.s, val) def __get_sigma_exp(self): ptarr = _modeller.mod_saxsdata_sigma_exp_get(self.modpt) return array.Double1DArray(ptarr, self.__get_ns) def __set_sigma_exp(self, val): modlist.set_fixlist(self.sigma_exp, val) def __get_p_r(self): ptarr = _modeller.mod_saxsdata_p_r_get(self.modpt) return array.Double1DArray(ptarr, self.__get_nr) def __set_p_r(self): modlist.set_fixlist(self.p_r, val) def __get_p_r_exp(self): ptarr = _modeller.mod_saxsdata_p_r_exp_get(self.modpt) return array.Double1DArray(ptarr, self.__get_nr_exp) def __set_p_r_exp(self): modlist.set_fixlist(self.p_r_exp, val) def __get_r_exp(self): ptarr = _modeller.mod_saxsdata_r_exp_get(self.modpt) return array.Double1DArray(ptarr, self.__get_nr_exp) def __set_r_exp(self): modlist.set_fixlist(self.r_exp, val) def __get_p_r_resamp(self): ptarr = _modeller.mod_saxsdata_p_r_resamp_get(self.modpt) return array.Double1DArray(ptarr, self.__get_nr_exp) def __set_p_r_resamp(self): modlist.set_fixlist(self.p_r_resamp, val) def __get_p_r_sig(self): ptarr = _modeller.mod_saxsdata_p_r_sig_get(self.modpt) return array.Double1DArray(ptarr, self.__get_nr_exp) def __set_p_r_sig(self): modlist.set_fixlist(self.p_r_sig, val) modpt = property(__get_modpt) s_hybrid = property(__get_s_hybrid, __set_s_hybrid) s_max = property(__get_s_max, __set_s_max) s_min = property(__get_s_min, __set_s_min) s_low = property(__get_s_low, __set_s_low) s_hi = property(__get_s_hi, __set_s_hi ) normsq_exp = property(__get_normsq_exp, __set_normsq_exp) c = property(__get_c, __set_c) ns = property(__get_ns) nr = property(__get_nr) nr_exp = property(__get_nr_exp, __set_nr_exp) dr = property(__get_dr) dr_exp = property(__get_dr_exp, __set_dr_exp) intensity = property(__get_intensity, __set_intensity) s = property(__get_s, __set_s) int_exp = property(__get_int_exp, __set_int_exp) sigma_exp = property(__get_sigma_exp, __set_sigma_exp) p_r = property(__get_p_r, __set_p_r) p_r_exp = property(__get_p_r_exp, __set_p_r_exp) r_exp = property(__get_r_exp, __set_r_exp) p_r_resamp = property(__get_p_r_resamp, __set_p_r_resamp) p_r_sig = property(__get_p_r_sig, __set_p_r_sig) p_r_sig = property(__get_p_r_sig, __set_p_r_sig) chi_sq = property(__get_chi_sq, __set_chi_sq) rho_solv = property(__get_rho_solv, __set_rho_solv) rolloff= property(__get_rolloff, __set_rolloff) bfac = property(__get_bfac, __set_bfac) offset = property(__get_offset, __set_offset)
bjornwallner/proq2-server
apps/modeller9v8/modlib/modeller/saxsdata.py
Python
gpl-3.0
17,392
[ "Gaussian" ]
f7aae6f3c28974ed705f1be51d0481101774518836586faa953aae10ece1eb55
"""Gaussian normalization to normalize standalone modality.""" import numpy as np from joblib import Parallel, delayed from scipy.linalg import norm from .mrsi_normalization import MRSINormalization KNOWN_KIND = ('l2', 'l1') class LNormNormalization(MRSINormalization): """Normalization of MRSI data using l-norm. Normalization of the MRSI spectrum. Only the real part will be normalized. Parameters ---------- base_modality : object The base modality on which the normalization will be applied. The base modality should inherate from MRSIModality class. kind : str, optional (default='l2') The type of l-norm to use. Can be either 'l2' or 'l1'. Attributes ---------- base_modality_ : object The base modality on which the normalization will be applied. The base modality should inherate from MRSIModality class. fit_params_ : ndarray, shape (size_x, size_y, size_z) The constant to apply to each spectrum. is_fitted_ : bool Boolean to know if the `fit` function has been already called. """ def __init__(self, base_modality, kind='l2'): super(LNormNormalization, self).__init__(base_modality) self.kind = kind self.is_fitted_ = False def fit(self, modality, ground_truth=None, cat=None): """Method to find the parameters needed to apply the normalization. Parameters ---------- modality : object of type MRSIModality The modality object of interest. ground-truth : object of type GTModality or None The ground-truth of GTModality. If None, the whole data will be considered. cat : str or None String corresponding at the ground-truth of interest. Cannot be None if ground-truth is not None. Returns ------- self : object Return self. """ super(LNormNormalization, self).fit(modality=modality, ground_truth=ground_truth, cat=cat) # Check that the type of l-norm is known if self.kind not in KNOWN_KIND: raise ValueError('The type of l-norm is not known.') # Allocate the parameters array self.fit_params_ = np.zeros((modality.data_.shape[1], modality.data_.shape[2], modality.data_.shape[3])) for y in range(modality.data_.shape[1]): for x in range(modality.data_.shape[2]): for z in range(modality.data_.shape[3]): if self.kind == 'l1': self.fit_params_[y, x, z] = norm(np.real( modality.data_[:, y, x, z]), 1) if self.kind == 'l2': self.fit_params_[y, x, z] = norm(np.real( modality.data_[:, y, x, z]), 2) self.is_fitted_ = True return self def normalize(self, modality): """Method to normalize the given modality using the fitted parameters. Parameters ---------- modality: object of type MRSIModality The modality object from which the data need to be normalized. Returns ------- modality: object of type MRSIModality The modality object in which the data will be normalized. """ super(LNormNormalization, self).normalize(modality) # Check that the parameters have been fitted if not self.is_fitted_: raise ValueError('Fit the parameters previous to normalize' ' the data.') for y in range(modality.data_.shape[1]): for x in range(modality.data_.shape[2]): for z in range(modality.data_.shape[3]): modality.data_[:, y, x, z] = (( np.real(modality.data_[:, y, x, z]) / self.fit_params_[y, x, z]) + ( 1j * np.imag(modality.data_[:, y, x, z]))) return modality def denormalize(self, modality): """Denormalize the given modality using the fitted parameters. Parameters ---------- modality: object of type StandaloneModality The modality object from which the data need to be normalized. Returns ------- modality: object of type StandaloneModality The modality object in which the data will be normalized. """ super(LNormNormalization, self).denormalize(modality) # Check that the parameters have been fitted if not self.is_fitted_: raise ValueError('Fit the parameters previous to normalize' ' the data.') for y in range(modality.data_.shape[1]): for x in range(modality.data_.shape[2]): for z in range(modality.data_.shape[3]): modality.data_[:, y, x, z] = (( np.real(modality.data_[:, y, x, z]) * self.fit_params_[y, x, z]) + ( 1j * np.imag(modality.data_[:, y, x, z]))) return modality
glemaitre/protoclass
protoclass/preprocessing/l_norm_normalization.py
Python
gpl-2.0
5,323
[ "Gaussian" ]
a28b254d72b3e8443616cf65d782fbb7708bc6c9c3b5da9217eb3f708cd5cd8a
import numpy as np from matplotlib import pyplot import rft1d eps = np.finfo(float).eps def here_anova1(Y, X, X0, Xi, X0i, df): Y = np.matrix(Y) ### estimate parameters: b = Xi*Y eij = Y - X*b R = eij.T*eij ### reduced design: b0 = X0i*Y eij0 = Y - X0*b0 R0 = eij0.T*eij0 ### compute F statistic: F = ((np.diag(R0)-np.diag(R))/df[0]) / (np.diag(R+eps)/df[1]) return F def here_design_matrices(nResponses, nGroups): nTotal = sum(nResponses) X = np.zeros((nTotal,nGroups)) i0 = 0 for i,n in enumerate(nResponses): X[i0:i0+n,i] = 1 i0 += n X = np.matrix(X) X0 = np.matrix(np.ones(nTotal)).T #reduced design matrix Xi,X0i = np.linalg.pinv(X), np.linalg.pinv(X0) #pseudo-inverses return X,X0,Xi,X0i #(0) Set parameters: np.random.seed(0) nResponses = 9,8,9 nTestStatFields = 3 nNodes = 101 nIterations = 2000 FWHM = 8.0 ### derived parameters: nGroups = len(nResponses) nTotal = sum(nResponses) df = nGroups-1, nTotal-nGroups X,X0,Xi,X0i = here_design_matrices(nResponses, nGroups) ### initialize RFT calculator: rftcalc = rft1d.prob.RFTCalculator(STAT='F', df=df, nodes=nNodes, FWHM=FWHM, n=nTestStatFields) #(1) Generate Gaussian 1D fields, compute test stat: Fmax = [] generator = rft1d.random.Generator1D(nTotal, nNodes, FWHM) for i in range(nIterations): F = [] for i in range(nTestStatFields): y = generator.generate_sample() f = here_anova1(y, X, X0, Xi, X0i, df) F.append( f ) Fconj = np.min(F, axis=0) #minimum across the test stat fields Fmax.append( Fconj.max() ) Fmax = np.array(Fmax) #(2) Survival functions: heights = np.linspace(2, 5, 21) sf = np.array( [ (Fmax>h).mean() for h in heights] ) sfE = rftcalc.sf(heights) #theoretical #(3) Plot results: pyplot.close('all') ax = pyplot.axes() ax.plot(heights, sf, 'o', label='Simulated') ax.plot(heights, sfE, '-', label='Theoretical') ax.set_xlabel('$u$', size=20) ax.set_ylabel('$P(F_\mathrm{conj} > u)$', size=20) ax.legend() ax.set_title('Conjunction validation (F fields)', size=20) pyplot.show()
0todd0000/rft1d
rft1d/examples/val_conj_2_F.py
Python
gpl-3.0
2,258
[ "Gaussian" ]
b84a17b6d0a804166d0b1924fc5f35aa387e752327ab0177a69ec3a656df6950
"""Tests for dials.report.analysis module""" from __future__ import annotations from unittest import mock import pytest from cctbx import miller from dxtbx.model import Crystal from dxtbx.serialize import load from dials.algorithms.scaling.scaling_library import ( merging_stats_from_scaled_array, scaled_data_as_miller_array, ) from dials.array_family import flex from dials.report.analysis import ( batch_dependent_properties, combined_table_to_batch_dependent_properties, i_sig_i_vs_batch, reflection_tables_to_batch_dependent_properties, rmerge_vs_batch, scales_vs_batch, table_1_summary, ) @pytest.fixture def example_crystal(): exp_dict = { "__id__": "crystal", "real_space_a": [1.0, 0.0, 0.0], "real_space_b": [0.0, 1.0, 0.0], "real_space_c": [0.0, 0.0, 1.0], "space_group_hall_symbol": "-P 2yb", } crystal = Crystal.from_dict(exp_dict) return crystal @pytest.fixture def example_miller_set(example_crystal): """Generate an example miller set.""" ms = miller.set( crystal_symmetry=example_crystal.get_crystal_symmetry(), indices=flex.miller_index([(1, 1, 1)] * 8 + [(2, 2, 2)]), anomalous_flag=False, ) return ms @pytest.fixture def batch_array(example_miller_set): """Generate an example batch array.""" batches_ = flex.double([1, 1, 1, 2, 2, 2, 3, 3, 4]) batches = miller.array(example_miller_set, data=batches_) return batches @pytest.fixture def data_array(example_miller_set): """Generate an example data array.""" data_ = flex.double([1.0 + (i * 0.1) for i in range(0, 9)]) data = miller.array(example_miller_set, data=data_) return data expected_results = { "bins": [1, 2, 3, 4], "svb": [1.1, 1.4, 1.65, 1.8], "isigivb": [1.1 / 2.0, 1.4 / 2.0, 1.65 / 2.0, 1.8 / 2.0], "rmergevb": [0.22727, 0.059524, 0.18182, 0.0], } def test_scales_vs_batch(batch_array, data_array): """Test the scales_vs_batch function.""" bins, svb = scales_vs_batch(data_array, batch_array) assert bins == expected_results["bins"] assert svb == pytest.approx(expected_results["svb"], 1e-6) def test_IsigI_vs_batch(batch_array, data_array): """Test the IsigI_vs_batch function.""" with pytest.raises(AssertionError): bins, isigivb = i_sig_i_vs_batch(data_array, batch_array) Is = data_array.customized_copy() Is.set_sigmas(flex.double(9, 2.0)) bins, isigivb = i_sig_i_vs_batch(Is, batch_array) assert bins == expected_results["bins"] assert isigivb == pytest.approx(expected_results["isigivb"], 1e-6) def test_Rmerge_vs_batch(batch_array, data_array): """Test the Rmerge_vs_batch function.""" bins, rmergevsb = rmerge_vs_batch(data_array, batch_array) assert bins == expected_results["bins"] assert rmergevsb == pytest.approx(expected_results["rmergevb"], 1e-4) def test_reflections_to_batch_properties( data_array, example_miller_set, example_crystal ): """Test the helper functions that provide the batch properties from reflection tables and experiments.""" # first make a reflection table. reflections = flex.reflection_table() reflections["intensity.scale.value"] = data_array.data() * flex.double(9, 2.0) reflections["inverse_scale_factor"] = flex.double(9, 2.0) reflections["intensity.scale.variance"] = flex.double(9, 4.0) * flex.double(9, 4.0) reflections["xyzobs.px.value"] = flex.vec3_double( [(0, 0, 0.1)] * 3 + [(0, 0, 1.1)] * 3 + [(0, 0, 2.1)] * 2 + [(0, 0, 3.1)] ) reflections["miller_index"] = example_miller_set.indices() reflections["id"] = flex.int(9, 1) reflections.set_flags(flex.bool(9, True), reflections.flags.integrated) reflections.set_flags(flex.bool(9, True), reflections.flags.scaled) experiments = [mock.Mock()] experiments[0].scan.get_image_range.return_value = [1, 10] experiments[0].crystal = example_crystal experiments[0].beam.get_wavelength.return_value = 1 ( bins, rmerge, isigi, scalesvsbatch, batch_data, ) = reflection_tables_to_batch_dependent_properties( # pylint: disable=unbalanced-tuple-unpacking [reflections], experiments ) assert bins == expected_results["bins"] assert rmerge == pytest.approx(expected_results["rmergevb"], 1e-4) assert isigi == pytest.approx(expected_results["isigivb"], 1e-4) assert scalesvsbatch == pytest.approx([2.0] * 4, 1e-4) assert batch_data == [{"range": (1, 10), "id": 0}] # now try a two experiment dataset in a combined table. import copy reflections_2 = copy.deepcopy(reflections) reflections_2["id"] = flex.int(9, 2) reflections.extend(reflections_2) experiments = [mock.Mock(), mock.Mock()] experiments[0].scan.get_image_range.return_value = [1, 10] experiments[0].crystal = example_crystal experiments[0].beam.get_wavelength.return_value = 1 experiments[1].scan.get_image_range.return_value = [1, 10] experiments[1].crystal = example_crystal experiments[1].beam.get_wavelength.return_value = 1 ( bins, rmerge, isigi, scalesvsbatch, batch_data, ) = combined_table_to_batch_dependent_properties( # pylint: disable=unbalanced-tuple-unpacking reflections, experiments ) assert bins == [1, 2, 3, 4, 101, 102, 103, 104] assert rmerge == pytest.approx(expected_results["rmergevb"] * 2, 1e-4) assert isigi == pytest.approx(expected_results["isigivb"] * 2, 1e-4) assert scalesvsbatch == pytest.approx([2.0] * 8, 1e-4) assert batch_data == [{"range": (1, 10), "id": 0}, {"range": (101, 110), "id": 1}] def test_batch_dependent_properties(batch_array, data_array): """Test the interface function that manages the calculations.""" Is = data_array.customized_copy() Is.set_sigmas(flex.double(9, 2.0)) bins, rmerge, isigi, scalesvsbatch = batch_dependent_properties( batch_array, Is, scales=data_array ) assert bins == expected_results["bins"] assert rmerge == pytest.approx(expected_results["rmergevb"], 1e-4) assert isigi == pytest.approx(expected_results["isigivb"], 1e-4) assert scalesvsbatch == pytest.approx(expected_results["svb"], 1e-4) # test for no scales given bins, rmerge, isigi, scalesvsbatch = batch_dependent_properties(batch_array, Is) assert bins == expected_results["bins"] assert rmerge == pytest.approx(expected_results["rmergevb"], 1e-4) assert isigi == pytest.approx(expected_results["isigivb"], 1e-4) assert scalesvsbatch is None # test for bad input - batches should reduce for all data Is.set_sigmas(flex.double([2.0] * 8 + [-1.0] * 1)) bins, rmerge, isigi, scalesvsbatch = batch_dependent_properties( batch_array, Is, scales=data_array ) assert bins == expected_results["bins"][0:3] assert rmerge == pytest.approx(expected_results["rmergevb"][0:3], 1e-4) assert isigi == pytest.approx(expected_results["isigivb"][0:3], 1e-4) assert scalesvsbatch == pytest.approx(expected_results["svb"][0:3], 1e-4) bins, rmerge, isigi, scalesvsbatch = batch_dependent_properties(batch_array, Is) assert bins == expected_results["bins"][0:3] assert rmerge == pytest.approx(expected_results["rmergevb"][0:3], 1e-4) assert isigi == pytest.approx(expected_results["isigivb"][0:3], 1e-4) assert scalesvsbatch is None # test for mismatched array sizes with pytest.raises(AssertionError): _ = batch_dependent_properties(batch_array, Is, data_array[0:-1]) with pytest.raises(AssertionError): _ = batch_dependent_properties(batch_array[0:-1], Is) def test_table_1_summary(dials_data): location = dials_data("l_cysteine_4_sweeps_scaled") expts = load.experiment_list(location.join("scaled_20_25.expt"), check_format=False) refls = flex.reflection_table.from_file(location.join("scaled_20_25.refl")) # Get a miller array of real data and calculate an iotbx.merging_statistics ma = scaled_data_as_miller_array([refls], expts) arr, anom = merging_stats_from_scaled_array(ma) # Test that something is returned in each case ### Case of overall statistics summary out = table_1_summary(arr, anom) assert out assert all(a in out for a in ("Overall", "Low", "High")) assert "Suggested" not in out ### Case of overall and suggested statistics summary (with anom) out = table_1_summary(arr, anom, arr, anom) assert out assert all(a in out for a in ("Overall", "Suggested", "Low", "High")) ### Case of no anomalous, but with suggested as well as overall. out = table_1_summary(arr, selected_statistics=arr) assert out assert all(a in out for a in ("Overall", "Suggested", "Low", "High"))
dials/dials
tests/report/test_analysis.py
Python
bsd-3-clause
8,850
[ "CRYSTAL" ]
dbae99c6dc89739aeee56ccb6bd61cf3ce5accc779bdf466e747d6974b9ccb9b
#!/usr/bin/python import os import sys import argparse from argparse import RawTextHelpFormatter import subprocess import fileinput CWD = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) ESPRESSO_TEMAPLTE_ZIP = 'EspressoProjectTestTemplate.zip' PROJECT_NAME_TEMPLATE_TEXT = 'PROJECT_NAME_TEMPLATE' PKG_NAME_TEMPLATE_TEXT = 'PACKAGE_NAME_TEMPLATE' DEFAULT_ACTIVITY_TEXT = 'DEFAULT_ACTIVITY' class Espresso: @staticmethod def show_espresso_first_usage_help(test_project_path, project_name, steps_definition_path): print('\n\n'\ 'Espresso & Cucumber basic documentation\n'\ '---------------------------------------\n'\ '\n'\ '> Cucumber\n'\ 'Start writing test scenarios and feature tests using Given-When-Tehn language in feature file:\n'\ '{0}\n'\ '\n'\ '> Espresso\n'\ 'Implement Test Steps Definitions in file:\n'\ '{1}\n'\ '\n'\ 'For Espresso library examples and documentation visit: https://code.google.com/p/android-test-kit/wiki/EspressoSamples\n'.format( os.path.join(test_project_path, 'src', 'assets', 'features', project_name + '.feature'), os.path.join(test_project_path, steps_definition_path, project_name + 'TestSteps.java'))) @staticmethod def replace_in_file(original_text, new_text, file_to_replace): if not os.path.exists(file_to_replace): sys.exit("Error: Destination file to replace in new test project does not exist: {0}".format(file_to_replace)) for line in fileinput.input(file_to_replace, inplace=True): print(line.replace(original_text, new_text)), @staticmethod def move_source_code_to_package_path(package, path): original_path = os.path.join(path, 'src', 'java', 'test') relative_dest_path = os.path.join('src', 'java', *package.split('.')) destination_path = os.path.join(path, relative_dest_path, 'test') os.makedirs(destination_path) os.rename(original_path, destination_path) return os.path.join(relative_dest_path, 'test') @staticmethod def check_test_project_dependencies(test_project_path): # Check dependencies in project.properties project_properties_file = os.path.join(test_project_path, 'project.properties') properties = Espresso.read_properties(project_properties_file) for key in properties: if ('dir' in key or 'library.reference' in key): dep_path = os.path.join(test_project_path, properties[key]) if not os.path.exists(dep_path): print "\nWarning!\n Dependency path for compilation does not exist: {0}\ \n Fix dependencies path in file {1}".format(dep_path, project_properties_file) @staticmethod def read_properties(file_to_read): properties = {} for line in open(file_to_read): #H = dict(line.strip().split('=') if (len(line.strip()) == 0) or (line.strip()[0] == '#'): continue properties[line.strip().split('=')[0]] = line.strip().split('=')[1] return properties @staticmethod def generate_test(package, project_name, destination_path, activity_name): if not os.path.isdir(destination_path): sys.exit("Error: Destination path to place the new test project does not exist" + ", first create it: {0}".format(destination_path)) espresso_template_zip = os.path.abspath(os.path.join(CWD, ESPRESSO_TEMAPLTE_ZIP)) if not os.path.exists(espresso_template_zip): sys.exit("Error: Espresso template zip file does not exist, please check: {0}".format(espresso_template_zip)) template_path = os.path.join(destination_path, 'PROJECT_NAME_TEMPLATETest') test_project_path = os.path.join(destination_path, project_name + 'EspressoTest') if os.path.isdir(template_path): sys.exit("Error: Temporal destination path already exists, delete or rename it first: {0}".format(template_path)) if os.path.isdir(test_project_path): sys.exit("Error: Destination path already exists, delete or rename it first: {0}".format(test_project_path)) print "Extracting template test project..." cmd = ['unzip', espresso_template_zip, '-d', destination_path] p = subprocess.Popen(cmd) output = p.communicate() if p.returncode != 0: sys.exit("Error unzipping Espresso template zip: \n" + '$ '+ ' '.join(cmd) + "\n" + "Exiting.") if not os.path.isdir(destination_path): sys.exit("Error unzipping Espresso template zip ({0}) to {1}".format(espresso_template_zip, template_path)) print "\nConfiguring test template project..." # Fill classes and variable names with target package and project names Espresso.replace_in_file(PROJECT_NAME_TEMPLATE_TEXT, project_name, os.path.join(template_path, 'build.xml')) Espresso.replace_in_file(PROJECT_NAME_TEMPLATE_TEXT, project_name, os.path.join(template_path, '.project')) Espresso.replace_in_file(PKG_NAME_TEMPLATE_TEXT, package, os.path.join(template_path, 'AndroidManifest.xml')) Espresso.replace_in_file(PROJECT_NAME_TEMPLATE_TEXT, project_name, os.path.join(template_path, 'project.properties')) Espresso.replace_in_file(PROJECT_NAME_TEMPLATE_TEXT, project_name, os.path.join(template_path, '.classpath')) Espresso.replace_in_file(PKG_NAME_TEMPLATE_TEXT, package, os.path.join(template_path, 'src', 'java', 'test', 'RunCucumberTest.java')) Espresso.replace_in_file(PKG_NAME_TEMPLATE_TEXT, package, os.path.join(template_path, 'src', 'java', 'test', 'PROJECT_NAME_TEMPLATETestSteps.java')) Espresso.replace_in_file(PROJECT_NAME_TEMPLATE_TEXT, project_name, os.path.join(template_path, 'src', 'java', 'test', 'PROJECT_NAME_TEMPLATETestSteps.java')) if activity_name: Espresso.replace_in_file(DEFAULT_ACTIVITY_TEXT, activity_name, os.path.join(template_path, 'src', 'java', 'test', 'PROJECT_NAME_TEMPLATETestSteps.java')) Espresso.replace_in_file(PROJECT_NAME_TEMPLATE_TEXT, project_name, os.path.join(template_path, 'src', 'assets', 'features', PROJECT_NAME_TEMPLATE_TEXT + '.feature')) # Rename files and folders to align with target package and project names ("path/to/current/file.foo", "path/to/new/desination/for/file.foo") os.rename(os.path.join(template_path, 'src', 'java', 'test', 'PROJECT_NAME_TEMPLATETestSteps.java'), os.path.join(template_path, 'src', 'java', 'test', project_name + 'TestSteps.java')) os.rename(os.path.join(template_path, 'src', 'assets', 'features', 'PROJECT_NAME_TEMPLATE.feature'), os.path.join(template_path, 'src', 'assets', 'features', project_name + '.feature')) # Generate package tree from 'package' under src/java/ and move test package folder steps_definition_path = Espresso.move_source_code_to_package_path(package, template_path) os.rename(template_path, test_project_path) # Check relative paths to app and libraries Espresso.check_test_project_dependencies(test_project_path) print "Test project template configured" Espresso.show_espresso_first_usage_help(test_project_path, project_name, steps_definition_path) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Create test project with Cucumber and Espresso from template\ \nFor Espresso library examples and documentation visit: https://code.google.com/p/android-test-kit/wiki/EspressoSamples', formatter_class=RawTextHelpFormatter) parser.add_argument('action', help='The action to perform (e.g. \'generate\' or just \'g\')') parser.add_argument('element', help='The element to perform the action (e.g. \'test\' or just \'t\')') parser.add_argument('package', help='The package of the target application to test (e.g. com.tomtom.pnd.firstrunwizard)') parser.add_argument('-d', '--destination-path', dest='destination_path', default=os.path.abspath(os.path.dirname('.')), help='Path inside which the test project will be created and placed (e.g. .../MyAppProject/test)') parser.add_argument('-p', '--project-name', dest='project_name', help='Name of the project to test (last part of package name is used by default)') parser.add_argument('-a', '--default-activity', dest='activity', help='Name of the main activity to test (test will instrument this activity as starting point, e.g. HomeActivity)') # Parse the arguments options = parser.parse_args() if not ((options.action == 'generate') or (options.action == 'g')): sys.exit("Error: Unrecognized or missing action (e.g. generate)") if not ((options.element == 'test') or (options.element == 't')): sys.exit("Error: Unrecognized or missing element (e.g. test)") if not (options.package): sys.exit("Error: Missing input package to test") if not options.project_name: options.project_name = options.package.split('.')[-1] if (len(options.project_name) > 1): options.project_name = options.project_name[0].upper() + options.project_name[1:] options.destination_path = os.path.abspath(options.destination_path) Espresso.generate_test(options.package, options.project_name, options.destination_path, options.activity)
neoranga55/espresso-cucumber
espresso-test-lib/espresso.py
Python
apache-2.0
9,644
[ "ESPResSo", "VisIt" ]
aadd0e7e334b2989409ed016b3c0b71123d181f1e8913d3d34149013d35eb8dc
# Copyright (C) 2016-2018 The ESPResSo project # Copyright (C) 2014 Olaf Lenz # # This file is part of ESPResSo. # # ESPResSo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # This script generates gen_pxiconfig.cpp, which in turn generates myconfig.pxi. # import inspect import sys import os # find featuredefs.py moduledir = os.path.dirname(inspect.getfile(inspect.currentframe())) sys.path.append(os.path.join(moduledir, '..', '..', 'config')) import featuredefs if len(sys.argv) != 3: print("Usage: {} DEFFILE CPPFILE".format(sys.argv[0]), file=sys.stderr) exit(2) deffilename, cfilename = sys.argv[1:3] print("Reading definitions from " + deffilename + "...") defs = featuredefs.defs(deffilename) print("Done.") # generate cpp-file print("Writing " + cfilename + "...") cfile = open(cfilename, 'w') cfile.write(""" #include "config.hpp" #include <iostream> using namespace std; int main() { cout << "# This file was autogenerated." << endl << "# Do not modify it or your changes will be overwritten!" << endl; """) template = """ #ifdef {0} cout << "DEF {0} = 1" << endl; #else cout << "DEF {0} = 0" << endl; #endif """ for feature in defs.allfeatures: cfile.write(template.format(feature)) cfile.write(""" } """) cfile.close() print("Done.")
mkuron/espresso
src/python/espressomd/gen_pxiconfig.py
Python
gpl-3.0
1,845
[ "ESPResSo" ]
12ffb1c7a776a768accfbf7b19684225db3f24298fd050908e353f8242f1effe
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RBiocneighbors(RPackage): """Nearest Neighbor Detection for Bioconductor Packages. Implements exact and approximate methods for nearest neighbor detection, in a framework that allows them to be easily switched within Bioconductor packages or workflows. Exact searches can be performed using the k-means for k-nearest neighbors algorithm or with vantage point trees. Approximate searches can be performed using the Annoy or HNSW libraries. Searching on either Euclidean or Manhattan distances is supported. Parallelization is achieved for all methods by using BiocParallel. Functions are also provided to search for all neighbors within a given distance.""" homepage = "https://bioconductor.org/packages/BiocNeighbors" git = "https://git.bioconductor.org/packages/BiocNeighbors.git" version('1.2.0', commit='f754c6300f835142536a4594ddf750481e0fe273') version('1.0.0', commit='e252fc04b6d22097f2c5f74406e77d85e7060770') depends_on('[email protected]:', when='@1.0.0', type=('build', 'run')) depends_on('r-biocparallel', type=('build', 'run')) depends_on('r-rcpp', type=('build', 'run')) depends_on('r-s4vectors', type=('build', 'run')) depends_on('r-rcppannoy', type=('build', 'run')) depends_on('r-biocgenerics', when='@1.2.0:', type=('build', 'run')) depends_on('r-rcpphnsw', when='@1.2.0:', type=('build', 'run'))
rspavel/spack
var/spack/repos/builtin/packages/r-biocneighbors/package.py
Python
lgpl-2.1
1,650
[ "Bioconductor" ]
336cb261278ec65b2bda5c3700e26e9dce74539dd38f87cb6487dcb61ce48ba8
"""Helper functions for formating and rendering units.""" from typing import Optional, Union import libsbml import numpy as np import pint from sbmlutils.console import console ureg = pint.UnitRegistry() ureg.define("item = dimensionless") ureg.define("avogadro = 6.02214179E23 dimensionless") Q_ = ureg.Quantity short_names = { "metre": "m", "meter": "m", "liter": "l", "litre": "l", "dimensionless": "-", "second": "s", } def udef_to_string( udef: Optional[Union[libsbml.UnitDefinition, str]], model: Optional[libsbml.Model] = None, format: str = "latex", ) -> Optional[str]: """Render formatted string for units. Format can be either 'str' or 'latex' Units have the general format (multiplier * 10^scale *ukind)^exponent (m * 10^s *k)^e Returns None if udef is None or no units in UnitDefinition. :param udef: unit definition which is to be converted to string """ if udef is None: return None ud: libsbml.UnitDefinition if isinstance(udef, str): # check for internal unit if libsbml.UnitKind_forName(udef) != libsbml.UNIT_KIND_INVALID: return short_names.get(udef, udef) else: ud = model.getUnitDefinition(udef) # type: ignore else: ud = udef # collect nominators and denominators nom: str = "" denom: str = "" if ud: for u in ud.getListOfUnits(): m = u.getMultiplier() s: int = u.getScale() e = u.getExponent() k = libsbml.UnitKind_toString(u.getKind()) # (m * 10^s *k)^e # parse with pint term = Q_(float(m) * 10**s, k) ** float(abs(e)) try: term = term.to_compact() except KeyError: pass if np.isclose(term.magnitude, 1.0): term = Q_(1, term.units) us = f"{term:~}" # short formating # handle min and hr us = us.replace("60.0 s", "1 min") us = us.replace("3600.0 s", "1 hr") us = us.replace("3.6 ks", "1 hr") us = us.replace("86.4 ks", "1 day") us = us.replace("10.0 mm", "1 cm") # remove 1.0 prefixes us = us.replace("1 ", "") # exponent us = us.replace(" ** ", "^") if e >= 0.0: nom = us if nom == "" else f"{nom}*{us}" else: denom = us if denom == "" else f"{denom}*{us}" else: nom = "-" if format == "str": denom = denom.replace("*", "/") if nom and denom: ustr = f"{nom}/{denom}" elif nom and not denom: ustr = nom elif not nom and denom: ustr = f"1/{denom}" elif not nom and not denom: ustr = "-" elif format == "latex": nom = nom.replace("*", " \\cdot ") denom = denom.replace("*", " \\cdot ") if nom and denom: ustr = f"\\frac{{{nom}}}{{{denom}}}" elif nom and not denom: ustr = nom elif not nom and denom: ustr = f"\\frac{{1}}{{{denom}}}" elif not nom and not denom: ustr = "-" else: raise ValueError if ustr == "1": ustr = "-" # json escape return ustr if __name__ == "__main__": import libsbml from sbmlutils.factory import * doc: libsbml.SBMLDocument = libsbml.SBMLDocument() model: libsbml.Model = doc.createModel() for (key, definition, _, _) in [ # ("mmole_per_min", "mmole/min", "str", "mmol/min"), # ("m3", "meter^3", "str", "m^3"), # ("m3", "meter^3/second", "str", "m^3/s"), # ("mM", "mmole/liter", "str", "mmol/l"), # ("ml_per_s_kg", "ml/s/kg", "str", "ml/s/kg"), # ("dimensionless", "dimensionless", "str", "dimensionless"), ("item", "item", "str", "item"), # ("mM", "mmole/min", "latex", "\\frac{mmol}/{min}"), ]: ud = UnitDefinition(key, definition=definition) # ud = UnitDefinition("item") udef: libsbml.UnitDefinition = ud.create_sbml(model=model) console.rule() console.print(udef) console.print(udef_to_string(udef, format="str")) console.print(udef_to_string(udef, format="latex"))
matthiaskoenig/sbmlutils
src/sbmlutils/report/units.py
Python
lgpl-3.0
4,366
[ "Avogadro" ]
7fc8654312fd756a6dae31ce90122ac86a48c9e9832fc4b9cc450678f24f7b5c
#! /usr/bin/env python #coding=utf-8 """ DESCRIPTION """ import glob, sys, csv from tabulate import tabulate from Bio.Blast.Applications import NcbiblastnCommandline """--- FUNCTIONS ---""" def carga_csv(file_name): """ creates a list of lists with a csv file """ tabla = list() archivo = open(file_name+'.csv',"rU") csvreader = csv.reader(archivo, dialect=csv.excel_tab, delimiter = ',') for row in csvreader: tabla.append(row) return tabla def crea_comparacion(tabla_ref, estructura = 'star', comparacion = 'uni'): """ creates comparisons lists (code) depending on arguments """ lista = [] tabla = list(tabla_ref) if estructura == 'star': nodo = tabla.pop(0) print nodo for organismo in tabla: lista.append([nodo[1],organismo[1]]) if comparacion == 'bi': lista.append([organismo[1], nodo[1]]) else: comps = estructura.split(',') for comp in comps: pareja = comp.split('-') query = tabla[int(pareja[0])][1] db = tabla[int(pareja[1])][1] lista.append([query, db]) if comparacion == 'bi': lista.append([db, query]) return lista def imprime_comparacion(listas): """ prints the comparison as a readable format""" print 'COMPARISONS\n-----------\n' for lista in listas: print lista[0] + ' --> ' + lista[1] print '\n' def imprime_referencia(claves): """ prints the comparison as a readable format""" print 'REFERENCE\n---------' n = 0 for key, val in claves.items(): print n, '. ', key, '\t', val n=n+1 print '\n' def crea_diccionario(tabla): """ creates a dictionary of code:organism""" diccionario={} for row in tabla: diccionario[row[1]]=row[0] return diccionario """--- PROGRAM BODY ---""" print '----------------\nBLAST EVALUATION\n----------------' blast_eval = 1e-05 comparison_list = [] # charge csv file nombre_csv = raw_input('Please enter the CSV file name: ') organismos = carga_csv(nombre_csv) referencia = crea_diccionario(organismos) comparison_list = crea_comparacion(organismos) # present csv data print '\nCSV data\n--------' print tabulate(organismos, headers=["Organism","Code", "Genome File", "Database folder"]) + '\n' # present options: blast parameters, comparison parameters, run while 1: imprime_referencia(referencia) imprime_comparacion(comparison_list) print 'CHOOSE AN OPTION\n----------------\n1) Comparisons\n2) Run\n3) Quit' user_in = raw_input('Option: ') if user_in == '1': imprime_referencia(referencia) print ('Please enter the comparisons using the organism index.\n' + 'Format: "-" between indices; "," between comparisons; no spaces.\n') nueva_comparacion = raw_input('Comparisons: ') print 'Choose "bi" for bidirectional or "uni" for unidirectional; no quotation marks.' tipo_comparacion = raw_input('Direction: ') comparison_list = crea_comparacion(organismos, nueva_comparacion, tipo_comparacion) elif user_in == '2': blast_eval = raw_input('\nPlease write the desired E value for BLAST runs; 1e-5 suggested.\nE_value: ') print '\nBLAST+ commands to be runned...\n' break elif user_in == '3': quit() else: print ('Incorrect option, try again.\n') # create commands for comparisons comandos = [] for pair in comparison_list: nombre = referencia[pair[0]].split() comandos.append([(nombre[0]+'_'+nombre[1]+'.fasta'), ('db_'+pair[1]+'/db_'+pair[1]), (pair[0]+'_'+pair[1]+'.xml')]) print tabulate(comandos, headers=["Genome file","Database", "Product file"]) + '\n' raw_input('Press ENTER to continue') # run commands, inform data created # qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore for comando in comandos: blastn_cline = NcbiblastnCommandline(query=comando[0], db=comando[1], evalue=blast_eval ,outfmt=5, out=comando[2]) print 'File ' + comando[2] + ' is currently in progess...' stdout, stderr = blastn_cline() print 'WORK COMPLETED\n--------------'
fernan9/LANGEBIO-Internship
BLAST_tricho_run.py
Python
gpl-2.0
4,183
[ "BLAST" ]
ce21af6f5587d29898369174fc8c457771be50acd35dbead0da4afdef121e508
# -*- coding: iso-8859-1 -*- ############################################################ #Example 1: Simple basin hopping ############################################################ import numpy as np import pygmin.potentials.lj as lj import pygmin.basinhopping as bh from pygmin.takestep import displace natoms = 12 # random initial coordinates coords=np.random.random(3*natoms) potential = lj.LJ() step = displace.RandomDisplacement(stepsize=0.5) opt = bh.BasinHopping(coords, potential, takeStep=step) opt.run(100) # some visualization try: import pygmin.utils.pymolwrapper as pym pym.start() pym.draw_spheres(opt.coords, "A", 1) except: print "Could not draw using pymol, skipping this step"
js850/PyGMIN
examples/basinhopping_no_system_class/1_basic.py
Python
gpl-3.0
721
[ "PyMOL" ]
bb86eaad84c4a7582c7ba95a4ec7b7c8d5cf2cc867312a9b87cc46dbc1845cec
""" Tests for discussion pages """ import datetime from pytz import UTC from uuid import uuid4 from nose.plugins.attrib import attr from .helpers import BaseDiscussionTestCase from ..helpers import UniqueCourseTest from ...pages.lms.auto_auth import AutoAuthPage from ...pages.lms.courseware import CoursewarePage from ...pages.lms.discussion import ( DiscussionTabSingleThreadPage, InlineDiscussionPage, InlineDiscussionThreadPage, DiscussionUserProfilePage, DiscussionTabHomePage, DiscussionSortPreferencePage, ) from ...fixtures.course import CourseFixture, XBlockFixtureDesc from ...fixtures.discussion import ( SingleThreadViewFixture, UserProfileViewFixture, SearchResultFixture, Thread, Response, Comment, SearchResult, ) from .helpers import BaseDiscussionMixin class DiscussionResponsePaginationTestMixin(BaseDiscussionMixin): """ A mixin containing tests for response pagination for use by both inline discussion and the discussion tab """ def assert_response_display_correct(self, response_total, displayed_responses): """ Assert that various aspects of the display of responses are all correct: * Text indicating total number of responses * Presence of "Add a response" button * Number of responses actually displayed * Presence and text of indicator of how many responses are shown * Presence and text of button to load more responses """ self.assertEqual( self.thread_page.get_response_total_text(), str(response_total) + " responses" ) self.assertEqual(self.thread_page.has_add_response_button(), response_total != 0) self.assertEqual(self.thread_page.get_num_displayed_responses(), displayed_responses) self.assertEqual( self.thread_page.get_shown_responses_text(), ( None if response_total == 0 else "Showing all responses" if response_total == displayed_responses else "Showing first {} responses".format(displayed_responses) ) ) self.assertEqual( self.thread_page.get_load_responses_button_text(), ( None if response_total == displayed_responses else "Load all responses" if response_total - displayed_responses < 100 else "Load next 100 responses" ) ) def test_pagination_no_responses(self): self.setup_thread(0) self.assert_response_display_correct(0, 0) def test_pagination_few_responses(self): self.setup_thread(5) self.assert_response_display_correct(5, 5) def test_pagination_two_response_pages(self): self.setup_thread(50) self.assert_response_display_correct(50, 25) self.thread_page.load_more_responses() self.assert_response_display_correct(50, 50) def test_pagination_exactly_two_response_pages(self): self.setup_thread(125) self.assert_response_display_correct(125, 25) self.thread_page.load_more_responses() self.assert_response_display_correct(125, 125) def test_pagination_three_response_pages(self): self.setup_thread(150) self.assert_response_display_correct(150, 25) self.thread_page.load_more_responses() self.assert_response_display_correct(150, 125) self.thread_page.load_more_responses() self.assert_response_display_correct(150, 150) def test_add_response_button(self): self.setup_thread(5) self.assertTrue(self.thread_page.has_add_response_button()) self.thread_page.click_add_response_button() def test_add_response_button_closed_thread(self): self.setup_thread(5, closed=True) self.assertFalse(self.thread_page.has_add_response_button()) @attr('shard_1') class DiscussionHomePageTest(UniqueCourseTest): """ Tests for the discussion home page. """ SEARCHED_USERNAME = "gizmo" def setUp(self): super(DiscussionHomePageTest, self).setUp() CourseFixture(**self.course_info).install() AutoAuthPage(self.browser, course_id=self.course_id).visit() self.page = DiscussionTabHomePage(self.browser, self.course_id) self.page.visit() def test_new_post_button(self): """ Scenario: I can create new posts from the Discussion home page. Given that I am on the Discussion home page When I click on the 'New Post' button Then I should be shown the new post form """ self.assertIsNotNone(self.page.new_post_button) self.page.click_new_post_button() self.assertIsNotNone(self.page.new_post_form) @attr('shard_1') class DiscussionTabSingleThreadTest(BaseDiscussionTestCase, DiscussionResponsePaginationTestMixin): """ Tests for the discussion page displaying a single thread """ def setUp(self): super(DiscussionTabSingleThreadTest, self).setUp() AutoAuthPage(self.browser, course_id=self.course_id).visit() def setup_thread_page(self, thread_id): self.thread_page = self.create_single_thread_page(thread_id) # pylint: disable=attribute-defined-outside-init self.thread_page.visit() def test_marked_answer_comments(self): thread_id = "test_thread_{}".format(uuid4().hex) response_id = "test_response_{}".format(uuid4().hex) comment_id = "test_comment_{}".format(uuid4().hex) thread_fixture = SingleThreadViewFixture( Thread(id=thread_id, commentable_id=self.discussion_id, thread_type="question") ) thread_fixture.addResponse( Response(id=response_id, endorsed=True), [Comment(id=comment_id)] ) thread_fixture.push() self.setup_thread_page(thread_id) self.assertFalse(self.thread_page.is_comment_visible(comment_id)) self.assertFalse(self.thread_page.is_add_comment_visible(response_id)) self.assertTrue(self.thread_page.is_show_comments_visible(response_id)) self.thread_page.show_comments(response_id) self.assertTrue(self.thread_page.is_comment_visible(comment_id)) self.assertTrue(self.thread_page.is_add_comment_visible(response_id)) self.assertFalse(self.thread_page.is_show_comments_visible(response_id)) @attr('shard_1') class DiscussionOpenClosedThreadTest(BaseDiscussionTestCase): """ Tests for checking the display of attributes on open and closed threads """ def setUp(self): super(DiscussionOpenClosedThreadTest, self).setUp() self.thread_id = "test_thread_{}".format(uuid4().hex) def setup_user(self, roles=[]): roles_str = ','.join(roles) self.user_id = AutoAuthPage(self.browser, course_id=self.course_id, roles=roles_str).visit().get_user_id() def setup_view(self, **thread_kwargs): thread_kwargs.update({'commentable_id': self.discussion_id}) view = SingleThreadViewFixture( Thread(id=self.thread_id, **thread_kwargs) ) view.addResponse(Response(id="response1")) view.push() def setup_openclosed_thread_page(self, closed=False): self.setup_user(roles=['Moderator']) if closed: self.setup_view(closed=True) else: self.setup_view() page = self.create_single_thread_page(self.thread_id) page.visit() page.close_open_thread() return page def test_originally_open_thread_vote_display(self): page = self.setup_openclosed_thread_page() self.assertFalse(page._is_element_visible('.forum-thread-main-wrapper .action-vote')) self.assertTrue(page._is_element_visible('.forum-thread-main-wrapper .display-vote')) self.assertFalse(page._is_element_visible('.response_response1 .action-vote')) self.assertTrue(page._is_element_visible('.response_response1 .display-vote')) def test_originally_closed_thread_vote_display(self): page = self.setup_openclosed_thread_page(True) self.assertTrue(page._is_element_visible('.forum-thread-main-wrapper .action-vote')) self.assertFalse(page._is_element_visible('.forum-thread-main-wrapper .display-vote')) self.assertTrue(page._is_element_visible('.response_response1 .action-vote')) self.assertFalse(page._is_element_visible('.response_response1 .display-vote')) @attr('shard_1') class DiscussionCommentDeletionTest(BaseDiscussionTestCase): """ Tests for deleting comments displayed beneath responses in the single thread view. """ def setup_user(self, roles=[]): roles_str = ','.join(roles) self.user_id = AutoAuthPage(self.browser, course_id=self.course_id, roles=roles_str).visit().get_user_id() def setup_view(self): view = SingleThreadViewFixture(Thread(id="comment_deletion_test_thread", commentable_id=self.discussion_id)) view.addResponse( Response(id="response1"), [Comment(id="comment_other_author", user_id="other"), Comment(id="comment_self_author", user_id=self.user_id)]) view.push() def test_comment_deletion_as_student(self): self.setup_user() self.setup_view() page = self.create_single_thread_page("comment_deletion_test_thread") page.visit() self.assertTrue(page.is_comment_deletable("comment_self_author")) self.assertTrue(page.is_comment_visible("comment_other_author")) self.assertFalse(page.is_comment_deletable("comment_other_author")) page.delete_comment("comment_self_author") def test_comment_deletion_as_moderator(self): self.setup_user(roles=['Moderator']) self.setup_view() page = self.create_single_thread_page("comment_deletion_test_thread") page.visit() self.assertTrue(page.is_comment_deletable("comment_self_author")) self.assertTrue(page.is_comment_deletable("comment_other_author")) page.delete_comment("comment_self_author") page.delete_comment("comment_other_author") @attr('shard_1') class DiscussionResponseEditTest(BaseDiscussionTestCase): """ Tests for editing responses displayed beneath thread in the single thread view. """ def setup_user(self, roles=[]): roles_str = ','.join(roles) self.user_id = AutoAuthPage(self.browser, course_id=self.course_id, roles=roles_str).visit().get_user_id() def setup_view(self): view = SingleThreadViewFixture(Thread(id="response_edit_test_thread", commentable_id=self.discussion_id)) view.addResponse( Response(id="response_other_author", user_id="other", thread_id="response_edit_test_thread"), ) view.addResponse( Response(id="response_self_author", user_id=self.user_id, thread_id="response_edit_test_thread"), ) view.push() def edit_response(self, page, response_id): self.assertTrue(page.is_response_editable(response_id)) page.start_response_edit(response_id) new_response = "edited body" page.set_response_editor_value(response_id, new_response) page.submit_response_edit(response_id, new_response) def test_edit_response_as_student(self): """ Scenario: Students should be able to edit the response they created not responses of other users Given that I am on discussion page with student logged in When I try to edit the response created by student Then the response should be edited and rendered successfully And responses from other users should be shown over there And the student should be able to edit the response of other people """ self.setup_user() self.setup_view() page = self.create_single_thread_page("response_edit_test_thread") page.visit() self.assertTrue(page.is_response_visible("response_other_author")) self.assertFalse(page.is_response_editable("response_other_author")) self.edit_response(page, "response_self_author") def test_edit_response_as_moderator(self): """ Scenario: Moderator should be able to edit the response they created and responses of other users Given that I am on discussion page with moderator logged in When I try to edit the response created by moderator Then the response should be edited and rendered successfully And I try to edit the response created by other users Then the response should be edited and rendered successfully """ self.setup_user(roles=["Moderator"]) self.setup_view() page = self.create_single_thread_page("response_edit_test_thread") page.visit() self.edit_response(page, "response_self_author") self.edit_response(page, "response_other_author") def test_vote_report_endorse_after_edit(self): """ Scenario: Moderator should be able to vote, report or endorse after editing the response. Given that I am on discussion page with moderator logged in When I try to edit the response created by moderator Then the response should be edited and rendered successfully And I try to edit the response created by other users Then the response should be edited and rendered successfully And I try to vote the response created by moderator Then the response should be voted successfully And I try to vote the response created by other users Then the response should be voted successfully And I try to report the response created by moderator Then the response should be reported successfully And I try to report the response created by other users Then the response should be reported successfully And I try to endorse the response created by moderator Then the response should be endorsed successfully And I try to endorse the response created by other users Then the response should be endorsed successfully """ self.setup_user(roles=["Moderator"]) self.setup_view() page = self.create_single_thread_page("response_edit_test_thread") page.visit() self.edit_response(page, "response_self_author") self.edit_response(page, "response_other_author") page.vote_response('response_self_author') page.vote_response('response_other_author') page.report_response('response_self_author') page.report_response('response_other_author') page.endorse_response('response_self_author') page.endorse_response('response_other_author') @attr('shard_1') class DiscussionCommentEditTest(BaseDiscussionTestCase): """ Tests for editing comments displayed beneath responses in the single thread view. """ def setup_user(self, roles=[]): roles_str = ','.join(roles) self.user_id = AutoAuthPage(self.browser, course_id=self.course_id, roles=roles_str).visit().get_user_id() def setup_view(self): view = SingleThreadViewFixture(Thread(id="comment_edit_test_thread", commentable_id=self.discussion_id)) view.addResponse( Response(id="response1"), [Comment(id="comment_other_author", user_id="other"), Comment(id="comment_self_author", user_id=self.user_id)]) view.push() def edit_comment(self, page, comment_id): page.start_comment_edit(comment_id) new_comment = "edited body" page.set_comment_editor_value(comment_id, new_comment) page.submit_comment_edit(comment_id, new_comment) def test_edit_comment_as_student(self): self.setup_user() self.setup_view() page = self.create_single_thread_page("comment_edit_test_thread") page.visit() self.assertTrue(page.is_comment_editable("comment_self_author")) self.assertTrue(page.is_comment_visible("comment_other_author")) self.assertFalse(page.is_comment_editable("comment_other_author")) self.edit_comment(page, "comment_self_author") def test_edit_comment_as_moderator(self): self.setup_user(roles=["Moderator"]) self.setup_view() page = self.create_single_thread_page("comment_edit_test_thread") page.visit() self.assertTrue(page.is_comment_editable("comment_self_author")) self.assertTrue(page.is_comment_editable("comment_other_author")) self.edit_comment(page, "comment_self_author") self.edit_comment(page, "comment_other_author") def test_cancel_comment_edit(self): self.setup_user() self.setup_view() page = self.create_single_thread_page("comment_edit_test_thread") page.visit() self.assertTrue(page.is_comment_editable("comment_self_author")) original_body = page.get_comment_body("comment_self_author") page.start_comment_edit("comment_self_author") page.set_comment_editor_value("comment_self_author", "edited body") page.cancel_comment_edit("comment_self_author", original_body) def test_editor_visibility(self): """Only one editor should be visible at a time within a single response""" self.setup_user(roles=["Moderator"]) self.setup_view() page = self.create_single_thread_page("comment_edit_test_thread") page.visit() self.assertTrue(page.is_comment_editable("comment_self_author")) self.assertTrue(page.is_comment_editable("comment_other_author")) self.assertTrue(page.is_add_comment_visible("response1")) original_body = page.get_comment_body("comment_self_author") page.start_comment_edit("comment_self_author") self.assertFalse(page.is_add_comment_visible("response1")) self.assertTrue(page.is_comment_editor_visible("comment_self_author")) page.set_comment_editor_value("comment_self_author", "edited body") page.start_comment_edit("comment_other_author") self.assertFalse(page.is_comment_editor_visible("comment_self_author")) self.assertTrue(page.is_comment_editor_visible("comment_other_author")) self.assertEqual(page.get_comment_body("comment_self_author"), original_body) page.start_response_edit("response1") self.assertFalse(page.is_comment_editor_visible("comment_other_author")) self.assertTrue(page.is_response_editor_visible("response1")) original_body = page.get_comment_body("comment_self_author") page.start_comment_edit("comment_self_author") self.assertFalse(page.is_response_editor_visible("response1")) self.assertTrue(page.is_comment_editor_visible("comment_self_author")) page.cancel_comment_edit("comment_self_author", original_body) self.assertFalse(page.is_comment_editor_visible("comment_self_author")) self.assertTrue(page.is_add_comment_visible("response1")) @attr('shard_1') class InlineDiscussionTest(UniqueCourseTest, DiscussionResponsePaginationTestMixin): """ Tests for inline discussions """ def setUp(self): super(InlineDiscussionTest, self).setUp() self.discussion_id = "test_discussion_{}".format(uuid4().hex) self.additional_discussion_id = "test_discussion_{}".format(uuid4().hex) self.course_fix = CourseFixture(**self.course_info).add_children( XBlockFixtureDesc("chapter", "Test Section").add_children( XBlockFixtureDesc("sequential", "Test Subsection").add_children( XBlockFixtureDesc("vertical", "Test Unit").add_children( XBlockFixtureDesc( "discussion", "Test Discussion", metadata={"discussion_id": self.discussion_id} ), XBlockFixtureDesc( "discussion", "Test Discussion 1", metadata={"discussion_id": self.additional_discussion_id} ) ) ) ) ).install() self.user_id = AutoAuthPage(self.browser, course_id=self.course_id).visit().get_user_id() self.courseware_page = CoursewarePage(self.browser, self.course_id) self.courseware_page.visit() self.discussion_page = InlineDiscussionPage(self.browser, self.discussion_id) self.additional_discussion_page = InlineDiscussionPage(self.browser, self.additional_discussion_id) def setup_thread_page(self, thread_id): self.discussion_page.expand_discussion() self.assertEqual(self.discussion_page.get_num_displayed_threads(), 1) self.thread_page = InlineDiscussionThreadPage(self.browser, thread_id) # pylint: disable=attribute-defined-outside-init self.thread_page.expand() def test_initial_render(self): self.assertFalse(self.discussion_page.is_discussion_expanded()) def test_expand_discussion_empty(self): self.discussion_page.expand_discussion() self.assertEqual(self.discussion_page.get_num_displayed_threads(), 0) def check_anonymous_to_peers(self, is_staff): thread = Thread(id=uuid4().hex, anonymous_to_peers=True, commentable_id=self.discussion_id) thread_fixture = SingleThreadViewFixture(thread) thread_fixture.push() self.setup_thread_page(thread.get("id")) self.assertEqual(self.thread_page.is_thread_anonymous(), not is_staff) def test_anonymous_to_peers_threads_as_staff(self): AutoAuthPage(self.browser, course_id=self.course_id, roles="Administrator").visit() self.courseware_page.visit() self.check_anonymous_to_peers(True) def test_anonymous_to_peers_threads_as_peer(self): self.check_anonymous_to_peers(False) def test_discussion_blackout_period(self): now = datetime.datetime.now(UTC) self.course_fix.add_advanced_settings( { u"discussion_blackouts": { "value": [ [ (now - datetime.timedelta(days=14)).isoformat(), (now + datetime.timedelta(days=2)).isoformat() ] ] } } ) self.course_fix._add_advanced_settings() self.browser.refresh() thread = Thread(id=uuid4().hex, commentable_id=self.discussion_id) thread_fixture = SingleThreadViewFixture(thread) thread_fixture.addResponse( Response(id="response1"), [Comment(id="comment1", user_id="other"), Comment(id="comment2", user_id=self.user_id)]) thread_fixture.push() self.setup_thread_page(thread.get("id")) self.assertFalse(self.discussion_page.element_exists(".new-post-btn")) self.assertFalse(self.thread_page.has_add_response_button()) self.assertFalse(self.thread_page.is_response_editable("response1")) self.assertFalse(self.thread_page.is_add_comment_visible("response1")) self.assertFalse(self.thread_page.is_comment_editable("comment1")) self.assertFalse(self.thread_page.is_comment_editable("comment2")) self.assertFalse(self.thread_page.is_comment_deletable("comment1")) self.assertFalse(self.thread_page.is_comment_deletable("comment2")) def test_dual_discussion_module(self): """ Scenario: Two discussion module in one unit shouldn't override their actions Given that I'm on courseware page where there are two inline discussion When I click on one discussion module new post button Then it should add new post form of that module in DOM And I should be shown new post form of that module And I shouldn't be shown second discussion module new post form And I click on second discussion module new post button Then it should add new post form of second module in DOM And I should be shown second discussion new post form And I shouldn't be shown first discussion module new post form And I have two new post form in the DOM When I click back on first module new post button And I should be shown new post form of that module And I shouldn't be shown second discussion module new post form """ self.discussion_page.wait_for_page() self.additional_discussion_page.wait_for_page() self.discussion_page.click_new_post_button() with self.discussion_page.handle_alert(): self.discussion_page.click_cancel_new_post() self.additional_discussion_page.click_new_post_button() self.assertFalse(self.discussion_page._is_element_visible(".new-post-article")) with self.additional_discussion_page.handle_alert(): self.additional_discussion_page.click_cancel_new_post() self.discussion_page.click_new_post_button() self.assertFalse(self.additional_discussion_page._is_element_visible(".new-post-article")) @attr('shard_1') class DiscussionUserProfileTest(UniqueCourseTest): """ Tests for user profile page in discussion tab. """ PAGE_SIZE = 20 # django_comment_client.forum.views.THREADS_PER_PAGE PROFILED_USERNAME = "profiled-user" def setUp(self): super(DiscussionUserProfileTest, self).setUp() CourseFixture(**self.course_info).install() # The following line creates a user enrolled in our course, whose # threads will be viewed, but not the one who will view the page. # It isn't necessary to log them in, but using the AutoAuthPage # saves a lot of code. self.profiled_user_id = AutoAuthPage( self.browser, username=self.PROFILED_USERNAME, course_id=self.course_id ).visit().get_user_id() # now create a second user who will view the profile. self.user_id = AutoAuthPage( self.browser, course_id=self.course_id ).visit().get_user_id() def check_pages(self, num_threads): # set up the stub server to return the desired amount of thread results threads = [Thread(id=uuid4().hex) for _ in range(num_threads)] UserProfileViewFixture(threads).push() # navigate to default view (page 1) page = DiscussionUserProfilePage( self.browser, self.course_id, self.profiled_user_id, self.PROFILED_USERNAME ) page.visit() current_page = 1 total_pages = max(num_threads - 1, 1) / self.PAGE_SIZE + 1 all_pages = range(1, total_pages + 1) return page def _check_page(): # ensure the page being displayed as "current" is the expected one self.assertEqual(page.get_current_page(), current_page) # ensure the expected threads are being shown in the right order threads_expected = threads[(current_page - 1) * self.PAGE_SIZE:current_page * self.PAGE_SIZE] self.assertEqual(page.get_shown_thread_ids(), [t["id"] for t in threads_expected]) # ensure the clickable page numbers are the expected ones self.assertEqual(page.get_clickable_pages(), [ p for p in all_pages if p != current_page and p - 2 <= current_page <= p + 2 or (current_page > 2 and p == 1) or (current_page < total_pages and p == total_pages) ]) # ensure the previous button is shown, but only if it should be. # when it is shown, make sure it works. if current_page > 1: self.assertTrue(page.is_prev_button_shown(current_page - 1)) page.click_prev_page() self.assertEqual(page.get_current_page(), current_page - 1) page.click_next_page() self.assertEqual(page.get_current_page(), current_page) else: self.assertFalse(page.is_prev_button_shown()) # ensure the next button is shown, but only if it should be. if current_page < total_pages: self.assertTrue(page.is_next_button_shown(current_page + 1)) else: self.assertFalse(page.is_next_button_shown()) # click all the way up through each page for i in range(current_page, total_pages): _check_page() if current_page < total_pages: page.click_on_page(current_page + 1) current_page += 1 # click all the way back down for i in range(current_page, 0, -1): _check_page() if current_page > 1: page.click_on_page(current_page - 1) current_page -= 1 def test_0_threads(self): self.check_pages(0) def test_1_thread(self): self.check_pages(1) def test_20_threads(self): self.check_pages(20) def test_21_threads(self): self.check_pages(21) def test_151_threads(self): self.check_pages(151) def test_pagination_window_reposition(self): page = self.check_pages(50) page.click_next_page() page.wait_for_ajax() self.assertTrue(page.is_window_on_top()) @attr('shard_1') class DiscussionSearchAlertTest(UniqueCourseTest): """ Tests for spawning and dismissing alerts related to user search actions and their results. """ SEARCHED_USERNAME = "gizmo" def setUp(self): super(DiscussionSearchAlertTest, self).setUp() CourseFixture(**self.course_info).install() # first auto auth call sets up a user that we will search for in some tests self.searched_user_id = AutoAuthPage( self.browser, username=self.SEARCHED_USERNAME, course_id=self.course_id ).visit().get_user_id() # this auto auth call creates the actual session user AutoAuthPage(self.browser, course_id=self.course_id).visit() self.page = DiscussionTabHomePage(self.browser, self.course_id) self.page.visit() def setup_corrected_text(self, text): SearchResultFixture(SearchResult(corrected_text=text)).push() def check_search_alert_messages(self, expected): actual = self.page.get_search_alert_messages() self.assertTrue(all(map(lambda msg, sub: msg.lower().find(sub.lower()) >= 0, actual, expected))) def test_no_rewrite(self): self.setup_corrected_text(None) self.page.perform_search() self.check_search_alert_messages(["no threads"]) def test_rewrite_dismiss(self): self.setup_corrected_text("foo") self.page.perform_search() self.check_search_alert_messages(["foo"]) self.page.dismiss_alert_message("foo") self.check_search_alert_messages([]) def test_new_search(self): self.setup_corrected_text("foo") self.page.perform_search() self.check_search_alert_messages(["foo"]) self.setup_corrected_text("bar") self.page.perform_search() self.check_search_alert_messages(["bar"]) self.setup_corrected_text(None) self.page.perform_search() self.check_search_alert_messages(["no threads"]) def test_rewrite_and_user(self): self.setup_corrected_text("foo") self.page.perform_search(self.SEARCHED_USERNAME) self.check_search_alert_messages(["foo", self.SEARCHED_USERNAME]) def test_user_only(self): self.setup_corrected_text(None) self.page.perform_search(self.SEARCHED_USERNAME) self.check_search_alert_messages(["no threads", self.SEARCHED_USERNAME]) # make sure clicking the link leads to the user profile page UserProfileViewFixture([]).push() self.page.get_search_alert_links().first.click() DiscussionUserProfilePage( self.browser, self.course_id, self.searched_user_id, self.SEARCHED_USERNAME ).wait_for_page() @attr('shard_1') class DiscussionSortPreferenceTest(UniqueCourseTest): """ Tests for the discussion page displaying a single thread. """ def setUp(self): super(DiscussionSortPreferenceTest, self).setUp() # Create a course to register for. CourseFixture(**self.course_info).install() AutoAuthPage(self.browser, course_id=self.course_id).visit() self.sort_page = DiscussionSortPreferencePage(self.browser, self.course_id) self.sort_page.visit() def test_default_sort_preference(self): """ Test to check the default sorting preference of user. (Default = date ) """ selected_sort = self.sort_page.get_selected_sort_preference() self.assertEqual(selected_sort, "date") def test_change_sort_preference(self): """ Test that if user sorting preference is changing properly. """ selected_sort = "" for sort_type in ["votes", "comments", "date"]: self.assertNotEqual(selected_sort, sort_type) self.sort_page.change_sort_preference(sort_type) selected_sort = self.sort_page.get_selected_sort_preference() self.assertEqual(selected_sort, sort_type) def test_last_preference_saved(self): """ Test that user last preference is saved. """ selected_sort = "" for sort_type in ["votes", "comments", "date"]: self.assertNotEqual(selected_sort, sort_type) self.sort_page.change_sort_preference(sort_type) selected_sort = self.sort_page.get_selected_sort_preference() self.assertEqual(selected_sort, sort_type) self.sort_page.refresh_page() selected_sort = self.sort_page.get_selected_sort_preference() self.assertEqual(selected_sort, sort_type)
beni55/edx-platform
common/test/acceptance/tests/discussion/test_discussion.py
Python
agpl-3.0
34,315
[ "VisIt" ]
fd2e3d6373965d5a71ddfbad54f5aa7301ead216f3ea2a580efaf54541ca32c0
##################################################################### # File: ReqManagerHandler.py ######################################################################## """ :mod: ReqManagerHandler .. module: ReqManagerHandler :synopsis: Implementation of the RequestDB service in the DISET framework """ __RCSID__ = "$Id$" # # imports import json import datetime import math from types import DictType, IntType, LongType, ListType, StringTypes # # from DIRAC from DIRAC import gLogger, S_OK, S_ERROR from DIRAC.Core.DISET.RequestHandler import RequestHandler # # from RMS from DIRAC.RequestManagementSystem.Client.Request import Request from DIRAC.RequestManagementSystem.private.RequestValidator import RequestValidator from DIRAC.RequestManagementSystem.DB.RequestDB import RequestDB class ReqManagerHandler( RequestHandler ): """ .. class:: ReqManagerHandler RequestDB interface in the DISET framework. """ # # request validator __validator = None # # request DB instance __requestDB = None @classmethod def initializeHandler( cls, serviceInfoDict ): """ initialize handler """ try: cls.__requestDB = RequestDB() except RuntimeError, error: gLogger.exception( error ) return S_ERROR( error ) # # create tables for empty db return cls.__requestDB.createTables() # # helper functions @classmethod def validate( cls, request ): """ request validation """ if not cls.__validator: cls.__validator = RequestValidator() return cls.__validator.validate( request ) types_getRequestIDForName = [ StringTypes ] @classmethod def export_getRequestIDForName( cls, requestName ): """ get requestID for given :requestName: """ if type( requestName ) in StringTypes: result = cls.__requestDB.getRequestIDForName( requestName ) if not result["OK"]: return result requestID = result["Value"] return S_OK( requestID ) types_cancelRequest = [ ( IntType, LongType ) ] @classmethod def export_cancelRequest( cls , requestID ): """ Cancel a request """ return cls.__requestDB.cancelRequest( requestID ) types_putRequest = [ StringTypes ] @classmethod def export_putRequest( cls, requestJSON ): """ put a new request into RequestDB :param cls: class ref :param str requestJSON: request serialized to JSON format """ requestDict = json.loads( requestJSON ) requestName = requestDict.get( "RequestID", requestDict.get( 'RequestName', "***UNKNOWN***" ) ) request = Request( requestDict ) optimized = request.optimize() if optimized.get( "Value", False ): gLogger.debug( "putRequest: request was optimized" ) else: gLogger.debug( "putRequest: request unchanged", optimized.get( "Message", "Nothing could be optimized" ) ) valid = cls.validate( request ) if not valid["OK"]: gLogger.error( "putRequest: request %s not valid: %s" % ( requestName, valid["Message"] ) ) return valid # If NotBefore is not set or user defined, we calculate its value now = datetime.datetime.utcnow().replace( microsecond = 0 ) extraDelay = datetime.timedelta( 0 ) if request.Status not in Request.FINAL_STATES and ( not request.NotBefore or request.NotBefore < now ) : op = request.getWaiting().get( 'Value' ) # If there is a waiting Operation with Files if op and len( op ): attemptList = [ opFile.Attempt for opFile in op if opFile.Status == "Waiting" ] if attemptList: maxWaitingAttempt = max( [ opFile.Attempt for opFile in op if opFile.Status == "Waiting" ] ) # In case it is the first attempt, extraDelay is 0 # maxWaitingAttempt can be None if the operation has no File, like the ForwardDiset extraDelay = datetime.timedelta( minutes = 2 * math.log( maxWaitingAttempt ) if maxWaitingAttempt else 0 ) request.NotBefore = now + extraDelay gLogger.info( "putRequest: request %s not before %s (extra delay %s)" % ( request.RequestName, request.NotBefore, extraDelay ) ) requestName = request.RequestName gLogger.info( "putRequest: Attempting to set request '%s'" % requestName ) return cls.__requestDB.putRequest( request ) types_getScheduledRequest = [ ( IntType, LongType ) ] @classmethod def export_getScheduledRequest( cls , operationID ): """ read scheduled request given operationID """ scheduled = cls.__requestDB.getScheduledRequest( operationID ) if not scheduled["OK"]: gLogger.error( "getScheduledRequest: %s" % scheduled["Message"] ) return scheduled if not scheduled["Value"]: return S_OK() requestJSON = scheduled["Value"].toJSON() if not requestJSON["OK"]: gLogger.error( "getScheduledRequest: %s" % requestJSON["Message"] ) return requestJSON types_getDBSummary = [] @classmethod def export_getDBSummary( cls ): """ Get the summary of requests in the Request DB """ return cls.__requestDB.getDBSummary() types_getRequest = [ ( LongType, IntType ) ] @classmethod def export_getRequest( cls, requestID = 0 ): """ Get a request of given type from the database """ getRequest = cls.__requestDB.getRequest( requestID ) if not getRequest["OK"]: gLogger.error( "getRequest: %s" % getRequest["Message"] ) return getRequest if getRequest["Value"]: getRequest = getRequest["Value"] toJSON = getRequest.toJSON() if not toJSON["OK"]: gLogger.error( toJSON["Message"] ) return toJSON return S_OK() types_getBulkRequests = [ IntType ] @classmethod def export_getBulkRequests( cls, numberOfRequest = 10 ): """ Get a request of given type from the database :param numberOfRequest : size of the bulk (default 10) :return S_OK( {Failed : message, Successful : list of Request.toJSON()} ) """ getRequests = cls.__requestDB.getBulkRequests( numberOfRequest ) if not getRequests["OK"]: gLogger.error( "getRequests: %s" % getRequests["Message"] ) return getRequests if getRequests["Value"]: getRequests = getRequests["Value"] toJSONDict = {"Successful" : {}, "Failed" : {}} for rId in getRequests: toJSON = getRequests[rId].toJSON() if not toJSON["OK"]: gLogger.error( toJSON["Message"] ) toJSONDict["Failed"][rId] = toJSON["Message"] else: toJSONDict["Successful"][rId] = toJSON["Value"] return S_OK( toJSONDict ) return S_OK() types_peekRequest = [ ( LongType, IntType ) ] @classmethod def export_peekRequest( cls, requestID = 0 ): """ peek request given its id """ peekRequest = cls.__requestDB.peekRequest( requestID ) if not peekRequest["OK"]: gLogger.error( "peekRequest: %s" % peekRequest["Message"] ) return peekRequest if peekRequest["Value"]: peekRequest = peekRequest["Value"].toJSON() if not peekRequest["OK"]: gLogger.error( peekRequest["Message"] ) return peekRequest types_getRequestSummaryWeb = [ DictType, ListType, IntType, IntType ] @classmethod def export_getRequestSummaryWeb( cls, selectDict, sortList, startItem, maxItems ): """ Returns a list of Request for the web portal :param dict selectDict: parameter on which to restrain the query {key : Value} key can be any of the Request columns, 'Type' (interpreted as Operation.Type) and 'FromData' and 'ToData' are matched against the LastUpdate field :param list sortList: [sorting column, ASC/DESC] :param int startItem: start item (for pagination) :param int maxItems: max items (for pagination) """ return cls.__requestDB.getRequestSummaryWeb( selectDict, sortList, startItem, maxItems ) types_getDistinctValuesWeb = [ StringTypes ] @classmethod def export_getDistinctValuesWeb( cls, attribute ): """ Get distinct values for a given request attribute. 'Type' is interpreted as the operation type """ tableName = 'Request' if attribute == 'Type': tableName = 'Operation' return cls.__requestDB.getDistinctValues( tableName, attribute ) types_getRequestCountersWeb = [ StringTypes, DictType ] @classmethod def export_getRequestCountersWeb( cls, groupingAttribute, selectDict ): """ For the web portal. Returns a dictionary {value : counts} for a given key. The key can be any field from the RequestTable. or "Type", which will be interpreted as 'Operation.Type' :param groupingAttribute : attribute used for grouping :param selectDict : selection criteria """ return cls.__requestDB.getRequestCountersWeb( groupingAttribute, selectDict ) types_deleteRequest = [ ( IntType, LongType ) ] @classmethod def export_deleteRequest( cls, requestID ): """ Delete the request with the supplied ID""" return cls.__requestDB.deleteRequest( requestID ) types_getRequestIDsList = [ ListType, IntType, StringTypes ] @classmethod def export_getRequestIDsList( cls, statusList = None, limit = None, since = None, until = None ): """ get requests' IDs with status in :statusList: """ statusList = statusList if statusList else list( Request.FINAL_STATES ) limit = limit if limit else 100 since = since if since else "" until = until if until else "" reqIDsList = cls.__requestDB.getRequestIDsList( statusList, limit, since = since, until = until ) if not reqIDsList["OK"]: gLogger.error( "getRequestIDsList: %s" % reqIDsList["Message"] ) return reqIDsList types_getRequestIDsForJobs = [ ListType ] @classmethod def export_getRequestIDsForJobs( cls, jobIDs ): """ Select the request IDs for supplied jobIDs """ return cls.__requestDB.getRequestIDsForJobs( jobIDs ) types_readRequestsForJobs = [ ListType ] @classmethod def export_readRequestsForJobs( cls, jobIDs ): """ read requests for jobs given list of jobIDs """ requests = cls.__requestDB.readRequestsForJobs( jobIDs ) if not requests["OK"]: gLogger.error( "readRequestsForJobs: %s" % requests["Message"] ) return requests for jobID, request in requests["Value"]["Successful"].items(): requests["Value"]["Successful"][jobID] = request.toJSON()["Value"] return requests types_getDigest = [ ( IntType, LongType ) ] @classmethod def export_getDigest( cls, requestID ): """ get digest for a request given its id :param str requestID: request's id :return: S_OK( json_str ) """ return cls.__requestDB.getDigest( requestID ) types_getRequestStatus = [ ( IntType, LongType ) ] @classmethod def export_getRequestStatus( cls, requestID ): """ get request status given its id """ status = cls.__requestDB.getRequestStatus( requestID ) if not status["OK"]: gLogger.error( "getRequestStatus: %s" % status["Message"] ) return status types_getRequestFileStatus = [ [ IntType, LongType ], list( StringTypes ) + [ListType] ] @classmethod def export_getRequestFileStatus( cls, requestID, lfnList ): """ get request file status for a given LFNs list and requestID """ if type( lfnList ) == str: lfnList = [lfnList] res = cls.__requestDB.getRequestFileStatus( requestID, lfnList ) if not res["OK"]: gLogger.error( "getRequestFileStatus: %s" % res["Message"] ) return res # types_getRequestName = [ ( IntType, LongType ) ] # @classmethod # def export_getRequestName( cls, requestID ): # """ get request name for a given requestID """ # requestName = cls.__requestDB.getRequestName( requestID ) # if not requestName["OK"]: # gLogger.error( "getRequestName: %s" % requestName["Message"] ) # return requestName types_getRequestInfo = [ [ IntType, LongType ] ] @classmethod def export_getRequestInfo( cls, requestID ): """ get request info for a given requestID """ requestInfo = cls.__requestDB.getRequestInfo( requestID ) if not requestInfo["OK"]: gLogger.error( "getRequestInfo: %s" % requestInfo["Message"] ) return requestInfo
marcelovilaca/DIRAC
RequestManagementSystem/Service/ReqManagerHandler.py
Python
gpl-3.0
12,159
[ "DIRAC" ]
49dc6feb433cce415840ea15c347c19ddda484ddc574e2658f4cb12ed84a7329
import glob import os import shutil from pathlib import Path from django.conf import settings from django.core.management import BaseCommand, CommandError from django.db import transaction from ncdjango.models import Service, Variable from netCDF4 import Dataset from pyproj import Proj from trefoil.netcdf.describe import describe from trefoil.netcdf.variable import SpatialCoordinateVariables from trefoil.render.renderers.stretched import StretchedRenderer from trefoil.utilities.color import Color SERVICE_DIR = getattr(settings, 'NC_SERVICE_DATA_ROOT', 'data/ncdjango/services') class Command(BaseCommand): help = ( 'Publish a NetCDF dataset as a map service (use `populate_climate_data` for publishing climate variable ' + 'datasets)' ) def add_arguments(self, parser): parser.add_argument('datasets', nargs='+', type=str) parser.add_argument('-d', '--directory', default=None, type=str) parser.add_argument('--overwrite', action='store_true', dest='overwrite') def handle(self, datasets, directory, overwrite, *args, **options): old_files = [] for dataset in datasets: filename = os.path.basename(dataset) name = os.path.splitext(filename)[0] if directory is not None: filename = '{}/{}'.format(directory.strip('/'), filename) name = '{}/{}'.format(directory.strip('/'), name) with transaction.atomic(): existing = Service.objects.filter(name__iexact=name) if existing.exists(): if overwrite: old_files.append(os.path.join(SERVICE_DIR, existing.get().data_path)) existing.delete() else: raise CommandError("A service named '{}' already exists".format(name)) with Dataset(dataset, 'r') as ds: variables = [] x_dimension = None y_dimension = None projection = None desc = describe(ds) for variable, variable_info in desc['variables'].items(): if 'spatial_grid' in variable_info: variables.append(variable) spatial_grid = variable_info['spatial_grid'] x_dimension = spatial_grid['x_dimension'] y_dimension = spatial_grid['y_dimension'] projection = Proj(variable_info['proj4']) if not variables: raise CommandError('No usable variables found') coords = SpatialCoordinateVariables.from_dataset( ds, x_dimension, y_dimension, projection=projection ) service = Service.objects.create( name=name, data_path=filename, projection=coords.projection, full_extent=coords.bbox, initial_extent=coords.bbox ) for variable in variables: Variable.objects.create( service=service, index=0, variable=variable, projection=projection, x_dimension=x_dimension, y_dimension=y_dimension, name=variable, renderer=StretchedRenderer( [(variable_info['min'], Color(0, 0, 0)), (variable_info['max'], Color(255, 255, 255))] ), full_extent=coords.bbox ) print('Added {}...'.format(name)) for path in old_files: if os.path.exists(path): os.remove(path) for dataset in datasets: target_dir = Path(SERVICE_DIR) / (directory or '') if not os.path.exists(target_dir): os.makedirs(target_dir) shutil.copy(dataset, target_dir)
consbio/seedsource-core
seedsource_core/django/seedsource/management/commands/publish_netcdf.py
Python
bsd-3-clause
4,185
[ "NetCDF" ]
d8933d7145d1e4f7f69ae6c139d83f9695daa5f447bc826198ca568d440a25a1
""" Migration script to add a 'tool_version' column to the hda/ldda tables. """ from sqlalchemy import * from sqlalchemy.orm import * from migrate import * from migrate.changeset import * from galaxy.model.custom_types import * metadata = MetaData() def upgrade(migrate_engine): metadata.bind = migrate_engine print __doc__ metadata.reflect() try: hda_table = Table( "history_dataset_association", metadata, autoload=True ) c = Column( "tool_version", TEXT ) c.create( hda_table ) assert c is hda_table.c.tool_version ldda_table = Table( "library_dataset_dataset_association", metadata, autoload=True ) c = Column( "tool_version", TEXT ) c.create( ldda_table ) assert c is ldda_table.c.tool_version except Exception, e: print "Adding the tool_version column to the hda/ldda tables failed: ", str( e ) def downgrade(migrate_engine): metadata.bind = migrate_engine metadata.reflect() try: hda_table = Table( "history_dataset_association", metadata, autoload=True ) hda_table.c.tool_version.drop() ldda_table = Table( "library_dataset_dataset_association", metadata, autoload=True ) ldda_table.c.tool_version.drop() except Exception, e: print "Dropping the tool_version column from hda/ldda table failed: ", str( e )
mikel-egana-aranguren/SADI-Galaxy-Docker
galaxy-dist/lib/galaxy/model/migrate/versions/0081_add_tool_version_to_hda_ldda.py
Python
gpl-3.0
1,370
[ "Galaxy" ]
32aa62d285e5b2d8d5d704339e3b9a1079e500f56ae9d7d28d8edd18d37e5d03
import functools def resolve_internal(tree): """ Given a tree, replace any nodes with an 'href' attribute with the node with a corresponding 'id'. """ # get all the nodes with an id attribute id_map = {} id_visitor = functools.partial(get_id_nodes, id_map) tree.visit(id_visitor) # get all the nodes with an href attribute href_nodes = [] href_visitor = functools.partial(get_href_nodes, href_nodes) tree.visit(href_visitor) # replace each node in the href map with a node in the id map for href_node in href_nodes: key = href_node.attributes["href"].strip('#') # grab the id node associated with the href node id_node = id_map.get(key, None) if id_node is None: continue # since this node is used by-reference, we'll remove it from where it's defined if id_node.parent is not None: id_node.parent.remove_child(id_node) id_node.parent = None new_node = id_node.clone() # replace the href_node with the id_node href_node.parent.replace_child(href_node, new_node) new_node.parent = href_node.parent href_node.parent = None def get_id_nodes(memory, node): """ If the node has an 'id' attribute, record it here. """ node_id = node.attributes.get('id', None) if node_id is not None: memory[node_id] = node def get_href_nodes(memory, node): node_href = node.attributes.get('href', None) if node_href is not None: memory.append(node)
annegentle/wadl2rst
wadl2rst/transformations/resolve_internal.py
Python
apache-2.0
1,553
[ "VisIt" ]
d874f4640a4f8e4a2021ab87e656b15910491f07b96528d5745adf50dc0855b5
# coding: utf-8 from __future__ import unicode_literals import hmac import hashlib import base64 from .common import InfoExtractor from ..utils import ( determine_ext, float_or_none, int_or_none, js_to_json, mimetype2ext, parse_iso8601, remove_start, ) class NYTimesBaseIE(InfoExtractor): _SECRET = b'pX(2MbU2);4N{7J8)>YwKRJ+/pQ3JkiU2Q^V>mFYv6g6gYvt6v' def _extract_video_from_id(self, video_id): # Authorization generation algorithm is reverse engineered from `signer` in # http://graphics8.nytimes.com/video/vhs/vhs-2.x.min.js path = '/svc/video/api/v3/video/' + video_id hm = hmac.new(self._SECRET, (path + ':vhs').encode(), hashlib.sha512).hexdigest() video_data = self._download_json('http://www.nytimes.com' + path, video_id, 'Downloading video JSON', headers={ 'Authorization': 'NYTV ' + base64.b64encode(hm.encode()).decode(), 'X-NYTV': 'vhs', }, fatal=False) if not video_data: video_data = self._download_json( 'http://www.nytimes.com/svc/video/api/v2/video/' + video_id, video_id, 'Downloading video JSON') title = video_data['headline'] def get_file_size(file_size): if isinstance(file_size, int): return file_size elif isinstance(file_size, dict): return int(file_size.get('value', 0)) else: return None urls = [] formats = [] for video in video_data.get('renditions', []): video_url = video.get('url') format_id = video.get('type') if not video_url or format_id == 'thumbs' or video_url in urls: continue urls.append(video_url) ext = mimetype2ext(video.get('mimetype')) or determine_ext(video_url) if ext == 'm3u8': formats.extend(self._extract_m3u8_formats( video_url, video_id, 'mp4', 'm3u8_native', m3u8_id=format_id or 'hls', fatal=False)) elif ext == 'mpd': continue # formats.extend(self._extract_mpd_formats( # video_url, video_id, format_id or 'dash', fatal=False)) else: formats.append({ 'url': video_url, 'format_id': format_id, 'vcodec': video.get('videoencoding') or video.get('video_codec'), 'width': int_or_none(video.get('width')), 'height': int_or_none(video.get('height')), 'filesize': get_file_size(video.get('file_size') or video.get('fileSize')), 'tbr': int_or_none(video.get('bitrate'), 1000), 'ext': ext, }) self._sort_formats(formats) thumbnails = [] for image in video_data.get('images', []): image_url = image.get('url') if not image_url: continue thumbnails.append({ 'url': 'http://www.nytimes.com/' + image_url, 'width': int_or_none(image.get('width')), 'height': int_or_none(image.get('height')), }) publication_date = video_data.get('publication_date') timestamp = parse_iso8601(publication_date[:-8]) if publication_date else None return { 'id': video_id, 'title': title, 'description': video_data.get('summary'), 'timestamp': timestamp, 'uploader': video_data.get('byline'), 'duration': float_or_none(video_data.get('duration'), 1000), 'formats': formats, 'thumbnails': thumbnails, } class NYTimesIE(NYTimesBaseIE): _VALID_URL = r'https?://(?:(?:www\.)?nytimes\.com/video/(?:[^/]+/)+?|graphics8\.nytimes\.com/bcvideo/\d+(?:\.\d+)?/iframe/embed\.html\?videoId=)(?P<id>\d+)' _TESTS = [{ 'url': 'http://www.nytimes.com/video/opinion/100000002847155/verbatim-what-is-a-photocopier.html?playlistId=100000001150263', 'md5': 'd665342765db043f7e225cff19df0f2d', 'info_dict': { 'id': '100000002847155', 'ext': 'mov', 'title': 'Verbatim: What Is a Photocopier?', 'description': 'md5:93603dada88ddbda9395632fdc5da260', 'timestamp': 1398631707, 'upload_date': '20140427', 'uploader': 'Brett Weiner', 'duration': 419, } }, { 'url': 'http://www.nytimes.com/video/travel/100000003550828/36-hours-in-dubai.html', 'only_matching': True, }] def _real_extract(self, url): video_id = self._match_id(url) return self._extract_video_from_id(video_id) class NYTimesArticleIE(NYTimesBaseIE): _VALID_URL = r'https?://(?:www\.)?nytimes\.com/(.(?<!video))*?/(?:[^/]+/)*(?P<id>[^.]+)(?:\.html)?' _TESTS = [{ 'url': 'http://www.nytimes.com/2015/04/14/business/owner-of-gravity-payments-a-credit-card-processor-is-setting-a-new-minimum-wage-70000-a-year.html?_r=0', 'md5': 'e2076d58b4da18e6a001d53fd56db3c9', 'info_dict': { 'id': '100000003628438', 'ext': 'mov', 'title': 'New Minimum Wage: $70,000 a Year', 'description': 'Dan Price, C.E.O. of Gravity Payments, surprised his 120-person staff by announcing that he planned over the next three years to raise the salary of every employee to $70,000 a year.', 'timestamp': 1429033037, 'upload_date': '20150414', 'uploader': 'Matthew Williams', } }, { 'url': 'http://www.nytimes.com/2016/10/14/podcasts/revelations-from-the-final-weeks.html', 'md5': 'e0d52040cafb07662acf3c9132db3575', 'info_dict': { 'id': '100000004709062', 'title': 'The Run-Up: ‘He Was Like an Octopus’', 'ext': 'mp3', 'description': 'md5:fb5c6b93b12efc51649b4847fe066ee4', 'series': 'The Run-Up', 'episode': '‘He Was Like an Octopus’', 'episode_number': 20, 'duration': 2130, } }, { 'url': 'http://www.nytimes.com/2016/10/16/books/review/inside-the-new-york-times-book-review-the-rise-of-hitler.html', 'info_dict': { 'id': '100000004709479', 'title': 'The Rise of Hitler', 'ext': 'mp3', 'description': 'md5:bce877fd9e3444990cb141875fab0028', 'creator': 'Pamela Paul', 'duration': 3475, }, 'params': { 'skip_download': True, }, }, { 'url': 'http://www.nytimes.com/news/minute/2014/03/17/times-minute-whats-next-in-crimea/?_php=true&_type=blogs&_php=true&_type=blogs&_r=1', 'only_matching': True, }] def _extract_podcast_from_json(self, json, page_id, webpage): podcast_audio = self._parse_json( json, page_id, transform_source=js_to_json) audio_data = podcast_audio['data'] track = audio_data['track'] episode_title = track['title'] video_url = track['source'] description = track.get('description') or self._html_search_meta( ['og:description', 'twitter:description'], webpage) podcast_title = audio_data.get('podcast', {}).get('title') title = ('%s: %s' % (podcast_title, episode_title) if podcast_title else episode_title) episode = audio_data.get('podcast', {}).get('episode') or '' episode_number = int_or_none(self._search_regex( r'[Ee]pisode\s+(\d+)', episode, 'episode number', default=None)) return { 'id': remove_start(podcast_audio.get('target'), 'FT') or page_id, 'url': video_url, 'title': title, 'description': description, 'creator': track.get('credit'), 'series': podcast_title, 'episode': episode_title, 'episode_number': episode_number, 'duration': int_or_none(track.get('duration')), } def _real_extract(self, url): page_id = self._match_id(url) webpage = self._download_webpage(url, page_id) video_id = self._search_regex( r'data-videoid=["\'](\d+)', webpage, 'video id', default=None, fatal=False) if video_id is not None: return self._extract_video_from_id(video_id) podcast_data = self._search_regex( (r'NYTD\.FlexTypes\.push\s*\(\s*({.+?})\s*\)\s*;\s*</script', r'NYTD\.FlexTypes\.push\s*\(\s*({.+})\s*\)\s*;'), webpage, 'podcast data') return self._extract_podcast_from_json(podcast_data, page_id, webpage)
Tithen-Firion/youtube-dl
youtube_dl/extractor/nytimes.py
Python
unlicense
8,836
[ "Octopus" ]
00a78c6338c0ba0b12a4edb587e05f264492b47e1f0248aafe42796efd78e603
from builtins import range import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils from h2o.estimators.glm import H2OGeneralizedLinearEstimator # in this test, I compare the results obtained from R run with H2O-3 runs using a much larger datasets to test # multiple chunks operation. def test_HGLM_R(): tot=1e-6 h2o_data = h2o.import_file(path=pyunit_utils.locate("smalldata/glm_test/HGLM_5KRows_100Z.csv"), col_types=["enum", "enum", "enum", "enum", "numeric", "numeric", "numeric", "numeric"]) y = "response" x = ["enum1","enum2","enum3","num1","num2","num3"] z = 0 h2o_glm = H2OGeneralizedLinearEstimator(HGLM=True, family="gaussian", rand_family=["gaussian"], random_columns=[z], calc_like=True) h2o_glm.train(x=x, y=y, training_frame=h2o_data) modelMetrics = h2o_glm.training_model_metrics() rmodelMetrics = {"hlik":-23643.3076231, "caic":47019.7968491, "pvh":-23491.5738429, "pbvh": -23490.2982034, "dfrefe":4953.0, "varfix":703.86912057} metricsNames = ["hlik", "caic", "pvh", "pbvh", "dfrefe", "varfix"] for kNames in metricsNames: assert abs(rmodelMetrics[kNames]-modelMetrics[kNames])<tot,"for {2}, Expected from R: {0}, actual from H2O-3: " \ "{1}".format(rmodelMetrics[kNames], modelMetrics[kNames], kNames) if __name__ == "__main__": pyunit_utils.standalone_test(test_HGLM_R) else: test_HGLM_R()
h2oai/h2o-3
h2o-py/tests/testdir_algos/glm/pyunit_PUBDEV_6876_HGLM_compare_R_large.py
Python
apache-2.0
1,607
[ "Gaussian" ]
b9a1549ca17327c7775f097018165f180c9591a8d2cefa2dbd745616b420197f
import numpy as np import cv2 def readFile(file, dx, dy): rdata = np.fromfile(file, dtype='float32') #rdata[rdata > 280] = 330 # For global tracking #rdata[rdata > 220] = 330 #rdata[rdata <= 221] = 100 rdata -= 75 rdata.shape = (dy,dx) data = rdata.astype(np.uint8) return data def readFileTrmm(file, dx, dy): rdata = np.fromfile(file, dtype='float32') #rdata[rdata > 280] = 330 # For global tracking #rdata[rdata > 220] = 330 #rdata[rdata <= 221] = 100 rdata = rdata / 100 * 255; rdata.shape = (dy,dx) data = rdata.astype(np.uint8) return data def writeBinaryFile(file, flow, nx, ny): size = nx * ny * 2; shape = (size) rowFlow = flow.reshape(shape).astype(np.float32) rowFlow.tofile(file) print 'wrote file:', file def draw_flow(img, flow, step=16): h, w = img.shape[:2] y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1) fx, fy = flow[y,x].T lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2) lines = np.int32(lines + 0.5) vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.polylines(vis, lines, 0, (0, 255, 0)) for (x1, y1), (x2, y2) in lines: cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) return vis def writeVectorField(file, flow, t): f = open(file, 'w') f.write('# vtk DataFile Version 2.0\n') f.write('Sample rectilinear grid\n') f.write('ASCII\n') f.write('DATASET STRUCTURED_POINTS\n') nx = len(flow[0]) ny = len(flow) f.write('DIMENSIONS ' + str(nx) + ' ' + str(ny) + ' 1\n') f.write('ASPECT_RATIO 1 1 1\n') f.write('ORIGIN 0 0 0\n') f.write('POINT_DATA ' + str(nx*ny) + ' \n') f.write('SCALARS irtemp float\n') f.write('LOOKUP_TABLE default \n') for i in range(0,ny): for j in range(0,nx): f.write(str(t[i][j])+ '\n') f.write('VECTORS vectors float\n') for i in range(0,ny): for j in range(0,nx): f.write(str(flow[i][j][0]) + ' ' + str(flow[i][j][1]) + ' 0\n') print 'Wrote flow: ' + file def writeSingleVTK(file, flow, t): f = open(file, 'w') nx = len(flow[0]) ny = len(flow) f.write(str(nx) + ' ' + str(ny) + ' \n') for i in range(0,ny): for j in range(0,nx): f.write(str(t[i][j]) + ' ' + str(flow[i][j][0]) + ' ' + str(flow[i][j][1]) + ' 1\n') print 'Wrote flow: ' + file
harishd10/cloud-track
python/fileutils.py
Python
apache-2.0
2,322
[ "VTK" ]
66a111097646a91ce63ebf28d20cc6a298414fa048ebfdcc479501f72581dd39
# GromacsWrapper: utilities.py # Copyright (c) 2009 Oliver Beckstein <[email protected]> # Released under the GNU Public License 3 (or higher, your choice) # See the file COPYING for details. """ :mod:`gromacs.utilities` -- Helper functions and classes ======================================================== The module defines some convenience functions and classes that are used in other modules; they do *not* make use of :mod:`gromacs.tools` or :mod:`gromacs.cbook` and can be safely imported at any time. Classes ------- :class:`FileUtils` provides functions related to filename handling. It can be used as a base or mixin class. The :class:`gromacs.analysis.Simulation` class is derived from it. .. autoclass:: FileUtils :members: .. autoclass:: AttributeDict .. autoclass:: Timedelta Functions --------- Some additional convenience functions that deal with files and directories: .. function:: openany(directory[,mode='r']) Context manager to open a compressed (bzip2, gzip) or plain file (uses :func:`anyopen`). .. autofunction:: anyopen .. autofunction:: realpath .. function:: in_dir(directory[,create=True]) Context manager to execute a code block in a directory. * The *directory* is created if it does not exist (unless *create* = ``False`` is set) * At the end or after an exception code always returns to the directory that was the current directory before entering the block. .. autofunction:: find_first .. autofunction:: withextsep .. autofunction:: which Functions that improve list processing and which do *not* treat strings as lists: .. autofunction:: iterable .. autofunction:: asiterable .. autofunction:: firstof Functions that help handling Gromacs files: .. autofunction:: unlink_f .. autofunction:: unlink_gmx .. autofunction:: unlink_gmx_backups .. autofunction:: number_pdbs Functions that make working with matplotlib_ easier: .. _matplotlib: http://matplotlib.sourceforge.net/ .. autofunction:: activate_subplot .. autofunction:: remove_legend Miscellaneous functions: .. autofunction:: convert_aa_code .. autofunction:: autoconvert Data ---- .. autodata:: amino_acid_codes """ from __future__ import absolute_import, with_statement, division __docformat__ = "restructuredtext en" import os import glob import fnmatch import re import warnings import errno import subprocess from contextlib import contextmanager import bz2, gzip import datetime import numpy from six import string_types import logging logger = logging.getLogger('gromacs.utilities') from .exceptions import AutoCorrectionWarning class AttributeDict(dict): """A dictionary with pythonic access to keys as attributes --- useful for interactive work.""" def __getattribute__(self, x): try: return super(AttributeDict,self).__getattribute__(x) except AttributeError: return self[x] def __setattr__(self, name, value): try: super(AttributeDict, self).__setitem__(name, value) except KeyError: super(AttributeDict, self).__setattr__(name, value) def __getstate__(self): return self def __setstate__(self, state): self.update(state) def autoconvert(s): """Convert input to a numerical type if possible. 1. A non-string object is returned as it is 2. Try conversion to int, float, str. """ if type(s) is not str: return s for converter in int, float, str: # try them in increasing order of lenience try: s = [converter(i) for i in s.split()] if len(s) == 1: return s[0] else: return numpy.array(s) except (ValueError, AttributeError): pass raise ValueError("Failed to autoconvert {0!r}".format(s)) @contextmanager def openany(datasource, mode='r', **kwargs): """Open the datasource and close it when the context exits. :Arguments: *datasource* a stream or a filename *mode* ``'r'`` opens for reading, ``'w'`` for writing ['r'] *kwargs* additional keyword arguments that are passed through to the actual handler; if these are not appropriate then an exception will be raised by the handler """ stream, filename = anyopen(datasource, mode=mode, **kwargs) try: yield stream finally: stream.close() def anyopen(datasource, mode='r', **kwargs): """Open datasource (gzipped, bzipped, uncompressed) and return a stream. :Arguments: *datasource* a stream or a filename *mode* ``'r'`` opens for reading, ``'w'`` for writing ['r'] *kwargs* additional keyword arguments that are passed through to the actual handler; if these are not appropriate then an exception will be raised by the handler """ handlers = {'bz2': bz2.BZ2File, 'gz': gzip.open, '': open} if mode.startswith('r'): if hasattr(datasource,'next') or hasattr(datasource,'readline'): stream = datasource try: filename = '({0})'.format(stream.name) # maybe that does not always work? except AttributeError: filename = str(type(stream)) else: stream = None filename = datasource for ext in ('bz2', 'gz', ''): # file == '' should be last openfunc = handlers[ext] stream = _get_stream(datasource, openfunc, mode=mode, **kwargs) if stream is not None: break if stream is None: raise IOError("Cannot open {filename!r} in mode={mode!r}.".format(**vars())) elif mode.startswith('w'): if hasattr(datasource, 'write'): stream = datasource try: filename = '({0})'.format(stream.name) # maybe that does not always work? except AttributeError: filename = str(type(stream)) else: stream = None filename = datasource name, ext = os.path.splitext(filename) if ext.startswith(os.path.extsep): ext = ext[1:] if ext not in ('bz2', 'gz'): ext = '' # anything else but bz2 or gz is just a normal file openfunc = handlers[ext] stream = openfunc(datasource, mode=mode, **kwargs) if stream is None: raise IOError("Cannot open {filename!r} in mode={mode!r} with type {ext!r}.".format(**vars())) else: raise NotImplementedError("Sorry, mode={mode!r} is not implemented for {datasource!r}".format(**vars())) return stream, filename def _get_stream(filename, openfunction=open, mode='r'): try: stream = openfunction(filename, mode=mode) except IOError: return None try: stream.readline() stream.close() stream = openfunction(filename,'r') except IOError: stream.close() stream = None return stream # TODO: make it work for non-default charge state amino acids. #: translation table for 1-letter codes --> 3-letter codes #: .. Note: This does not work for HISB and non-default charge state aa! amino_acid_codes = {'A':'ALA', 'C':'CYS', 'D':'ASP', 'E':'GLU', 'F':'PHE', 'G':'GLY', 'H':'HIS', 'I':'ILE', 'K':'LYS', 'L':'LEU', 'M':'MET', 'N':'ASN', 'P':'PRO', 'Q':'GLN', 'R':'ARG', 'S':'SER', 'T':'THR', 'V':'VAL', 'W':'TRP', 'Y':'TYR'} inverse_aa_codes = {three: one for one,three in amino_acid_codes.items()} def convert_aa_code(x): """Converts between 3-letter and 1-letter amino acid codes.""" if len(x) == 1: return amino_acid_codes[x.upper()] elif len(x) == 3: return inverse_aa_codes[x.upper()] else: raise ValueError("Can only convert 1-letter or 3-letter amino acid codes, " "not %r" % x) @contextmanager def in_dir(directory, create=True): """Context manager to execute a code block in a directory. * The directory is created if it does not exist (unless create=False is set) * At the end or after an exception code always returns to the directory that was the current directory before entering the block. """ startdir = os.getcwd() try: try: os.chdir(directory) logger.debug("Working in {directory!r}...".format(**vars())) except OSError as err: if create and err.errno == errno.ENOENT: os.makedirs(directory) os.chdir(directory) logger.info("Working in {directory!r} (newly created)...".format(**vars())) else: logger.exception("Failed to start working in {directory!r}.".format(**vars())) raise yield os.getcwd() finally: os.chdir(startdir) def realpath(*args): """Join all args and return the real path, rooted at /. Expands ``~`` and environment variables such as :envvar:`$HOME`. Returns ``None`` if any of the args is none. """ if None in args: return None return os.path.realpath( os.path.expandvars(os.path.expanduser(os.path.join(*args)))) def find_first(filename, suffices=None): """Find first *filename* with a suffix from *suffices*. :Arguments: *filename* base filename; this file name is checked first *suffices* list of suffices that are tried in turn on the root of *filename*; can contain the ext separator (:data:`os.path.extsep`) or not :Returns: The first match or ``None``. """ # struct is not reliable as it depends on qscript so now we just try everything... root,extension = os.path.splitext(filename) if suffices is None: suffices = [] else: suffices = withextsep(suffices) extensions = [extension] + suffices # native name is first for ext in extensions: fn = root + ext if os.path.exists(fn): return fn return None def withextsep(extensions): """Return list in which each element is guaranteed to start with :data:`os.path.extsep`.""" def dottify(x): if x.startswith(os.path.extsep): return x return os.path.extsep + x return [dottify(x) for x in asiterable(extensions)] def find_files(directory, pattern): """Find files recursively under *directory*, matching *pattern* (generator). *pattern* is a UNIX-style glob pattern as used ny :func:`fnmatch.fnmatch`. Recipe by Bruno Oliveira from http://stackoverflow.com/questions/2186525/use-a-glob-to-find-files-recursively-in-python """ for root, dirs, files in os.walk(directory): for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) yield filename def which(program): """Determine full path of executable *program* on :envvar:`PATH`. (Jay at http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python) .. versionadded:: 0.5.1 """ def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: real_program = realpath(program) if is_exe(real_program): return real_program else: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None class FileUtils(object): """Mixin class to provide additional file-related capabilities.""" #: Default extension for files read/written by this class. default_extension = None def _init_filename(self, filename=None, ext=None): """Initialize the current filename :attr:`FileUtils.real_filename` of the object. Bit of a hack. - The first invocation must have ``filename != None``; this will set a default filename with suffix :attr:`FileUtils.default_extension` unless another one was supplied. - Subsequent invocations either change the filename accordingly or ensure that the default filename is set with the proper suffix. """ extension = ext or self.default_extension filename = self.filename(filename, ext=extension, use_my_ext=True, set_default=True) #: Current full path of the object for reading and writing I/O. self.real_filename = os.path.realpath(filename) def filename(self,filename=None,ext=None,set_default=False,use_my_ext=False): """Supply a file name for the class object. Typical uses:: fn = filename() ---> <default_filename> fn = filename('name.ext') ---> 'name' fn = filename(ext='pickle') ---> <default_filename>'.pickle' fn = filename('name.inp','pdf') --> 'name.pdf' fn = filename('foo.pdf',ext='png',use_my_ext=True) --> 'foo.pdf' The returned filename is stripped of the extension (``use_my_ext=False``) and if provided, another extension is appended. Chooses a default if no filename is given. Raises a ``ValueError`` exception if no default file name is known. If ``set_default=True`` then the default filename is also set. ``use_my_ext=True`` lets the suffix of a provided filename take priority over a default ``ext`` tension. .. versionchanged:: 0.3.1 An empty string as *ext* = "" will suppress appending an extension. """ if filename is None: if not hasattr(self,'_filename'): self._filename = None # add attribute to class if self._filename: filename = self._filename else: raise ValueError("A file name is required because no default file name was defined.") my_ext = None else: filename, my_ext = os.path.splitext(filename) if set_default: # replaces existing default file name self._filename = filename if my_ext and use_my_ext: ext = my_ext if ext is not None: if ext.startswith(os.extsep): ext = ext[1:] # strip a dot to avoid annoying mistakes if ext != "": filename = filename + os.extsep + ext return filename def check_file_exists(self, filename, resolve='exception', force=None): """If a file exists then continue with the action specified in ``resolve``. ``resolve`` must be one of "ignore" always return ``False`` "indicate" return ``True`` if it exists "warn" indicate and issue a :exc:`UserWarning` "exception" raise :exc:`IOError` if it exists Alternatively, set *force* for the following behaviour (which ignores *resolve*): ``True`` same as *resolve* = "ignore" (will allow overwriting of files) ``False`` same as *resolve* = "exception" (will prevent overwriting of files) ``None`` ignored, do whatever *resolve* says """ def _warn(x): msg = "File {0!r} already exists.".format(x) logger.warn(msg) warnings.warn(msg) return True def _raise(x): msg = "File {0!r} already exists.".format(x) logger.error(msg) raise IOError(errno.EEXIST, x, msg) solutions = {'ignore': lambda x: False, # file exists, but we pretend that it doesn't 'indicate': lambda x: True, # yes, file exists 'warn': _warn, 'warning': _warn, 'exception': _raise, 'raise': _raise, } if force is True: resolve = 'ignore' elif force is False: resolve = 'exception' if not os.path.isfile(filename): return False else: return solutions[resolve](filename) def infix_filename(self, name, default, infix, ext=None): """Unless *name* is provided, insert *infix* before the extension *ext* of *default*.""" if name is None: p, oldext = os.path.splitext(default) if ext is None: ext = oldext if ext.startswith(os.extsep): ext = ext[1:] name = self.filename(p+infix, ext=ext) return name def __repr__(self): fmt = "{0!s}(filename=%r)".format(self.__class__.__name__) try: fn = self.filename() except ValueError: fn = None return fmt % fn def iterable(obj): """Returns ``True`` if *obj* can be iterated over and is *not* a string.""" if isinstance(obj, string_types): return False # avoid iterating over characters of a string if hasattr(obj, 'next'): return True # any iterator will do try: len(obj) # anything else that might work except TypeError: return False return True def asiterable(obj): """Returns obj so that it can be iterated over; a string is *not* treated as iterable""" if not iterable(obj): obj = [obj] return obj def firstof(obj): """Returns the first entry of a sequence or the obj. Treats strings as single objects. """ return asiterable(obj)[0] # In utilities so that it can be safely used in tools, cbook, ... def unlink_f(path): """Unlink path but do not complain if file does not exist.""" try: os.unlink(path) except OSError as err: if err.errno != errno.ENOENT: raise def unlink_gmx(*args): """Unlink (remove) Gromacs file(s) and all corresponding backups.""" for path in args: unlink_f(path) unlink_gmx_backups(*args) def unlink_gmx_backups(*args): """Unlink (rm) all backup files corresponding to the listed files.""" for path in args: dirname, filename = os.path.split(path) fbaks = glob.glob(os.path.join(dirname, '#'+filename+'.*#')) for bak in fbaks: unlink_f(bak) def mkdir_p(path): """Create a directory *path* with subdirs but do not complain if it exists. This is like GNU ``mkdir -p path``. """ try: os.makedirs(path) except OSError as err: if err.errno != errno.EEXIST: raise def cat(f=None, o=None): """Concatenate files *f*=[...] and write to *o*""" # need f, o to be compatible with trjcat and eneconv if f is None or o is None: return target = o infiles = asiterable(f) logger.debug("cat {0!s} > {1!s} ".format(" ".join(infiles), target)) with open(target, 'w') as out: rc = subprocess.call(['cat'] + infiles, stdout=out) if rc != 0: msg = "failed with return code {0:d}: cat {1!r} > {2!r} ".format(rc, " ".join(infiles), target) logger.exception(msg) raise OSError(errno.EIO, msg, target) # helpers for matplotlib def activate_subplot(numPlot): """Make subplot *numPlot* active on the canvas. Use this if a simple ``subplot(numRows, numCols, numPlot)`` overwrites the subplot instead of activating it. """ # see http://www.mail-archive.com/[email protected]/msg07156.html from pylab import gcf, axes numPlot -= 1 # index is 0-based, plots are 1-based return axes(gcf().get_axes()[numPlot]) def remove_legend(ax=None): """Remove legend for axes or gca. See http://osdir.com/ml/python.matplotlib.general/2005-07/msg00285.html """ from pylab import gca, draw if ax is None: ax = gca() ax.legend_ = None draw() # time functions class Timedelta(datetime.timedelta): """Extension of :class:`datetime.timedelta`. Provides attributes ddays, dhours, dminutes, dseconds to measure the delta in normal time units. ashours gives the total time in fractional hours. """ @property def dhours(self): """Hours component of the timedelta.""" return self.seconds // 3600 @property def dminutes(self): """Minutes component of the timedelta.""" return self.seconds // 60 - 60*self.dhours @property def dseconds(self): """Seconds component of the timedelta.""" return self.seconds - 3600*self.dhours - 60*self.dminutes @property def ashours(self): """Timedelta in (fractional) hours.""" return 24*self.days + self.seconds / 3600.0 def strftime(self, fmt="%d:%H:%M:%S"): """Primitive string formatter. The only directives understood are the following: ============ ========================== Directive meaning ============ ========================== %d day as integer %H hour [00-23] %h hours including days %M minute as integer [00-59] %S second as integer [00-59] ============ ========================== """ substitutions = { "%d": str(self.days), "%H": "{0:02d}".format(self.dhours), "%h": str(24*self.days + self.dhours), "%M": "{0:02d}".format(self.dminutes), "%S": "{0:02d}".format(self.dseconds), } s = fmt for search, replacement in substitutions.items(): s = s.replace(search, replacement) return s NUMBERED_PDB = re.compile(r"(?P<PREFIX>.*\D)(?P<NUMBER>\d+)\.(?P<SUFFIX>pdb)") def number_pdbs(*args, **kwargs): """Rename pdbs x1.pdb ... x345.pdb --> x0001.pdb ... x0345.pdb :Arguments: - *args*: filenames or glob patterns (such as "pdb/md*.pdb") - *format*: format string including keyword *num* ["%(num)04d"] """ format = kwargs.pop('format', "%(num)04d") name_format = "%(prefix)s" + format +".%(suffix)s" filenames = [] map(filenames.append, map(glob.glob, args)) # concatenate all filename lists filenames = filenames[0] # ... ugly for f in filenames: m = NUMBERED_PDB.search(f) if m is None: continue num = int(m.group('NUMBER')) prefix = m.group('PREFIX') suffix = m.group('SUFFIX') newname = name_format % vars() logger.info("Renaming {f!r} --> {newname!r}".format(**vars())) try: os.rename(f, newname) except OSError: logger.exception("renaming failed")
PicoCentauri/GromacsWrapper
gromacs/utilities.py
Python
gpl-3.0
22,926
[ "Gromacs" ]
3be933cecee02ebc870dfb2b936305182909ae710d1395ef3c15c8f50fd67f4e
"""mBuild conversion utilities.""" import numpy as np def RB_to_OPLS(c0, c1, c2, c3, c4, c5): """Convert Ryckaert-Bellemans type dihedrals to OPLS type. Parameters ---------- c0, c1, c2, c3, c4, c5 : Ryckaert-Belleman coefficients (in kcal/mol) Returns ------- opls_coeffs : np.array, shape=(4,) Array containing the OPLS dihedrals coeffs f1, f2, f3, and f4 (in kcal/mol) """ f1 = (-1.5 * c3) - (2 * c1) f2 = c0 + c1 + c3 f3 = -0.5 * c3 f4 = -0.25 * c4 return np.array([f1, f2, f3, f4]) def RB_to_CHARMM(c0, c1, c2, c3, c4, c5): r"""Convert Ryckaert-Bellemans (RB) type dihedrals to CHARMM type. .. math:: RB_torsions &= c0 + c1*cos(psi) + c2*cos(psi)^2 + c3*cos(psi)^3 + \\ &= c4*cos(psi)^4 + c5*cos(5*psi)^5 where :math:`psi = t - pi = t - 180 degrees` .. math:: CHARMM_torsions &= K0 * (1 + cos(n0*t - d0)) + \\ &= K1 * (1 + cos(n1*t - d1)) + \\ &= K2 * (1 + cos(n2*t - d2)) + \\ &= K3 * (1 + cos(n3*t - d3)) + \\ &= K4 * (1 + cos(n4*t - d4)) + \\ &= K5 * (1 + cos(n5*t - d5)) CHARMM_torsions &= K0 + &= K1 * (1 + cos(n1*t - d1)) + \\ &= K2 * (1 + cos(n2*t - d2)) + \\ &= K3 * (1 + cos(n3*t - d3)) + \\ &= K4 * (1 + cos(n4*t - d4)) + \\ &= K5 * (1 + cos(n5*t - d5)) Parameters ---------- c0, c1, c2, c3, c4, c5 : Ryckaert-Belleman coefficients (in kcal/mol) n0 = 0 n1 = 1 n2 = 2 n3 = 3 n4 = 4 n5 = 5 d0 = 90 d1 = 180 d2 = 0 d3 = 180 d4 = 0 d5 = 180 Returns ------- CHARMM_dihedral coeffs : np.matrix, shape=(6,3) Array containing the CHARMM dihedral coeffs (in kcal/mol): [[K0, n0, d0], [K1, n1, d1], [K2, n2, d2], [K3, n3, d3], [K4, n4, d4], [K5, n5, d5]] """ # see below or the long version is, # K0 = (c0 + c2 / 2 + 3 / 8 * c4) - K1 - K2 - K3 - K4 - K5 K0 = c0 - c1 - c3 - (c4 / 4) - c5 K1 = c1 + (3 / 4) * c3 + (5 / 8) * c5 K2 = (1 / 2) * c2 + (1 / 2) * c4 K3 = (1 / 4) * c3 + (5 / 16) * c5 K4 = (1 / 8) * c4 K5 = (1 / 16) * c5 n0 = 0 n1 = 1 n2 = 2 n3 = 3 n4 = 4 n5 = 5 d0 = 90 d1 = 180 d2 = 0 d3 = 180 d4 = 0 d5 = 180 return np.array( [ [K0, n0, d0], [K1, n1, d1], [K2, n2, d2], [K3, n3, d3], [K4, n4, d4], [K5, n5, d5], ] ) def base10_to_base62_alph_num(base10_no): """Convert base-10 integer to base-62 alphanumeric system. This function provides a utility to write pdb/psf files such that it can add may more than 9999 atoms and 999 residues. Parameters ---------- base10_no: int The integer to convert to base-62 alphanumeric system Returns ------- str The converted base-62 system string See Also -------- mbuild.conversion._to_base: Helper function to perform a base-n conversion """ return _to_base(base10_no, base=62) def base10_to_base52_alph(base10_no): """Convert base-10 integer to base-52 alphabetic system. This function provides a utility to write pdb/psf files such that it can add more atom types in the 3 or 4 character limited pdb and psf files Parameters ---------- base10_no: int The integer to convert to base-52 alphabetic system Returns ------- str The converted base-52 system string See Also -------- mbuild.conversion._to_base: Helper function to perform a base-n conversion """ return _to_base(number=base10_no, base=52) def base10_to_base26_alph(base10_no): """Convert base-10 integer to base-26 alphabetic system. This function provides a utility to write pdb/psf files such that it can add many more than 9999 atoms and 999 residues. Parameters ---------- base10_no: int The integer to convert to base-26 alphabetic system Returns ------- str The converted base-26 system string See Also -------- mbuild.conversion._to_base: Helper function to perform a base-n conversion """ return _to_base(base10_no, base=26) def base10_to_base16_alph_num(base10_no): """Convert base-10 integer to base-16 hexadecimal system. This function provides a utility to write pdb/psf files such that it can add many more than 9999 atoms and 999 residues. Parameters ---------- base10_no: int The integer to convert to base-16 hexadecimal system Returns ------- str The converted base-16 system string See Also -------- mbuild.conversion._to_base: Helper function to perform a base-n conversion """ return hex(int(base10_no))[2:] # Helpers to convert base def _to_base(number, base=62): """Convert a base-10 number into base-n alpha-num.""" start_values = {62: "0", 52: "A", 26: "A"} if base not in start_values: raise ValueError( f"Base-{base} system is not supported. Supported bases are: " f"{list(start_values.keys())}" ) num = 1 number = int(number) remainder = _digit_to_alpha_num((number % base), base) base_n_values = str(remainder) power = 1 while num != 0: num = int(number / base ** power) if num == base: base_n_values = start_values[base] + base_n_values elif num != 0 and num > base: base_n_values = ( str(_digit_to_alpha_num(int(num % base), base)) + base_n_values ) elif (num != 0) and (num < base): base_n_values = ( str(_digit_to_alpha_num(int(num), base)) + base_n_values ) power += 1 return base_n_values def _digit_to_alpha_num(digit, base=52): """Convert digit to base-n.""" base_values = { 26: {j: chr(j + 65) for j in range(0, 26)}, 52: {j: chr(j + 65) if j < 26 else chr(j + 71) for j in range(0, 52)}, 62: {j: chr(j + 55) if j < 36 else chr(j + 61) for j in range(10, 62)}, } if base not in base_values: raise ValueError( f"Base-{base} system is not supported. Supported bases are: " f"{list(base_values.keys())}" ) return base_values[base].get(digit, digit)
iModels/mbuild
mbuild/utils/conversion.py
Python
mit
6,621
[ "CHARMM" ]
0635a4694bd9189a9ff29cd9ab7ced13a6b38490e51d3376ef662b67cbcf684c
# -*- coding: utf-8 -*- # This script creates a transparent red dice to explore further the capabilities # of mayavi. # # To run (in a Python shell): # run red_dice.py # # Created January 2015 by F.P.A.Vogt for the ANITA astroinformatics summer # school 2015. # Published as supplementary material in Vogt, Owen et al., ApJ (2015). # # Questions, comments : [email protected] # # If you find this code useful for your research, please cite the following # article accordingly: # # Vogt, Owen et al., Advanced Data Visualization in Astrophysics: # the X3D Pathway, ApJ (2015). # # Copyright (C) 2015 Frédéric P.A. Vogt, Chris I. Owen # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ------------------------------------------------------------------------------ # Import the required packages from mayavi import mlab # Define the dice elements xs = [0] ys = [0] zs = [0] px = [0, -0.25,-0.25,-0.25,0.25, 0.25,0.25, -0.5, -0.5,-0.5, -0.5,-0.5, 0.5, 0.5, 0,-0.25,0.25, -0.25, -0.25, 0.25, 0.25] py = [0, -0.25, 0, 0.25,-0.25, 0, 0.25, 0,-0.25,0.25, -0.25, 0.25, -0.25,0.25, -0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5] pz = [-0.5, 0.5,0.5, 0.5, 0.5, 0.5,0.5, 0, -0.25, -0.25, 0.25, 0.25, 0.25, -0.25, 0,-0.25, 0.25, -0.25,0.25, -0.25, 0.25] pc = [0, 6,6,6,6,6,6, 5,5,5,5,5, 2,2, 3,3,3, 4,4,4,4,] # Create a mayavi window mlab.close(2) mlab.figure(2,size=(500,500)) # Add some inner spheres with transparency and the cube mlab.points3d(xs,ys,zs, scale_factor=0.25,color=(1,0.5,0), mode= 'sphere', opacity=1) mlab.points3d(xs,ys,zs, scale_factor=0.5,color=(1,1,1), mode= 'sphere', opacity=0.5) mlab.points3d(xs,ys,zs, scale_factor=1,scale_mode='none', color=(0.7,0,0), mode='cube', opacity=0.5) # A dark outline for the look mlab.outline(color=(0,0,0),line_width = 2.0) # The different cube faces this time with some colors mlab.points3d(px,py,pz, pc, scale_factor=0.2, scale_mode='none', colormap="bone",mode='sphere') # And the associated colorbar mlab.colorbar(orientation="vertical",nb_labels=7) # Finally add some text. # This can be done via either mlab.text() or mlab.text3d(). We prefer the former # function, as it will result in a "text" instance in the associated X3D file, # which allows, e.g. to modifiy the text itself at the X3D level. By comparison, # mlab.text3D() creates a full 3-D structure which cannot be modified later on. mlab.text(0,0,"This is a dice",z=1) # Export the model to X3D and WRL mlab.savefig('./red_dice.x3d') mlab.savefig('./red_dice.png') mlab.show()
fpavogt/x3d-pathway
fits_to_x3d/red_dice/red_dice.py
Python
gpl-3.0
3,293
[ "Mayavi" ]
d7d01dfc8d773536cca7bd5fd2724fc7d77f9b2abc27b77d9ca818ab58cbfb3b
""" The ``sdm`` module contains functions to fit single diode models. Function names should follow the pattern "fit_" + name of model + "_" + fitting method. """ import numpy as np import scipy.constants from scipy import optimize from scipy.special import lambertw from scipy.misc import derivative from pvlib.pvsystem import calcparams_pvsyst, singlediode, v_from_i from pvlib.singlediode import bishop88_mpp from pvlib.ivtools.utils import rectify_iv_curve, _numdiff from pvlib.ivtools.sde import _fit_sandia_cocontent def fit_cec_sam(celltype, v_mp, i_mp, v_oc, i_sc, alpha_sc, beta_voc, gamma_pmp, cells_in_series, temp_ref=25): """ Estimates parameters for the CEC single diode model (SDM) using the SAM SDK. Parameters ---------- celltype : str Value is one of 'monoSi', 'multiSi', 'polySi', 'cis', 'cigs', 'cdte', 'amorphous' v_mp : float Voltage at maximum power point [V] i_mp : float Current at maximum power point [A] v_oc : float Open circuit voltage [V] i_sc : float Short circuit current [A] alpha_sc : float Temperature coefficient of short circuit current [A/C] beta_voc : float Temperature coefficient of open circuit voltage [V/C] gamma_pmp : float Temperature coefficient of power at maximum point point [%/C] cells_in_series : int Number of cells in series temp_ref : float, default 25 Reference temperature condition [C] Returns ------- I_L_ref : float The light-generated current (or photocurrent) at reference conditions [A] I_o_ref : float The dark or diode reverse saturation current at reference conditions [A] R_s : float The series resistance at reference conditions, in ohms. R_sh_ref : float The shunt resistance at reference conditions, in ohms. a_ref : float The product of the usual diode ideality factor ``n`` (unitless), number of cells in series ``Ns``, and cell thermal voltage at reference conditions [V] Adjust : float The adjustment to the temperature coefficient for short circuit current, in percent. Raises ------ ImportError if NREL-PySAM is not installed. RuntimeError if parameter extraction is not successful. Notes ----- The CEC model and estimation method are described in [1]_. Inputs ``v_mp``, ``i_mp``, ``v_oc`` and ``i_sc`` are assumed to be from a single IV curve at constant irradiance and cell temperature. Irradiance is not explicitly used by the fitting procedure. The irradiance level at which the input IV curve is determined and the specified cell temperature ``temp_ref`` are the reference conditions for the output parameters ``I_L_ref``, ``I_o_ref``, ``R_s``, ``R_sh_ref``, ``a_ref`` and ``Adjust``. References ---------- .. [1] A. Dobos, "An Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model", Journal of Solar Energy Engineering, vol 134, 2012. """ try: from PySAM import PySSC except ImportError: raise ImportError("Requires NREL's PySAM package at " "https://pypi.org/project/NREL-PySAM/.") datadict = {'tech_model': '6parsolve', 'financial_model': None, 'celltype': celltype, 'Vmp': v_mp, 'Imp': i_mp, 'Voc': v_oc, 'Isc': i_sc, 'alpha_isc': alpha_sc, 'beta_voc': beta_voc, 'gamma_pmp': gamma_pmp, 'Nser': cells_in_series, 'Tref': temp_ref} result = PySSC.ssc_sim_from_dict(datadict) if result['cmod_success'] == 1: return tuple([result[k] for k in ['Il', 'Io', 'Rs', 'Rsh', 'a', 'Adj']]) else: raise RuntimeError('Parameter estimation failed') def fit_desoto(v_mp, i_mp, v_oc, i_sc, alpha_sc, beta_voc, cells_in_series, EgRef=1.121, dEgdT=-0.0002677, temp_ref=25, irrad_ref=1000, root_kwargs={}): """ Calculates the parameters for the De Soto single diode model. This procedure (described in [1]_) has the advantage of using common specifications given by manufacturers in the datasheets of PV modules. The solution is found using the scipy.optimize.root() function, with the corresponding default solver method 'hybr'. No restriction is put on the fit variables, i.e. series or shunt resistance could go negative. Nevertheless, if it happens, check carefully the inputs and their units; alpha_sc and beta_voc are often given in %/K in manufacturers datasheets and should be given in A/K and V/K here. The parameters returned by this function can be used by :py:func:`pvlib.pvsystem.calcparams_desoto` to calculate the values at different irradiance and cell temperature. Parameters ---------- v_mp: float Module voltage at the maximum-power point at reference conditions [V]. i_mp: float Module current at the maximum-power point at reference conditions [A]. v_oc: float Open-circuit voltage at reference conditions [V]. i_sc: float Short-circuit current at reference conditions [A]. alpha_sc: float The short-circuit current (i_sc) temperature coefficient of the module [A/K]. beta_voc: float The open-circuit voltage (v_oc) temperature coefficient of the module [V/K]. cells_in_series: integer Number of cell in the module. EgRef: float, default 1.121 eV - value for silicon Energy of bandgap of semi-conductor used [eV] dEgdT: float, default -0.0002677 - value for silicon Variation of bandgap according to temperature [eV/K] temp_ref: float, default 25 Reference temperature condition [C] irrad_ref: float, default 1000 Reference irradiance condition [W/m2] root_kwargs: dictionary, default None Dictionary of arguments to pass onto scipy.optimize.root() Returns ------- dict with the following elements: I_L_ref: float Light-generated current at reference conditions [A] I_o_ref: float Diode saturation current at reference conditions [A] R_s: float Series resistance [ohm] R_sh_ref: float Shunt resistance at reference conditions [ohm]. a_ref: float Modified ideality factor at reference conditions. The product of the usual diode ideality factor (n, unitless), number of cells in series (Ns), and cell thermal voltage at specified effective irradiance and cell temperature. alpha_sc: float The short-circuit current (i_sc) temperature coefficient of the module [A/K]. EgRef: float Energy of bandgap of semi-conductor used [eV] dEgdT: float Variation of bandgap according to temperature [eV/K] irrad_ref: float Reference irradiance condition [W/m2] temp_ref: float Reference temperature condition [C] scipy.optimize.OptimizeResult Optimization result of scipy.optimize.root(). See scipy.optimize.OptimizeResult for more details. References ---------- .. [1] W. De Soto et al., "Improvement and validation of a model for photovoltaic array performance", Solar Energy, vol 80, pp. 78-88, 2006. """ # Constants k = scipy.constants.value('Boltzmann constant in eV/K') Tref = temp_ref + 273.15 # [K] # initial guesses of variables for computing convergence: # Values are taken from [2], p753 Rsh_0 = 100.0 a_0 = 1.5*k*Tref*cells_in_series IL_0 = i_sc Io_0 = i_sc * np.exp(-v_oc/a_0) Rs_0 = (a_0*np.log1p((IL_0-i_mp)/Io_0) - v_mp)/i_mp # params_i : initial values vector params_i = np.array([IL_0, Io_0, Rs_0, Rsh_0, a_0]) # specs of module specs = (i_sc, v_oc, i_mp, v_mp, beta_voc, alpha_sc, EgRef, dEgdT, Tref, k) # computing with system of equations described in [1] optimize_result = optimize.root(_system_of_equations_desoto, x0=params_i, args=(specs,), **root_kwargs) if optimize_result.success: sdm_params = optimize_result.x else: raise RuntimeError( 'Parameter estimation failed:\n' + optimize_result.message) # results return ({'I_L_ref': sdm_params[0], 'I_o_ref': sdm_params[1], 'R_s': sdm_params[2], 'R_sh_ref': sdm_params[3], 'a_ref': sdm_params[4], 'alpha_sc': alpha_sc, 'EgRef': EgRef, 'dEgdT': dEgdT, 'irrad_ref': irrad_ref, 'temp_ref': temp_ref}, optimize_result) def _system_of_equations_desoto(params, specs): """Evaluates the systems of equations used to solve for the single diode equation parameters. Function designed to be used by scipy.optimize.root in fit_desoto. Parameters ---------- params: ndarray Array with parameters of the De Soto single diode model. Must be given in the following order: IL, Io, a, Rs, Rsh specs: tuple Specifications of pv module given by manufacturer. Must be given in the following order: Isc, Voc, Imp, Vmp, beta_oc, alpha_sc Returns ------- value of the system of equations to solve with scipy.optimize.root(). """ # six input known variables Isc, Voc, Imp, Vmp, beta_oc, alpha_sc, EgRef, dEgdT, Tref, k = specs # five parameters vector to find IL, Io, Rs, Rsh, a = params # five equation vector y = [0, 0, 0, 0, 0] # 1st equation - short-circuit - eq(3) in [1] y[0] = Isc - IL + Io * np.expm1(Isc * Rs / a) + Isc * Rs / Rsh # 2nd equation - open-circuit Tref - eq(4) in [1] y[1] = -IL + Io * np.expm1(Voc / a) + Voc / Rsh # 3rd equation - Imp & Vmp - eq(5) in [1] y[2] = Imp - IL + Io * np.expm1((Vmp + Imp * Rs) / a) \ + (Vmp + Imp * Rs) / Rsh # 4th equation - Pmp derivated=0 - eq23.2.6 in [2] # caution: eq(6) in [1] has a sign error y[3] = Imp \ - Vmp * ((Io / a) * np.exp((Vmp + Imp * Rs) / a) + 1.0 / Rsh) \ / (1.0 + (Io * Rs / a) * np.exp((Vmp + Imp * Rs) / a) + Rs / Rsh) # 5th equation - open-circuit T2 - eq (4) at temperature T2 in [1] T2 = Tref + 2 Voc2 = (T2 - Tref) * beta_oc + Voc # eq (7) in [1] a2 = a * T2 / Tref # eq (8) in [1] IL2 = IL + alpha_sc * (T2 - Tref) # eq (11) in [1] Eg2 = EgRef * (1 + dEgdT * (T2 - Tref)) # eq (10) in [1] Io2 = Io * (T2 / Tref)**3 * np.exp(1 / k * (EgRef/Tref - Eg2/T2)) # eq (9) y[4] = -IL2 + Io2 * np.expm1(Voc2 / a2) + Voc2 / Rsh # eq (4) at T2 return y def fit_pvsyst_sandia(ivcurves, specs, const=None, maxiter=5, eps1=1.e-3): """ Estimate parameters for the PVsyst module performance model. Parameters ---------- ivcurves : dict i : array One array element for each IV curve. The jth element is itself an array of current for jth IV curve (same length as v[j]) [A] v : array One array element for each IV curve. The jth element is itself an array of voltage for jth IV curve (same length as i[j]) [V] ee : array effective irradiance for each IV curve, i.e., POA broadband irradiance adjusted by solar spectrum modifier [W / m^2] tc : array cell temperature for each IV curve [C] i_sc : array short circuit current for each IV curve [A] v_oc : array open circuit voltage for each IV curve [V] i_mp : array current at max power point for each IV curve [A] v_mp : array voltage at max power point for each IV curve [V] specs : dict cells_in_series : int number of cells in series alpha_sc : float temperature coefficient of isc [A/C] const : dict E0 : float effective irradiance at STC, default 1000 [W/m^2] T0 : float cell temperature at STC, default 25 [C] k : float 1.38066E-23 J/K (Boltzmann's constant) q : float 1.60218E-19 Coulomb (elementary charge) maxiter : int, default 5 input that sets the maximum number of iterations for the parameter updating part of the algorithm. eps1: float, default 1e-3 Tolerance for the IV curve fitting. The parameter updating stops when absolute values of the percent change in mean, max and standard deviation of Imp, Vmp and Pmp between iterations are all less than eps1, or when the number of iterations exceeds maxiter. Returns ------- dict I_L_ref : float light current at STC [A] I_o_ref : float dark current at STC [A] EgRef : float effective band gap at STC [eV] R_s : float series resistance at STC [ohm] R_sh_ref : float shunt resistance at STC [ohm] R_sh_0 : float shunt resistance at zero irradiance [ohm] R_sh_exp : float exponential factor defining decrease in shunt resistance with increasing effective irradiance gamma_ref : float diode (ideality) factor at STC [unitless] mu_gamma : float temperature coefficient for diode (ideality) factor [1/K] cells_in_series : int number of cells in series iph : array light current for each IV curve [A] io : array dark current for each IV curve [A] rs : array series resistance for each IV curve [ohm] rsh : array shunt resistance for each IV curve [ohm] u : array boolean for each IV curve indicating that the parameter values are deemed reasonable by the private function ``_filter_params`` Notes ----- The PVsyst module performance model is described in [1]_, [2]_, and [3]_. The fitting method is documented in [4]_, [5]_, and [6]_. Ported from PVLib Matlab [7]_. References ---------- .. [1] K. Sauer, T. Roessler, C. W. Hansen, Modeling the Irradiance and Temperature Dependence of Photovoltaic Modules in PVsyst, IEEE Journal of Photovoltaics v5(1), January 2015. .. [2] A. Mermoud, PV Modules modeling, Presentation at the 2nd PV Performance Modeling Workshop, Santa Clara, CA, May 2013 .. [3] A. Mermoud, T. Lejeuene, Performance Assessment of a Simulation Model for PV modules of any available technology, 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, Sept. 2010 .. [4] C. Hansen, Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model, Sandia National Laboratories Report SAND2015-8598 .. [5] C. Hansen, Parameter Estimation for Single Diode Models of Photovoltaic Modules, Sandia National Laboratories Report SAND2015-2065 .. [6] C. Hansen, Estimation of Parameters for Single Diode Models using Measured IV Curves, Proc. of the 39th IEEE PVSC, June 2013. .. [7] PVLib MATLAB https://github.com/sandialabs/MATLAB_PV_LIB """ if const is None: const = {'E0': 1000.0, 'T0': 25.0, 'k': 1.38066e-23, 'q': 1.60218e-19} ee = ivcurves['ee'] tc = ivcurves['tc'] tck = tc + 273.15 isc = ivcurves['i_sc'] voc = ivcurves['v_oc'] imp = ivcurves['i_mp'] vmp = ivcurves['v_mp'] # Cell Thermal Voltage vth = const['k'] / const['q'] * tck n = len(ivcurves['v_oc']) # Initial estimate of Rsh used to obtain the diode factor gamma0 and diode # temperature coefficient mu_gamma. Rsh is estimated using the co-content # integral method. rsh = np.ones(n) for j in range(n): voltage, current = rectify_iv_curve(ivcurves['v'][j], ivcurves['i'][j]) # initial estimate of Rsh, from integral over voltage regression # [5] Step 3a; [6] Step 3a _, _, _, rsh[j], _ = _fit_sandia_cocontent( voltage, current, vth[j] * specs['cells_in_series']) gamma_ref, mu_gamma = _fit_pvsyst_sandia_gamma(voc, isc, rsh, vth, tck, specs, const) badgamma = np.isnan(gamma_ref) or np.isnan(mu_gamma) \ or not np.isreal(gamma_ref) or not np.isreal(mu_gamma) if badgamma: raise RuntimeError( "Failed to estimate the diode (ideality) factor parameter;" " aborting parameter estimation.") gamma = gamma_ref + mu_gamma * (tc - const['T0']) nnsvth = gamma * (vth * specs['cells_in_series']) # For each IV curve, sequentially determine initial values for Io, Rs, # and Iph [5] Step 3a; [6] Step 3 iph, io, rs, u = _initial_iv_params(ivcurves, ee, voc, isc, rsh, nnsvth) # Update values for each IV curve to converge at vmp, imp, voc and isc iph, io, rs, rsh, u = _update_iv_params(voc, isc, vmp, imp, ee, iph, io, rs, rsh, nnsvth, u, maxiter, eps1) # get single diode models from converged values for each IV curve pvsyst = _extract_sdm_params(ee, tc, iph, io, rs, rsh, gamma, u, specs, const, model='pvsyst') # Add parameters estimated in this function pvsyst['gamma_ref'] = gamma_ref pvsyst['mu_gamma'] = mu_gamma pvsyst['cells_in_series'] = specs['cells_in_series'] return pvsyst def fit_desoto_sandia(ivcurves, specs, const=None, maxiter=5, eps1=1.e-3): """ Estimate parameters for the De Soto module performance model. Parameters ---------- ivcurves : dict i : array One array element for each IV curve. The jth element is itself an array of current for jth IV curve (same length as v[j]) [A] v : array One array element for each IV curve. The jth element is itself an array of voltage for jth IV curve (same length as i[j]) [V] ee : array effective irradiance for each IV curve, i.e., POA broadband irradiance adjusted by solar spectrum modifier [W / m^2] tc : array cell temperature for each IV curve [C] i_sc : array short circuit current for each IV curve [A] v_oc : array open circuit voltage for each IV curve [V] i_mp : array current at max power point for each IV curve [A] v_mp : array voltage at max power point for each IV curve [V] specs : dict cells_in_series : int number of cells in series alpha_sc : float temperature coefficient of Isc [A/C] beta_voc : float temperature coefficient of Voc [V/C] const : dict E0 : float effective irradiance at STC, default 1000 [W/m^2] T0 : float cell temperature at STC, default 25 [C] k : float 1.38066E-23 J/K (Boltzmann's constant) q : float 1.60218E-19 Coulomb (elementary charge) maxiter : int, default 5 input that sets the maximum number of iterations for the parameter updating part of the algorithm. eps1: float, default 1e-3 Tolerance for the IV curve fitting. The parameter updating stops when absolute values of the percent change in mean, max and standard deviation of Imp, Vmp and Pmp between iterations are all less than eps1, or when the number of iterations exceeds maxiter. Returns ------- dict I_L_ref : float light current at STC [A] I_o_ref : float dark current at STC [A] EgRef : float effective band gap at STC [eV] R_s : float series resistance at STC [ohm] R_sh_ref : float shunt resistance at STC [ohm] cells_in_series : int number of cells in series iph : array light current for each IV curve [A] io : array dark current for each IV curve [A] rs : array series resistance for each IV curve [ohm] rsh : array shunt resistance for each IV curve [ohm] u : array boolean for each IV curve indicating that the parameter values are deemed reasonable by the private function ``_filter_params`` Notes ----- The De Soto module performance model is described in [1]_. The fitting method is documented in [2]_, [3]_. Ported from PVLib Matlab [4]_. References ---------- .. [1] W. De Soto et al., "Improvement and validation of a model for photovoltaic array performance", Solar Energy, vol 80, pp. 78-88, 2006. .. [2] C. Hansen, Parameter Estimation for Single Diode Models of Photovoltaic Modules, Sandia National Laboratories Report SAND2015-2065 .. [3] C. Hansen, Estimation of Parameters for Single Diode Models using Measured IV Curves, Proc. of the 39th IEEE PVSC, June 2013. .. [4] PVLib MATLAB https://github.com/sandialabs/MATLAB_PV_LIB """ if const is None: const = {'E0': 1000.0, 'T0': 25.0, 'k': 1.38066e-23, 'q': 1.60218e-19} ee = ivcurves['ee'] tc = ivcurves['tc'] tck = tc + 273.15 isc = ivcurves['i_sc'] voc = ivcurves['v_oc'] imp = ivcurves['i_mp'] vmp = ivcurves['v_mp'] # Cell Thermal Voltage vth = const['k'] / const['q'] * tck n = len(voc) # Initial estimate of Rsh used to obtain the diode factor gamma0 and diode # temperature coefficient mu_gamma. Rsh is estimated using the co-content # integral method. rsh = np.ones(n) for j in range(n): voltage, current = rectify_iv_curve(ivcurves['v'][j], ivcurves['i'][j]) # initial estimate of Rsh, from integral over voltage regression # [5] Step 3a; [6] Step 3a _, _, _, rsh[j], _ = _fit_sandia_cocontent( voltage, current, vth[j] * specs['cells_in_series']) n0 = _fit_desoto_sandia_diode(ee, voc, vth, tc, specs, const) bad_n = np.isnan(n0) or not np.isreal(n0) if bad_n: raise RuntimeError( "Failed to estimate the diode (ideality) factor parameter;" " aborting parameter estimation.") nnsvth = n0 * specs['cells_in_series'] * vth # For each IV curve, sequentially determine initial values for Io, Rs, # and Iph [5] Step 3a; [6] Step 3 iph, io, rs, u = _initial_iv_params(ivcurves, ee, voc, isc, rsh, nnsvth) # Update values for each IV curve to converge at vmp, imp, voc and isc iph, io, rs, rsh, u = _update_iv_params(voc, isc, vmp, imp, ee, iph, io, rs, rsh, nnsvth, u, maxiter, eps1) # get single diode models from converged values for each IV curve desoto = _extract_sdm_params(ee, tc, iph, io, rs, rsh, n0, u, specs, const, model='desoto') # Add parameters estimated in this function desoto['a_ref'] = n0 * specs['cells_in_series'] * const['k'] / \ const['q'] * (const['T0'] + 273.15) desoto['cells_in_series'] = specs['cells_in_series'] return desoto def _fit_pvsyst_sandia_gamma(voc, isc, rsh, vth, tck, specs, const): # Estimate the diode factor gamma from Isc-Voc data. Method incorporates # temperature dependence by means of the equation for Io y = np.log(isc - voc / rsh) - 3. * np.log(tck / (const['T0'] + 273.15)) x1 = const['q'] / const['k'] * (1. / (const['T0'] + 273.15) - 1. / tck) x2 = voc / (vth * specs['cells_in_series']) uu = np.logical_or(np.isnan(y), np.isnan(x1), np.isnan(x2)) x = np.vstack((np.ones(len(x1[~uu])), x1[~uu], -x1[~uu] * (tck[~uu] - (const['T0'] + 273.15)), x2[~uu], -x2[~uu] * (tck[~uu] - (const['T0'] + 273.15)))).T alpha = np.linalg.lstsq(x, y[~uu], rcond=None)[0] gamma_ref = 1. / alpha[3] mu_gamma = alpha[4] / alpha[3] ** 2 return gamma_ref, mu_gamma def _fit_desoto_sandia_diode(ee, voc, vth, tc, specs, const): # estimates the diode factor for the De Soto model. # Helper function for fit_desoto_sandia try: import statsmodels.api as sm except ImportError: raise ImportError( 'Parameter extraction using Sandia method requires statsmodels') x = specs['cells_in_series'] * vth * np.log(ee / const['E0']) y = voc - specs['beta_voc'] * (tc - const['T0']) new_x = sm.add_constant(x) res = sm.RLM(y, new_x).fit() return res.params[1] def _initial_iv_params(ivcurves, ee, voc, isc, rsh, nnsvth): # sets initial values for iph, io, rs and quality filter u. # Helper function for fit_<model>_sandia. n = len(ivcurves['v_oc']) io = np.ones(n) iph = np.ones(n) rs = np.ones(n) for j in range(n): if rsh[j] > 0: volt, curr = rectify_iv_curve(ivcurves['v'][j], ivcurves['i'][j]) # Initial estimate of Io, evaluate the single diode model at # voc and approximate Iph + Io = Isc [5] Step 3a; [6] Step 3b io[j] = (isc[j] - voc[j] / rsh[j]) * np.exp(-voc[j] / nnsvth[j]) # initial estimate of rs from dI/dV near Voc # [5] Step 3a; [6] Step 3c [didv, d2id2v] = _numdiff(volt, curr) t3 = volt > .5 * voc[j] t4 = volt < .9 * voc[j] tmp = -rsh[j] * didv - 1. with np.errstate(invalid="ignore"): # expect nan in didv v = np.logical_and.reduce(np.array([t3, t4, ~np.isnan(tmp), np.greater(tmp, 0)])) if np.any(v): vtrs = (nnsvth[j] / isc[j] * ( np.log(tmp[v] * nnsvth[j] / (rsh[j] * io[j])) - volt[v] / nnsvth[j])) rs[j] = np.mean(vtrs[vtrs > 0], axis=0) else: rs[j] = 0. # Initial estimate of Iph, evaluate the single diode model at # Isc [5] Step 3a; [6] Step 3d iph[j] = isc[j] + io[j] * np.expm1(isc[j] / nnsvth[j]) \ + isc[j] * rs[j] / rsh[j] else: io[j] = np.nan rs[j] = np.nan iph[j] = np.nan # Filter IV curves for good initial values # [5] Step 3b u = _filter_params(ee, isc, io, rs, rsh) # [5] Step 3c # Refine Io to match Voc io[u] = _update_io(voc[u], iph[u], io[u], rs[u], rsh[u], nnsvth[u]) # parameters [6], Step 3c # Calculate Iph to be consistent with Isc and current values of other iph = isc + io * np.expm1(rs * isc / nnsvth) + isc * rs / rsh return iph, io, rs, u def _update_iv_params(voc, isc, vmp, imp, ee, iph, io, rs, rsh, nnsvth, u, maxiter, eps1): # Refine Rsh, Rs, Io and Iph in that order. # Helper function for fit_<model>_sandia. counter = 1. # counter variable for parameter updating while loop, # counts iterations prevconvergeparams = {} prevconvergeparams['state'] = 0.0 not_converged = np.array([True]) while not_converged.any() and counter <= maxiter: # update rsh to match max power point using a fixed point method. rsh[u] = _update_rsh_fixed_pt(vmp[u], imp[u], iph[u], io[u], rs[u], rsh[u], nnsvth[u]) # Calculate Rs to be consistent with Rsh and maximum power point _, phi = _calc_theta_phi_exact(vmp[u], imp[u], iph[u], io[u], rs[u], rsh[u], nnsvth[u]) rs[u] = (iph[u] + io[u] - imp[u]) * rsh[u] / imp[u] - \ nnsvth[u] * phi / imp[u] - vmp[u] / imp[u] # Update filter for good parameters u = _filter_params(ee, isc, io, rs, rsh) # Update value for io to match voc io[u] = _update_io(voc[u], iph[u], io[u], rs[u], rsh[u], nnsvth[u]) # Calculate Iph to be consistent with Isc and other parameters iph = isc + io * np.expm1(rs * isc / nnsvth) + isc * rs / rsh # update filter for good parameters u = _filter_params(ee, isc, io, rs, rsh) # compute the IV curve from the current parameter values result = singlediode(iph[u], io[u], rs[u], rsh[u], nnsvth[u]) # check convergence criteria # [5] Step 3d convergeparams = _check_converge( prevconvergeparams, result, vmp[u], imp[u], counter) prevconvergeparams = convergeparams counter += 1. t5 = prevconvergeparams['vmperrmeanchange'] >= eps1 t6 = prevconvergeparams['imperrmeanchange'] >= eps1 t7 = prevconvergeparams['pmperrmeanchange'] >= eps1 t8 = prevconvergeparams['vmperrstdchange'] >= eps1 t9 = prevconvergeparams['imperrstdchange'] >= eps1 t10 = prevconvergeparams['pmperrstdchange'] >= eps1 t11 = prevconvergeparams['vmperrabsmaxchange'] >= eps1 t12 = prevconvergeparams['imperrabsmaxchange'] >= eps1 t13 = prevconvergeparams['pmperrabsmaxchange'] >= eps1 not_converged = np.logical_or.reduce(np.array([t5, t6, t7, t8, t9, t10, t11, t12, t13])) return iph, io, rs, rsh, u def _extract_sdm_params(ee, tc, iph, io, rs, rsh, n, u, specs, const, model): # Get single diode model parameters from five parameters iph, io, rs, rsh # and n vs. effective irradiance and temperature try: import statsmodels.api as sm except ImportError: raise ImportError( 'Parameter extraction using Sandia method requires statsmodels') tck = tc + 273.15 tok = const['T0'] + 273.15 # convert to to K params = {} if model == 'pvsyst': # Estimate I_o_ref and EgRef x_for_io = const['q'] / const['k'] * (1. / tok - 1. / tck[u]) / n[u] # Estimate R_sh_0, R_sh_ref and R_sh_exp # Initial guesses. R_sh_0 is value at ee=0. nans = np.isnan(rsh) if any(ee < 400): grsh0 = np.mean(rsh[np.logical_and(~nans, ee < 400)]) else: grsh0 = np.max(rsh) # Rsh_ref is value at Ee = 1000 if any(ee > 400): grshref = np.mean(rsh[np.logical_and(~nans, ee > 400)]) else: grshref = np.min(rsh) # PVsyst default for Rshexp is 5.5 R_sh_exp = 5.5 # Find parameters for Rsh equation def fun_rsh(x, rshexp, ee, e0, rsh): tf = np.log10(_rsh_pvsyst(x, R_sh_exp, ee, e0)) - np.log10(rsh) return tf x0 = np.array([grsh0, grshref]) beta = optimize.least_squares( fun_rsh, x0, args=(R_sh_exp, ee[u], const['E0'], rsh[u]), bounds=np.array([[1., 1.], [1.e7, 1.e6]]), verbose=2) # Extract PVsyst parameter values R_sh_0 = beta.x[0] R_sh_ref = beta.x[1] # parameters unique to PVsyst params['R_sh_0'] = R_sh_0 params['R_sh_exp'] = R_sh_exp elif model == 'desoto': dEgdT = 0.0002677 x_for_io = const['q'] / const['k'] * ( 1. / tok - 1. / tck[u] + dEgdT * (tc[u] - const['T0']) / tck[u]) # Estimate R_sh_ref nans = np.isnan(rsh) x = const['E0'] / ee[np.logical_and(u, ee > 400, ~nans)] y = rsh[np.logical_and(u, ee > 400, ~nans)] new_x = sm.add_constant(x) beta = sm.RLM(y, new_x).fit() R_sh_ref = beta.params[1] params['dEgdT'] = dEgdT # Estimate I_o_ref and EgRef y = np.log(io[u]) - 3. * np.log(tck[u] / tok) new_x = sm.add_constant(x_for_io) res = sm.RLM(y, new_x).fit() beta = res.params I_o_ref = np.exp(beta[0]) EgRef = beta[1] # Estimate I_L_ref x = tc[u] - const['T0'] y = iph[u] * (const['E0'] / ee[u]) # average over non-NaN values of Y and X nans = np.isnan(y - specs['alpha_sc'] * x) I_L_ref = np.mean(y[~nans] - specs['alpha_sc'] * x[~nans]) # Estimate R_s nans = np.isnan(rs) R_s = np.mean(rs[np.logical_and(u, ee > 400, ~nans)]) params['I_L_ref'] = I_L_ref params['I_o_ref'] = I_o_ref params['EgRef'] = EgRef params['R_sh_ref'] = R_sh_ref params['R_s'] = R_s # save values for each IV curve params['iph'] = iph params['io'] = io params['rsh'] = rsh params['rs'] = rs params['u'] = u return params def _update_io(voc, iph, io, rs, rsh, nnsvth): """ Adjusts Io to match Voc using other parameter values. Helper function for fit_pvsyst_sandia, fit_desoto_sandia Description ----------- Io is updated iteratively 10 times or until successive values are less than 0.000001 % different. The updating is similar to Newton's method. Parameters ---------- voc: a numpy array of length N of values for Voc (V) iph: a numpy array of length N of values for lighbt current IL (A) io: a numpy array of length N of initial values for Io (A) rs: a numpy array of length N of values for the series resistance (ohm) rsh: a numpy array of length N of values for the shunt resistance (ohm) nnsvth: a numpy array of length N of values for the diode factor x thermal voltage for the module, equal to Ns (number of cells in series) x Vth (thermal voltage per cell). Returns ------- new_io - a numpy array of length N of updated values for io References ---------- .. [1] PVLib MATLAB https://github.com/sandialabs/MATLAB_PV_LIB .. [2] C. Hansen, Parameter Estimation for Single Diode Models of Photovoltaic Modules, Sandia National Laboratories Report SAND2015-2065 .. [3] C. Hansen, Estimation of Parameteres for Single Diode Models using Measured IV Curves, Proc. of the 39th IEEE PVSC, June 2013. """ eps = 1e-6 niter = 10 k = 1 maxerr = 1 tio = io # Current Estimate of Io while maxerr > eps and k < niter: # Predict Voc pvoc = v_from_i(rsh, rs, nnsvth, 0., tio, iph) # Difference in Voc dvoc = pvoc - voc # Update Io with np.errstate(invalid="ignore", divide="ignore"): new_io = tio * (1. + (2. * dvoc) / (2. * nnsvth - dvoc)) # Calculate Maximum Percent Difference maxerr = np.max(np.abs(new_io - tio) / tio) * 100. tio = new_io k += 1. return new_io def _rsh_pvsyst(x, rshexp, g, go): # computes rsh for PVsyst model where the parameters are in vector xL # x[0] = Rsh0 # x[1] = Rshref rsho = x[0] rshref = x[1] rshb = np.maximum( (rshref - rsho * np.exp(-rshexp)) / (1. - np.exp(-rshexp)), 0.) rsh = rshb + (rsho - rshb) * np.exp(-rshexp * g / go) return rsh def _filter_params(ee, isc, io, rs, rsh): # Function _filter_params identifies bad parameter sets. A bad set contains # Nan, non-positive or imaginary values for parameters; Rs > Rsh; or data # where effective irradiance Ee differs by more than 5% from a linear fit # to Isc vs. Ee badrsh = np.logical_or(rsh < 0., np.isnan(rsh)) negrs = rs < 0. badrs = np.logical_or(rs > rsh, np.isnan(rs)) imagrs = ~(np.isreal(rs)) badio = np.logical_or(np.logical_or(~(np.isreal(rs)), io <= 0), np.isnan(io)) goodr = np.logical_and(~badrsh, ~imagrs) goodr = np.logical_and(goodr, ~negrs) goodr = np.logical_and(goodr, ~badrs) goodr = np.logical_and(goodr, ~badio) matrix = np.vstack((ee / 1000., np.zeros(len(ee)))).T eff = np.linalg.lstsq(matrix, isc, rcond=None)[0][0] pisc = eff * ee / 1000 pisc_error = np.abs(pisc - isc) / isc # check for departure from linear relation between Isc and Ee badiph = pisc_error > .05 u = np.logical_and(goodr, ~badiph) return u def _check_converge(prevparams, result, vmp, imp, i): """ Function _check_converge computes convergence metrics for all IV curves. Helper function for fit_pvsyst_sandia, fit_desoto_sandia Parameters ---------- prevparams: Convergence Parameters from the previous Iteration (used to determine Percent Change in values between iterations) result: performacne paramters of the (predicted) single diode fitting, which includes Voc, Vmp, Imp, Pmp and Isc vmp: measured values for each IV curve imp: measured values for each IV curve i: Index of current iteration in cec_parameter_estimation Returns ------- convergeparam: dict containing the following for Imp, Vmp and Pmp: - maximum percent difference between measured and modeled values - minimum percent difference between measured and modeled values - maximum absolute percent difference between measured and modeled values - mean percent difference between measured and modeled values - standard deviation of percent difference between measured and modeled values - absolute difference for previous and current values of maximum absolute percent difference (measured vs. modeled) - absolute difference for previous and current values of mean percent difference (measured vs. modeled) - absolute difference for previous and current values of standard deviation of percent difference (measured vs. modeled) """ convergeparam = {} imperror = (result['i_mp'] - imp) / imp * 100. vmperror = (result['v_mp'] - vmp) / vmp * 100. pmperror = (result['p_mp'] - (imp * vmp)) / (imp * vmp) * 100. convergeparam['imperrmax'] = max(imperror) # max of the error in Imp convergeparam['imperrmin'] = min(imperror) # min of the error in Imp # max of the absolute error in Imp convergeparam['imperrabsmax'] = max(abs(imperror)) # mean of the error in Imp convergeparam['imperrmean'] = np.mean(imperror, axis=0) # std of the error in Imp convergeparam['imperrstd'] = np.std(imperror, axis=0, ddof=1) convergeparam['vmperrmax'] = max(vmperror) # max of the error in Vmp convergeparam['vmperrmin'] = min(vmperror) # min of the error in Vmp # max of the absolute error in Vmp convergeparam['vmperrabsmax'] = max(abs(vmperror)) # mean of the error in Vmp convergeparam['vmperrmean'] = np.mean(vmperror, axis=0) # std of the error in Vmp convergeparam['vmperrstd'] = np.std(vmperror, axis=0, ddof=1) convergeparam['pmperrmax'] = max(pmperror) # max of the error in Pmp convergeparam['pmperrmin'] = min(pmperror) # min of the error in Pmp # max of the abs err. in Pmp convergeparam['pmperrabsmax'] = max(abs(pmperror)) # mean error in Pmp convergeparam['pmperrmean'] = np.mean(pmperror, axis=0) # std error Pmp convergeparam['pmperrstd'] = np.std(pmperror, axis=0, ddof=1) if prevparams['state'] != 0.0: convergeparam['imperrstdchange'] = np.abs( convergeparam['imperrstd'] / prevparams['imperrstd'] - 1.) convergeparam['vmperrstdchange'] = np.abs( convergeparam['vmperrstd'] / prevparams['vmperrstd'] - 1.) convergeparam['pmperrstdchange'] = np.abs( convergeparam['pmperrstd'] / prevparams['pmperrstd'] - 1.) convergeparam['imperrmeanchange'] = np.abs( convergeparam['imperrmean'] / prevparams['imperrmean'] - 1.) convergeparam['vmperrmeanchange'] = np.abs( convergeparam['vmperrmean'] / prevparams['vmperrmean'] - 1.) convergeparam['pmperrmeanchange'] = np.abs( convergeparam['pmperrmean'] / prevparams['pmperrmean'] - 1.) convergeparam['imperrabsmaxchange'] = np.abs( convergeparam['imperrabsmax'] / prevparams['imperrabsmax'] - 1.) convergeparam['vmperrabsmaxchange'] = np.abs( convergeparam['vmperrabsmax'] / prevparams['vmperrabsmax'] - 1.) convergeparam['pmperrabsmaxchange'] = np.abs( convergeparam['pmperrabsmax'] / prevparams['pmperrabsmax'] - 1.) convergeparam['state'] = 1.0 else: convergeparam['imperrstdchange'] = float("Inf") convergeparam['vmperrstdchange'] = float("Inf") convergeparam['pmperrstdchange'] = float("Inf") convergeparam['imperrmeanchange'] = float("Inf") convergeparam['vmperrmeanchange'] = float("Inf") convergeparam['pmperrmeanchange'] = float("Inf") convergeparam['imperrabsmaxchange'] = float("Inf") convergeparam['vmperrabsmaxchange'] = float("Inf") convergeparam['pmperrabsmaxchange'] = float("Inf") convergeparam['state'] = 1. return convergeparam def _update_rsh_fixed_pt(vmp, imp, iph, io, rs, rsh, nnsvth): """ Adjust Rsh to match Vmp using other parameter values Helper function for fit_pvsyst_sandia, fit_desoto_sandia Description ----------- Rsh is updated iteratively using a fixed point expression obtained from combining Vmp = Vmp(Imp) (using the analytic solution to the single diode equation) and dP / dI = 0 at Imp. 500 iterations are performed because convergence can be very slow. Parameters ---------- vmp: a numpy array of length N of values for Vmp (V) imp: a numpy array of length N of values for Imp (A) iph: a numpy array of length N of values for light current IL (A) io: a numpy array of length N of values for Io (A) rs: a numpy array of length N of values for series resistance (ohm) rsh: a numpy array of length N of initial values for shunt resistance (ohm) nnsvth: a numpy array length N of values for the diode factor x thermal voltage for the module, equal to Ns (number of cells in series) x Vth (thermal voltage per cell). Returns ------- numpy array of length N of updated values for Rsh References ---------- .. [1] PVLib for MATLAB https://github.com/sandialabs/MATLAB_PV_LIB .. [2] C. Hansen, Parameter Estimation for Single Diode Models of Photovoltaic Modules, Sandia National Laboratories Report SAND2015-2065 """ niter = 500 x1 = rsh for i in range(niter): _, z = _calc_theta_phi_exact(vmp, imp, iph, io, rs, x1, nnsvth) with np.errstate(divide="ignore"): next_x1 = (1 + z) / z * ((iph + io) * x1 / imp - nnsvth * z / imp - 2 * vmp / imp) x1 = next_x1 return x1 def _calc_theta_phi_exact(vmp, imp, iph, io, rs, rsh, nnsvth): """ _calc_theta_phi_exact computes Lambert W values appearing in the analytic solutions to the single diode equation for the max power point. Helper function for fit_pvsyst_sandia Parameters ---------- vmp: a numpy array of length N of values for Vmp (V) imp: a numpy array of length N of values for Imp (A) iph: a numpy array of length N of values for the light current IL (A) io: a numpy array of length N of values for Io (A) rs: a numpy array of length N of values for the series resistance (ohm) rsh: a numpy array of length N of values for the shunt resistance (ohm) nnsvth: a numpy array of length N of values for the diode factor x thermal voltage for the module, equal to Ns (number of cells in series) x Vth (thermal voltage per cell). Returns ------- theta: a numpy array of values for the Lamber W function for solving I = I(V) phi: a numpy array of values for the Lambert W function for solving V = V(I) Notes ----- _calc_theta_phi_exact calculates values for the Lambert W function which are used in the analytic solutions for the single diode equation at the maximum power point. For V=V(I), phi = W(Io*Rsh/n*Vth * exp((IL + Io - Imp)*Rsh/n*Vth)). For I=I(V), theta = W(Rs*Io/n*Vth * Rsh/ (Rsh+Rs) * exp(Rsh/ (Rsh+Rs)*((Rs(IL+Io) + V)/n*Vth)) References ---------- .. [1] PVL MATLAB 2065 https://github.com/sandialabs/MATLAB_PV_LIB .. [2] C. Hansen, Parameter Estimation for Single Diode Models of Photovoltaic Modules, Sandia National Laboratories Report SAND2015-2065 .. [3] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells, 81 (2004) 269-277. """ # handle singleton inputs vmp = np.asarray(vmp) imp = np.asarray(imp) iph = np.asarray(iph) io = np.asarray(io) rs = np.asarray(rs) rsh = np.asarray(rsh) nnsvth = np.asarray(nnsvth) # Argument for Lambert W function involved in V = V(I) [2] Eq. 12; [3] # Eq. 3 with np.errstate(over="ignore", divide="ignore", invalid="ignore"): argw = np.where( nnsvth == 0, np.nan, rsh * io / nnsvth * np.exp(rsh * (iph + io - imp) / nnsvth)) phi = np.where(argw > 0, lambertw(argw).real, np.nan) # NaN where argw overflows. Switch to log space to evaluate u = np.isinf(argw) if np.any(u): logargw = ( np.log(rsh[u]) + np.log(io[u]) - np.log(nnsvth[u]) + rsh[u] * (iph[u] + io[u] - imp[u]) / nnsvth[u]) # Three iterations of Newton-Raphson method to solve w+log(w)=logargW. # The initial guess is w=logargW. Where direct evaluation (above) # results in NaN from overflow, 3 iterations of Newton's method gives # approximately 8 digits of precision. x = logargw for i in range(3): x *= ((1. - np.log(x) + logargw) / (1. + x)) phi[u] = x phi = np.transpose(phi) # Argument for Lambert W function involved in I = I(V) [2] Eq. 11; [3] # E1. 2 with np.errstate(over="ignore", divide="ignore", invalid="ignore"): argw = np.where( nnsvth == 0, np.nan, rsh / (rsh + rs) * rs * io / nnsvth * np.exp( rsh / (rsh + rs) * (rs * (iph + io) + vmp) / nnsvth)) theta = np.where(argw > 0, lambertw(argw).real, np.nan) # NaN where argw overflows. Switch to log space to evaluate u = np.isinf(argw) if np.any(u): with np.errstate(divide="ignore"): logargw = ( np.log(rsh[u]) - np.log(rsh[u] + rs[u]) + np.log(rs[u]) + np.log(io[u]) - np.log(nnsvth[u]) + (rsh[u] / (rsh[u] + rs[u])) * (rs[u] * (iph[u] + io[u]) + vmp[u]) / nnsvth[u]) # Three iterations of Newton-Raphson method to solve w+log(w)=logargW. # The initial guess is w=logargW. Where direct evaluation (above) # results in NaN from overflow, 3 iterations of Newton's method gives # approximately 8 digits of precision. x = logargw for i in range(3): x *= ((1. - np.log(x) + logargw) / (1. + x)) theta[u] = x theta = np.transpose(theta) return theta, phi def pvsyst_temperature_coeff(alpha_sc, gamma_ref, mu_gamma, I_L_ref, I_o_ref, R_sh_ref, R_sh_0, R_s, cells_in_series, R_sh_exp=5.5, EgRef=1.121, irrad_ref=1000, temp_ref=25): r""" Calculates the temperature coefficient of power for a pvsyst single diode model. The temperature coefficient is determined as the numerical derivative :math:`\frac{dP}{dT}` at the maximum power point at reference conditions [1]_. Parameters ---------- alpha_sc : float The short-circuit current temperature coefficient of the module. [A/C] gamma_ref : float The diode ideality factor. [unitless] mu_gamma : float The temperature coefficient for the diode ideality factor. [1/K] I_L_ref : float The light-generated current (or photocurrent) at reference conditions. [A] I_o_ref : float The dark or diode reverse saturation current at reference conditions. [A] R_sh_ref : float The shunt resistance at reference conditions. [ohm] R_sh_0 : float The shunt resistance at zero irradiance conditions. [ohm] R_s : float The series resistance at reference conditions. [ohm] cells_in_series : int The number of cells connected in series. R_sh_exp : float, default 5.5 The exponent in the equation for shunt resistance. [unitless] EgRef : float, default 1.121 The energy bandgap of the module's cells at reference temperature. Default of 1.121 eV is for crystalline silicon. Must be positive. [eV] irrad_ref : float, default 1000 Reference irradiance. [W/m^2]. temp_ref : float, default 25 Reference cell temperature. [C] Returns ------- gamma_pdc : float Temperature coefficient of power at maximum power point at reference conditions. [1/C] References ---------- .. [1] K. Sauer, T. Roessler, C. W. Hansen, Modeling the Irradiance and Temperature Dependence of Photovoltaic Modules in PVsyst, IEEE Journal of Photovoltaics v5(1), January 2015. """ def maxp(temp_cell, irrad_ref, alpha_sc, gamma_ref, mu_gamma, I_L_ref, I_o_ref, R_sh_ref, R_sh_0, R_s, cells_in_series, R_sh_exp, EgRef, temp_ref): params = calcparams_pvsyst( irrad_ref, temp_cell, alpha_sc, gamma_ref, mu_gamma, I_L_ref, I_o_ref, R_sh_ref, R_sh_0, R_s, cells_in_series, R_sh_exp, EgRef, irrad_ref, temp_ref) res = bishop88_mpp(*params) return res[2] args = (irrad_ref, alpha_sc, gamma_ref, mu_gamma, I_L_ref, I_o_ref, R_sh_ref, R_sh_0, R_s, cells_in_series, R_sh_exp, EgRef, temp_ref) pmp = maxp(temp_ref, *args) gamma_pdc = derivative(maxp, temp_ref, args=args) return gamma_pdc / pmp
pvlib/pvlib-python
pvlib/ivtools/sdm.py
Python
bsd-3-clause
50,560
[ "pysam" ]
ab361b5ea5c4234e62276e500c834817db9ab465cae7b5092c201a9aaad5779b
# see https://github.com/pypa/sampleproject """Installation script for ProPhyle. To include binaries into the package, run make and set the system variable PROPHYLE_PACKBIN to a non-zero value, e.g., PROPHYLE_PACKBIN=1 python3 setup.py install """ import glob import os import setuptools import sys if sys.version_info < (3, 4): sys.exit('Minimum supported Python version is 3.4') bwa_dir = 'prophyle/prophyle_index/bwa' if len(glob.glob(os.path.join(bwa_dir, "*.c"))) == 0 or len(glob.glob(os.path.join(bwa_dir, "*.h"))) == 0: sys.exit("BWA submodule is missing. Run 'make submodules' to download it.") here = os.path.abspath(os.path.dirname(__file__)) # Get the long description from the README file with open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() # Get the current version exec(open("prophyle/version.py").read()) try: packbin = os.environ['PROPHYLE_PACKBIN'] except KeyError: packbin = False if packbin: print("Adding executables and *.o files to the package", file=sys.stderr) prophyle_files = [ 'Makefile', '*.py', 'prophyle_assembler/*.cpp', 'prophyle_assembler/*.h', 'prophyle_assembler/Makefile', 'prophyle_index/*.c', 'prophyle_index/*.h', 'prophyle_index/Makefile', 'prophyle_index/bwa/*.c', 'prophyle_index/bwa/*.h', 'prophyle_index/bwa/Makefile', 'prophyle_assignment/*.cpp', 'prophyle_assignment/*.c', 'prophyle_assignment/*.h', 'prophyle_assignment/Makefile', 'trees/*.nw', ] + ( [ 'prophyle_index/prophyle_index', 'prophyle_index/*.o', 'prophyle_assembler/prophyle_assembler', 'prophyle_assembler/*.o', 'prophyle_assignment/prophyle_assignment', 'prophyle_assignment/*.o', 'prophyle_index/bwa/bwa', 'prophyle_index/bwa/*.o', ] if packbin else [] ) setuptools.setup( name='prophyle', version=VERSION, description='ProPhyle metagenomic classifier', long_description=long_description, # url='https://github.com/prophyle/prophyle', download_url="https://github.com/prophyle/prophyle/releases", # author='Karel Brinda, Kamil Salikhov, Simone Pignotti, Gregory Kucherov', author_email= '[email protected], [email protected], [email protected], [email protected]', license='MIT', # classifiers=[ 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python :: 3 :: Only', 'Operating System :: Unix', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Bio-Informatics', ], # keywords='metagenomics classification NGS', # packages=["prophyle"], # package_data={'prophyle': prophyle_files}, # entry_points={ 'console_scripts': [ 'prophyle = prophyle.prophyle:main', 'prophyle_analyze.py = prophyle.prophyle_analyze:main', 'prophyle_assignment.py = prophyle.prophyle_assignment:main', 'prophyle_ncbi_tree.py = prophyle.prophyle_ncbi_tree:main', 'prophyle_otu_table.py = prophyle.prophyle_otu_table:main', 'prophyle_paired_end.py = prophyle.prophyle_paired_end:main', 'prophyle_plot_tree.py = prophyle.prophyle_plot_tree:main', 'prophyle_propagation_makefile.py = prophyle.prophyle_propagation_makefile:main', 'prophyle_propagation_postprocessing.py = prophyle.prophyle_propagation_postprocessing:main', 'prophyle_propagation_preprocessing.py = prophyle.prophyle_propagation_preprocessing:main', 'prophyle_split_allseq.py = prophyle.prophyle_split_allseq:main', ], }, # install_requires=[ 'ete3', 'wheel', 'bitarray', 'psutil', 'pysam', 'scipy', 'six', ], # )
karel-brinda/prophyle
setup.py
Python
mit
3,999
[ "BWA", "pysam" ]
72bc35b03ac3441ff5717ca677122e7cd588b09864ea18068c1cf1e05bbc0d4c
#!/usr/bin/env python # # Copyright (C) 2017 - Massachusetts Institute of Technology (MIT) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Functions related to simulating observed spectra based on calculated theoratical spectra for 0.8, need a full scale conversion of all list into dicts instead of normalized_xxx, let's have a dict with pressure_layers as keys and relevent data as data Takes in a simulated theoretical spectra and add observational effects """ import os import sys import numpy as np import time from scipy import interpolate, stats DIR = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(0, os.path.join(DIR, '../..')) #import matplotlib.pyplot as plt #from matplotlib.ticker import MultipleLocator, FormatStrFormatter #ml = MultipleLocator(10) import SEAS_Utils as utils import SEAS_Aux.cross_section.hapi as hp import SEAS_Main.observation_effects.noise as noise class OS_Simulator(): def __init__(self, user_input): self.user_input = user_input def add_noise(self, bin_mean_I, noise_type="gaussian"): error_scale = utils.to_float(self.user_input["Observation_Effects"]["Noise"]["error_scale"]) data_length = len(bin_mean_I) if noise_type == "gaussian": Noise = noise.Gaussian_Noise(error_scale, data_length) noise_added = Noise.get_noise() elif noise_type == "poisson": Noise = noise.Poisson_Noise(error_scale, data_length) noise_added = Noise.get_noise() bin_mean_error_I = bin_mean_I*(1.0+noise_added) bin_mean_error_bar = error_scale*bin_mean_error_I[1] return bin_mean_error_I, bin_mean_error_bar def add_background_stars(self): pass def calculate_convolve(self, nu, trans, record=False): #if self.user_input["Observation"]["Convolve"] == "true": amount = utils.to_float(self.user_input["Observation_Effects"]["Convolve"]["convolve_amount"]) nu,Transit_Signal,i1,i2,slit = hp.convolveSpectrum(nu,trans,SlitFunction=hp.SLIT_RECTANGULAR,Resolution=amount,AF_wing=20.0) if record: return nu,Transit_Signal,max(Transit_Signal) return nu,Transit_Signal def calculate_bin(self, x, signal): Bins = utils.to_float(self.user_input["Observation_Effects"]["Bin"]["bin_number"]) Method = self.user_input["Observation_Effects"]["Bin"]["method"] bin_mean_I, bin_edges, binnumber = stats.binned_statistic(x, signal, statistic=Method, bins=Bins) bin_width = (bin_edges[1] - bin_edges[0]) bin_centers = bin_edges[1:] - bin_width/2 return bin_centers, bin_mean_I def spectra_to_magnitude(self): """ convert simulated spectra to magnitude This will need a simulated stellar spectra (a black body curve)? """ pass def number_of_photon(self): """ number of photons expected per bin """ pass def telescope_response_function(self): pass def telescope_jitter(self): pass
azariven/BioSig_SEAS
SEAS_Main/simulation/observed_spectra_simulator.py
Python
gpl-3.0
3,855
[ "Gaussian" ]
d2e911dabb0f9ecb3486f230d31a0adbe8efae6b009f66f07f51c4e9df9dcaed
""" Nonnegative CP decomposition by Hierarchical alternating least squares (HALS). Author: N. Benjamin Erichson <[email protected]> """ import numpy as np import numba from tensortools.operations import unfold, khatri_rao from tensortools.tensors import KTensor from tensortools.optimize import FitResult, optim_utils def ncp_hals( X, rank, mask=None, random_state=None, init='rand', skip_modes=[], negative_modes=[], **options): """ Fits nonnegtaive CP Decomposition using the Hierarcial Alternating Least Squares (HALS) Method. Parameters ---------- X : (I_1, ..., I_N) array_like A real array with nonnegative entries and ``X.ndim >= 3``. rank : integer The `rank` sets the number of components to be computed. mask : (I_1, ..., I_N) array_like Binary tensor, same shape as X, specifying censored or missing data values at locations where (mask == 0) and observed data where (mask == 1). random_state : integer, RandomState instance or None, optional (default ``None``) If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. init : str, or KTensor, optional (default ``'rand'``). Specifies initial guess for KTensor factor matrices. If ``'randn'``, Gaussian random numbers are used to initialize. If ``'rand'``, uniform random numbers are used to initialize. If KTensor instance, a copy is made to initialize the optimization. skip_modes : iterable, optional (default ``[]``). Specifies modes of the tensor that are not fit. This can be used to fix certain factor matrices that have been previously fit. negative_modes : iterable, optional (default ``[]``). Specifies modes of the tensor whose factors are not constrained to be nonnegative. options : dict, specifying fitting options. tol : float, optional (default ``tol=1E-5``) Stopping tolerance for reconstruction error. max_iter : integer, optional (default ``max_iter = 500``) Maximum number of iterations to perform before exiting. min_iter : integer, optional (default ``min_iter = 1``) Minimum number of iterations to perform before exiting. max_time : integer, optional (default ``max_time = np.inf``) Maximum computational time before exiting. verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``) Display progress. Returns ------- result : FitResult instance Object which holds the fitted results. It provides the factor matrices in form of a KTensor, ``result.factors``. Notes ----- This implemenation is using the Hierarcial Alternating Least Squares Method. References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. "Fast local algorithms for large scale nonnegative matrix and tensor factorizations." IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009. Examples -------- """ # Mask missing elements. if mask is not None: X = np.copy(X) X[~mask] = np.mean(X[mask]) # Check inputs. optim_utils._check_cpd_inputs(X, rank) # Initialize problem. U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state) result = FitResult(U, 'NCP_HALS', **options) # Store problem dimensions. normX = np.linalg.norm(X) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Iterate the HALS algorithm until convergence or maxiter is reached # i) compute the N gram matrices and multiply # ii) Compute Khatri-Rao product # iii) Update component U_1, U_2, ... U_N # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ while result.still_optimizing: for n in range(X.ndim): # Skip modes that are specified as fixed. if n in skip_modes: continue # Select all components, but U_n components = [U[j] for j in range(X.ndim) if j != n] # i) compute the N-1 gram matrices grams = np.prod([arr.T @ arr for arr in components], axis=0) # ii) Compute Khatri-Rao product kr = khatri_rao(components) Xmkr = unfold(X, n).dot(kr) # iii) Update component U_n _hals_update(U[n], grams, Xmkr, n not in negative_modes) # iv) Update masked elements. if mask is not None: pred = U.full() X[~mask] = pred[~mask] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update the optimization result, checks for convergence. # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if mask is None: # Determine mode that was fit last. n = np.setdiff1d(np.arange(X.ndim), skip_modes).max() # Add contribution of last fit factors to gram matrix. grams *= U[n].T @ U[n] residsq = np.sum(grams) - 2 * np.sum(U[n] * Xmkr) + (normX ** 2) result.update(np.sqrt(residsq) / normX) else: result.update(np.linalg.norm(X - pred) / normX) # end optimization loop, return result. return result.finalize() @numba.jit(nopython=True) def _hals_update(factors, grams, Xmkr, nonneg): dim = factors.shape[0] rank = factors.shape[1] indices = np.arange(rank) # Handle special case of rank-1 model. if rank == 1: if nonneg: factors[:] = np.maximum(0.0, Xmkr / grams[0, 0]) else: factors[:] = Xmkr / grams[0, 0] # Do a few inner iterations. else: for itr in range(3): for p in range(rank): idx = (indices != p) Cp = factors[:, idx] @ grams[idx][:, p] r = (Xmkr[:, p] - Cp) / np.maximum(grams[p, p], 1e-6) if nonneg: factors[:, p] = np.maximum(r, 0.0) else: factors[:, p] = r
ahwillia/tensortools
tensortools/optimize/ncp_hals.py
Python
mit
6,382
[ "Gaussian" ]
9bbfde57a299480707642cab6473549b274a0a1401a574a10b916d24ef2f5ae6
# Orca # # Copyright 2005-2008 Sun Microsystems Inc. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., Franklin Street, Fifth Floor, # Boston MA 02110-1301 USA. """Custom script for gnome-mud.""" from .script import Script
ruibarreira/linuxtrail
usr/lib/python3/dist-packages/orca/scripts/apps/gnome-mud/__init__.py
Python
gpl-3.0
846
[ "ORCA" ]
3d558ec7af108531bca3aa2f773c59c039b61bb0303ef854b9de5a6dc19e2e37
# Copyright (C) 2004-2008 Paul Cochrane # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## @file test_plot.py import unittest import sys,os from string import * here = os.getcwd() + '/../../' sys.path.append(here) import pyvisi # this should import all of the pyvisi stuff needed """ Class and functions for testing the Renderer class """ class TestRenderer(unittest.TestCase): """ The main test class """ def testRendererExactlyTwoArgs(self): """ Tests that the Renderer object is instantiated only with two arguments """ # test just the one argument self.assertRaises(TypeError, \ pyvisi.Renderer.__init__, 'one') # test three arguments self.assertRaises(TypeError, \ pyvisi.Renderer.__init__, 'one', 'two', 'three') def testRendererNameType(self): """ Tests the type of the renderer name; should be alphanumeric """ ren = pyvisi.Renderer('vtk') renName = ren.rendererName self.assert_(renName.isalnum(),\ msg='Renderer() argument is not alphanumeric') def testRendererReturn(self): """ Tests that a Renderer() object is returned """ ren = pyvisi.Renderer('vtk') classStr = ren.__class__.__name__ self.assertEqual('Renderer', classStr) if __name__ == '__main__': unittest.main() # vim: expandtab shiftwidth=4:
paultcochrane/pyvisi
pyvisi/renderers/vtk/tests/test_renderer.py
Python
gpl-2.0
2,108
[ "VTK" ]
baae460217037150dd2786ead635bf01309772dfe26918f6abb0782cd116ce66
#!/usr/bin/env python # \author: Bruno Combal, IOC/UNESCO, EC/FP7 GEOWOW # \date: July 2013 # to run the script with the correct version of uvcdat: # source /usr/local/uvcdat/1.2.0/bin/setup_cdat.sh # version 1: regrid lat/lon, for all t and z # version 2: add z interpolation, for all t, lat, lon import cdms2 import numpy import sys import os.path # _____________________________ def exitWM(message='Error. Exit 1', ExitCode=1): print message sys.exit(ExitCode) # _____________________________ def makeGrid(): xstart=0 xend=360 xstep=0.5 ystart=-85 yend=85 ystep=0.5 lon_bnds=[] lon=[] for ii in numpy.arange(xstart, xend, xstep): lon_bnds.append( [ii, ii+xstep] ) lon.append(ii+0.5*xstep) lon_bnds=numpy.array(lon_bnds) lon=numpy.array(lon) lat_bnds=[] lat=[] for ii in numpy.arange(ystart, yend, ystep): lat_bnds.append([ii, ii+ystep]) lat.append(ii+0.5*ystep) lat_bnds=numpy.array(lat_bnds) lat=numpy.array(lat) latAxis = cdms2.createAxis(lat, lat_bnds) latAxis.designateLatitude(True) latAxis.units='degrees_north' latAxis.long_name='Latitude' latAxis.id='latitude' lonAxis = cdms2.createAxis(lon, lon_bnds) lonAxis.designateLongitude(True, 360.0) lonAxis.units='degrees_east' lonAxis.id='longitude' lonAxis.long_name='Longitude' lvl_bnds=numpy.array([[0,10], [10, 20], [20,30], [30,40], [40,50], [50,60], [60,70], [70,80], [80,90], [90,100], [100, 125], [125, 150], [150,175], [175,200], [200,250],[250,300],[300,400],[400,500], [500,600], [600,700], [700,800]]) lvl = [ 0.5*(lvls[0] + lvls[1]) for lvls in lvl_bnds ] # lvl = numpy.zeros(len(lvl_bnds)) # for ii in range(len(lvl_bnds)): lvl[ii]=0.5*(lvl_bnds[ii,0]+lvl_bnds[ii,1]) return((cdms2.createGenericGrid(latAxis, lonAxis, lat_bnds, lon_bnds), latAxis, lonAxis, lat_bnds, lon_bnds, lvl_bnds, lvl)) # _____________________________ # interpolates a series of values # the output has the size of zNew def do_zInterp(zProfile, zOrg, zNew, nodata): # z profiles have constant size, but final values may be set to nodata (1.e20): they should not be considered thisProfile = [zz for zz in zProfile if zz < nodata] # the result has the dimensions of zNew tmp = numpy.interp(zNew[0:len(thisProfile)], zOrg[0:len(thisProfile)], thisProfile, right=nodata) final = numpy.zeros(len(zNew))+nodata final[0:len(final)]=final[:] return final # _____________________________ # interpolates cube t, z, lat, lon along z # assumes dimensions are t, z, lat, lon # cubeIn: 4D dataset # zOrg: the input data z levels # zNew: the requested zlevels def do_hyperInterp(cubeIn, zOrg, zNew, nodata): thisShape=cubeIn.shape cubeOut = numpy.zeros( (thisShape[0], len(zNew), thisShape[2], thisShape[3] ) )+nodata for itime in range(0, thisShape[0]): print itime for ilat in range(0, thisShape[2]): for ilon in range(0, thisShape[3]): if cubeIn[itime, 0, ilat, ilon] < nodata: tmp = do_zInterp( numpy.ravel(cubeIn[itime, :, ilat, ilon]), zOrg, zNew, nodata) cubeOut[itime, :, ilat, ilon] = tmp[:] return cubeOut # _____________________________ def do_regrid(infileName, variable, outfileName, netcdfType=4): nodata = 1.e20 if netcdfType==4: cdms2.setNetcdfShuffleFlag(1) cdms2.setNetcdfDeflateFlag(1) cdms2.setNetcdfDeflateLevelFlag(3) elif netcdfType==3: cdms2.setNetcdfShuffleFlag(0) cdms2.setNetcdfDeflateFlag(0) cdms2.setNetcdfDeflateLevel(0) else: exitWM('Unknown netcdf type {0}. Exit 2.'.format(netcdfType),2) infile = cdms2.open(infileName) unitsVar = infile[variable].units (referenceGrid, latAxis, lonAxis, latBounds, lonBounds, lvl_bounds, lvl) = makeGrid() regridded = infile[variable][:].regrid(referenceGrid) outvar = cdms2.createVariable(regridded, typecode='f', id=variable, fill_value=nodata, grid=referenceGrid, copyaxes=1, attributes=dict(long_name='regridded {0}'.format(variable), units=unitsVar)) #final = do_hyperInterp(regridded, infile[variable].getLevel()[:], lvl, nodata) #outvar = cdms2.createVariable(final, typecode='f', id=variable, fill_value=nodata, attributes=dict(long_name='regridded {0}'.format(variable), units=unitsVar) ) #gridBis = regridded.subSlice(longitude=0).crossSectionRegrid(lvl, latAxis, method="linear") #zregrid = tmpvar.crossSectionRegrid(lvl) #outvar.setAxisList((latAxis, lonAxis)) if os.path.exists(outfileName): os.remove(outfileName) outfile=cdms2.open(outfileName, 'w') outfile.write(outvar) outfile.history='Created with '+__file__.encode('utf8') outfile.close() infile.close() # _____________________________ if __name__=="__main__": infile=None #input file: full path variable='thetao' netcdfType=4 outfile=None #output file: full path # parse input parameters # to do: optional grid description ii=1 while ii < len(sys.argv): arg=sys.argv[ii] if arg=='-o': ii=ii+1 outfile = sys.argv[ii] elif arg=='-v': ii = ii + 1 variable=sys.argv[ii] else: infile = sys.argv[ii] ii = ii+1 # check input parameters if infile is None: exitWM('Input file is not defined. Exit 3.', 3) if outfile is None: exitWM('Output file is not defined, use option -o. Exit 4.') if not os.path.isfile(infile): # infile does not exist or is not a file exitWM('Could not find input file {0}. Exit 1.'.format(infile), 1) if not os.path.isdir(os.path.dirname(outfile)): # outfile directory does not exist or is not a directory exitWM('Directory {0} does not exist to store output file {1}'.format(os.path.dirname(outfile), os.path.basename(outfile))) do_regrid(infile, variable, outfile, netcdfType)
IOC-CODE/esgf_ensemble_mean
regrid_thetao/bin/regrid_thetao.py
Python
gpl-2.0
6,151
[ "NetCDF" ]
7c896766b45628ffb765999a2bd94f837ed72504e935c654a95ae9b63a8f4f69
import pyparsing as pp LPAR = pp.Suppress('(') RPAR = pp.Suppress(')') LBRACK = pp.Suppress('[') RBRACK = pp.Suppress(']') LBRACE = pp.Suppress('{') RBRACE = pp.Suppress('}') COMMA = pp.Suppress(',') LT = pp.Suppress('<') GT = pp.Suppress('>') TITLE = pp.Keyword('TITLE') UNITS = pp.Keyword('UNITS') PARAMETER = pp.Keyword('PARAMETER') COMMENT = pp.Keyword('COMMENT') ASSIGNED = pp.Keyword('ASSIGNED') NEURON = pp.Keyword('NEURON') BREAKPOINT = pp.Keyword('BREAKPOINT') STATE = pp.Keyword('STATE') FUNCTION = pp.Keyword('FUNCTION') PROCEDURE = pp.Keyword('PROCEDURE') INITIAL = pp.Keyword('INITIAL') DERIVATIVE = pp.Keyword('DERIVATIVE') LOCAL = pp.Keyword('LOCAL') UNITSON = pp.Keyword('UNITSON') UNITSOFF = pp.Keyword('UNITSOFF') THREADSAFE = pp.Keyword('THREADSAFE') FLOAT = pp.Regex('[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?') INT = pp.Word(pp.nums) ID = pp.Word(pp.alphas, pp.alphanums+'_') # TODO: allowed ids?
borismarin/nmodl-parse
nmodl/terminals.py
Python
gpl-3.0
922
[ "NEURON" ]
c729a260a94d45ab2d1ce18e6501d9e79afb3924bcf5617de1cadc2bd7aa2adf
#!/usr/bin/env python # # # computes analytical solution for a double-couple source # according to Aki & Richards, eq. 4.32 and 4.33 # # from __future__ import print_function import sys from numpy import sqrt,fabs,sin,cos,arccos,arctan2,pi,zeros from math import erf ############################################################################## ## parameters # source-receiver position xs = 0.0 ys = 0.0 zs = 0.0 # receiver xr = 6000.0 yr = 1000.0 zr = 4000.0 # (optional) file name prefix for receiver station comparison station_prefix = "DB.Z1.FX" # e.g., "DB.Z5.FX" -> DB.Z5.FXX.semd,DB.Z5.FXY.semd,DB.Z5.FXZ.semd station_ending = ".semd" # medium parameter rho = 2300.0 beta = 1500.0 alpha = 2800.0 # source time function hdur = 2.0 / 1.628 # hdur/gauss (according to SPECFEM definition) dt = 0.001 # time step size M0 = 1.e16 # double-couple scalar moment (N-m) # trace start/end time t0 = -4.0 # SPECFEM simulation times t1 = (14000-1) * dt + t0 # 14000 time steps ############################################################################## def comp_source_time_function(t,hdur): # quasi Heaviside, small Gaussian moment-rate tensor with hdur # (according to SPECFEM definition) val = 0.5 * (1.0 + erf(t/hdur)) return val def comp_source_time_function_diff(t,hdur,dt): # derivative of the source time function val_diff = (comp_source_time_function(t+dt,hdur)-comp_source_time_function(t-dt,hdur)) / (2.0*dt) return val_diff def comp_source_time_function_conv(t,hdur,dt,r,alpha,beta): # convolution of the source time function between times r/alpha and r/beta nmin = int((r/alpha)/dt) nmax = int((r/beta)/dt) val_conv = 0.0 for i in range(nmin, nmax+1): time_temp = i * dt val_conv += comp_source_time_function(t-time_temp,hdur) * time_temp * dt return val_conv def analytical_solution(): global xs,ys,zs global xr,yr,zr global station_prefix,station_ending global rho,alpha,beta global hdur,dt,M0 global t0,t1 # spherical coordinates r = sqrt((xs-xr)**2 + (ys-yr)**2 + (zs-zr)**2) theta = arccos((zr-zs)/r) phi = arctan2((yr-ys),(xr-xs)) # user output print('Aki & Richards - double-couple solution') print('position:') print(' xr/yr/zr = ',xr, yr, zr) print(' r/theta/phi = ',r, theta, phi) print('') print(' back-rotated x/y/z = ',r*sin(theta)*cos(phi),r*sin(theta)*sin(phi),r*cos(theta)) print('') print('hdur:',hdur) print('') # trace start/end time if t1 > 0.0 and t1 > t0: tmin = t0 tmax = t1 else: # default: around arrivals +/- 5 * hdur tmin = r/alpha - 5.0 * hdur tmax = r/beta + 5.0 * hdur ntmin = int(tmin/dt) ntmax = int(tmax/dt) print('trace length:') print(' tmin / ntmin :',tmin, ntmin) print(' tmax / ntmax :',tmax, ntmax) print('') #compute factors in the AKI & RICHARDS solution cn = 1.0/(4.0 * pi * rho * r**4) * M0 cip = 1.0/(4.0 * pi * rho * alpha**2 * r**2) * M0 cis = 1.0/(4.0 * pi * rho * beta**2 * r**2) * M0 cfp = 1.0/(4.0 * pi * rho * alpha**3 * r) * M0 cfs = 1.0/(4.0 * pi * rho * beta**3 * r) * M0 # Aki & Richards, eqs. (4.33) # components index: 0 == r, 1 == theta, 2 == phi an = zeros(3) an[0] = 9.0 * sin(2.0*theta) * cos(phi) an[1] = -6.0 * cos(2.0*theta) * cos(phi) an[2] = 6.0 * cos(theta) * sin(phi) aip = zeros(3) aip[0] = 4.0*sin(2.0*theta)*cos(phi) aip[1] = -2.0*cos(2.0*theta)*cos(phi) aip[2] = 2.0*cos(theta)*sin(phi) ais = zeros(3) ais[0] = -3.0*sin(2.0*theta)*cos(phi) ais[1] = 3.0*cos(2.0*theta)*cos(phi) ais[2] = -3.0*cos(theta)*sin(phi) afp = zeros(3) afp[0] = sin(2.0*theta)*cos(phi) afp[1] = 0.0 afp[2] = 0.0 afs = zeros(3) afs[0] = 0.0 afs[1] = cos(2.0*theta)*cos(phi) afs[2] = -cos(theta)*sin(phi) usph = zeros(3) ucar = zeros(3) tmp_nf = zeros(3) tmp_if = zeros(3) tmp_ff = zeros(3) # displacement if len(station_prefix) > 0: name1 = station_prefix + "X" + station_ending name2 = station_prefix + "Y" + station_ending name3 = station_prefix + "Z" + station_ending else: # default naming name1 = "Ux.dat" name2 = "Uy.dat" name3 = "Uz.dat" print('trace names:') print(' ',name1,name2,name3) print('') # file output f1 = open(name1,'w') f2 = open(name2,'w') f3 = open(name3,'w') # format: #time #u_cartesian #u_spherical info = "# Aki and Richards - double-couple solution eq.(4.32) and (4.33)\n" info += "#\n" info += "# homogeneous elastic medium: rho/vp/vs = {} / {} / {}\n".format(rho,alpha,beta) info += "# receiver station : x/y/z = {} / {} / {}\n".format(xr,yr,zr) info += "# : r/theta/phi = {} / {} / {}\n".format(r,theta,phi) info += "#\n" comp1 = "# solution component : cartesian X / spherical R\n" comp2 = "# solution component : cartesian Y / spherical THETA\n" comp3 = "# solution component : cartesian Z / spherical PHI\n" format = "#\n" format += "# format:\n" format += "#time \t#u_cartesian \t#u_spherical\n" f1.write(info + comp1 + format) f2.write(info + comp2 + format) f3.write(info + comp3 + format) # source time functions stf1 = open('stf_step_time_source','w') stf2 = open('stf_diff_step_time_source','w') stf3 = open('stf_conv_step_time_source','w') # format: #time #stf stf1.write('#time #stf\n') stf2.write('#time #stf_diff\n') stf3.write('#time #stf_conv\n') print('') print('writing wavefield solution...') for it in range(ntmin, ntmax+1): time = it * dt # source time functions stf_p = comp_source_time_function(time-r/alpha,hdur) stf_s = comp_source_time_function(time-r/beta,hdur) stf_p_diff = comp_source_time_function_diff(time-r/alpha,hdur,dt) stf_s_diff = comp_source_time_function_diff(time-r/beta,hdur,dt) stf_conv = comp_source_time_function_conv(time,hdur,dt,r,alpha,beta) stf1.write("{} \t{} \t{}\n".format(time, stf_p, stf_s)) stf2.write("{} \t{} \t{}\n".format(time, stf_p_diff, stf_s_diff)) stf3.write("{} \t{}\n".format(time, stf_conv)) # wavefield terms # components (r,theta,phi) for i in range(3): # near-field tmp_nf[i] = cn * an[i] * stf_conv # intermediate-field tmp_if[i] = cip * aip[i] * stf_p + cis * ais[i] * stf_s # far-field tmp_ff[i] = cfp * afp[i] * stf_p_diff + cfs * afs[i] * stf_s_diff # spherical solution usph[i] = tmp_nf[i] + tmp_if[i] + tmp_ff[i] ## displacement vector in spherical coordinates d = v_r * unit_r + v_t * unit_theta + v_p * unit_phi #v_r = usph(1) #v_t = usph(2) #v_p = usph(3) ## rotation to cartesian system ## see: https://en.wikipedia.org/wiki/Vector_fields_in_cylindrical_and_spherical_coordinates ## displacement vector in cartesian coordinates d = v_x * unit_x + v_y * unit_y + v_z * unit_z #v_x = v_r * sin(theta)*cos(phi) + v_t * cos(theta)*cos(phi) + v_p * (-sin(phi)) #v_y = v_r * sin(theta)*sin(phi) + v_t * cos(theta)*sin(phi) + v_p * cos(phi) #v_z = v_r * cos(theta) + v_t * (-sin(theta)) !+ v_p * 0.0 ## coordinate system convention: # SPECFEM: # the x axis points East # the y axis points North # the z axis points up # # Aki & Richards: # the x axis points North # the y axis points East # the z axis points down # # results for: # unit_r = (sin(theta) cos(phi), sin(theta) sin(phi), cos(theta) ) # unit_theta = (cos(theta) cos(phi), cos(theta) sin(phi), - sin(theta)) # unit_phi = (-sin(phi) , cos(phi) , 0 ) # # slip in (x1,x2) plane along x1 # ## Aki & Richards convention: #v_x = v_r * sin(theta)*cos(phi) + v_t * cos(theta)*cos(phi) + v_p * (-sin(phi)) #v_y = v_r * sin(theta)*sin(phi) + v_t * cos(theta)*sin(phi) + v_p * cos(phi) #v_z = v_r * cos(theta) + v_t * (-sin(theta)) !+ v_p * 0.0 # ## conversion to SPECFEM? # # STATIONS position: # #name #network #y #x #(ignored) # z(Par_file: USE_SOURCES_RECEIVERS_Z = .true.) # X1 DB 7000.0 8000.0 0.0 4000.0 # # CMTSOLUTION: # r -> z, theta -> -y, phi -> x # # Mxx = Mpp # Myy = Mtt # Mzz = Mrr # Myz = -Mrt # Mxz = Mrp # Mxy = -Mtp # # the setup in Aki & Richards corresponds to component Mrp being non-zero # CMTSOLUTIONs use dyne-cm, where as here M0 is in N-m -> conversion factor M_(dyne-cm) = 10**7 M_(N-m) # ## convert vector field in r/theta/phi to cartesian coordinate system x/y/z vec_r = usph[0] vec_t = usph[1] vec_p = usph[2] # u(r,theta,phi) -> u(x,y,z) ucar[0] = vec_r * sin(theta)*cos(phi) + vec_t * cos(theta)*cos(phi) - vec_p * sin(phi) ucar[1] = vec_r * sin(theta)*sin(phi) + vec_t * cos(theta)*sin(phi) + vec_p * cos(phi) ucar[2] = vec_r * cos(theta) - vec_t * sin(theta) # format: #time #u_cartesian #u_spherical f1.write("{} \t{} \t{} \t{} {} {}\n".format(time,ucar[0],usph[0],tmp_nf[0],tmp_if[0],tmp_ff[0])) # #t #x #r f2.write("{} \t{} \t{} \t{} {} {}\n".format(time,ucar[1],usph[1],tmp_nf[1],tmp_if[1],tmp_ff[1])) # #t #y #theta f3.write("{} \t{} \t{} \t{} {} {}\n".format(time,ucar[2],usph[2],tmp_nf[2],tmp_if[2],tmp_ff[2])) # #t #z #phi f1.close() f2.close() f3.close() stf1.close() stf2.close() stf3.close() print('') print('written to: ') print(' ',name1) print(' ',name2) print(' ',name3) print('') print('done') def usage(): print('usage: ./analytical_solution.py xr yr zr station_prefix') print(' with') print(' xr,yr,zr - receiver position in m (e.g., 8000.0 1000.0 4000.0)') print(' station_prefix - station name prefix (e.g., DB.Z1.FX to compare with SPECFEM)') print('') if __name__ == '__main__': # gets (optional) arguments if len(sys.argv) > 1: if len(sys.argv) != 5: usage() sys.exit(1) # receiver position xr = float(sys.argv[1]) yr = float(sys.argv[2]) zr = float(sys.argv[3]) # station prefix station_prefix = sys.argv[4] # solution analytical_solution()
geodynamics/specfem3d
EXAMPLES/small_elastic_analytic_solution/analytical_solution_Aki.py
Python
gpl-3.0
10,970
[ "Gaussian" ]
e7c268453971ba678c342d12b71e643b900ec7010669dcb7df27dd92d813f97e
#!/usr/bin/env python ######################################################################## # $HeadURL$ # File : dirac-wms-job-status # Author : Stuart Paterson ######################################################################## """ Retrieve status of the given DIRAC job """ __RCSID__ = "$Id$" import os import DIRAC from DIRAC import exit as DIRACExit from DIRAC.Core.Base import Script from DIRAC.Core.Utilities.Time import toString, date, day Script.setUsageMessage( '\n'.join( [ __doc__.split( '\n' )[1], '\nUsage:\n', ' %s [option|cfgfile] ... JobID ...' % Script.scriptName, '\nArguments:\n', ' JobID: DIRAC Job ID' ] ) ) Script.registerSwitch( "f:", "File=", "Get status for jobs with IDs from the file" ) Script.registerSwitch( "g:", "JobGroup=", "Get status for jobs in the given group" ) Script.parseCommandLine( ignoreErrors = True ) args = Script.getPositionalArgs() from DIRAC.Interfaces.API.Dirac import Dirac, parseArguments dirac = Dirac() exitCode = 0 jobs = [] for key, value in Script.getUnprocessedSwitches(): if key.lower() in ( 'f', 'file' ): if os.path.exists( value ): jFile = open( value ) jobs += jFile.read().split() jFile.close() elif key.lower() in ( 'g', 'jobgroup' ): jobDate = toString( date() - 30 * day ) # Choose jobs no more than 30 days old result = dirac.selectJobs( jobGroup = value, date = jobDate ) if not result['OK']: print "Error:", result['Message'] DIRACExit( -1 ) jobs += result['Value'] if len( args ) < 1 and not jobs: Script.showHelp() if len( args ) > 0: jobs += parseArguments( args ) result = dirac.getJobStatus( jobs ) if result['OK']: for job in result['Value']: print 'JobID=' + str( job ), for status in result['Value'][job].items(): print '%s=%s;' % status, print else: exitCode = 2 print "ERROR: %s" % result['Message'] DIRAC.exit( exitCode )
andresailer/DIRAC
Interfaces/scripts/dirac-wms-job-status.py
Python
gpl-3.0
2,067
[ "DIRAC" ]
ddc90a618da8e615a23bd1a498ed665a5124abb5e163fdb8e308a666ec77cbf1
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Spglib(CMakePackage): """C library for finding and handling crystal symmetries.""" homepage = "https://atztogo.github.io/spglib/" url = "https://github.com/atztogo/spglib/archive/v1.10.3.tar.gz" patch('fix_cmake_install.patch', when='@:1.10.3') # patch by Krishnendu Ghosh patch('fix_cpp.patch', when='@:1.10.3') version('1.16.1', sha256='e90682239e4ef63b492fa4e44f7dbcde2e2fe2e688579d96b01f2730dfdf5b2e') version('1.16.0', sha256='969311a2942fef77ee79ac9faab089b68e256f21713194969197e7f2bdb14772') version('1.15.1', sha256='b6dc2c8adcc7d0edee7a076e765c28b2941b2aeba590d213a0b4893c8af0c026') version('1.15.0', sha256='2e217beff6840a22ab2149598eb2f40616b2eeb9e155edab52761d3301412f98') version('1.14.1', sha256='9803b0648d9c2d99377f3e1c4cecf712320488403cd674192ec5cbe956bb3c78') version('1.14.0', sha256='0a5e518c3dc221386d2219cbd260d08b032b0d2a31bccc32e1a8cb7874e7e9e9') version('1.13.0', sha256='ed72ae7bdd129487c45ff7bebb8e2ac03074657060e068b015e7741c0271e16b') version('1.12.2', sha256='d92f5e4fa0f54cc0abd0209b81c4d5c647dae9d25b774c2296f44b8558b17976') version('1.12.1', sha256='1765e68982425de6d30029d50d200f20425b8ed1deff52b8e73a4a1457ac9ab6') version('1.12.0', sha256='79361ef230b4fd55d5eb7521c23430acc3f11ab527125dc324ffb315783ebdfa') version('1.11.2.1', sha256='f6795523a04871e012e7f5f5ab97b249fa36657b73cdc9b4ea53ef023cfcaac4') version('1.11.2', sha256='aae61218dd0cca1fda245d4ad906c2eed5e8d30e28b575d74eab9a6be26bbd5d') version('1.11.1.2', sha256='d99dab24accd269df65c01febd05cb5dd1094a89d7279f8390871f0432df2b56') version('1.11.1', sha256='3b5a859f3fe2c9b096fc0754ffbd9341c568bc8003d2eeb74c958c1cacb480f5') version('1.11.0', sha256='e4befe27473a69b7982597760d6838cc48d9ef7b624a439436a17f5487f78f51') version('1.10.4', sha256='6a15a324a821ad9d3e615e120d9c5e704e284d8eb1f076aa21741a23fbcf08df') version('1.10.3', sha256='43776b5fb220b746d53c1aa39d0230f304687ec05984671392bccaf850d9d696') version('1.10.2', sha256='5907d0d29563689146512ef24aa8960d9475c5de326501f277bb58b3de21b07d') version('1.10.1', sha256='8ed979cda82f6d440567197ec191bffcb82ee83c5bfe8a484c5a008dd00273f0') version('1.10.0', sha256='117fff308731784bea2ddaf3d076f0ecbf3981b31ea1c1bfd5ce4f057a5325b1') @property def libs(self): return find_libraries('libsymspg', root=self.prefix, shared=True, recursive=True)
LLNL/spack
var/spack/repos/builtin/packages/spglib/package.py
Python
lgpl-2.1
2,706
[ "CRYSTAL" ]
c396c32f9d286bbffa592da817518005db3960374ec59e28c4c8047d0df92afd
# Copyright 2003-2008 by Leighton Pritchard. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. # # Contact: Leighton Pritchard, Scottish Crop Research Institute, # Invergowrie, Dundee, Scotland, DD2 5DA, UK # [email protected] ################################################################################ """ Colors module Provides: o ColorTranslator - class to convert tuples of integers and floats into colors.Color objects For drawing capabilities, this module uses reportlab to define colors: http://www.reportlab.com """ import sys # Add path to Bio sys.path.append('../../..') # ReportLab imports from __future__ import print_function from Bio._py3k import basestring from reportlab.lib import colors class ColorTranslator(object): """ Class providing methods for translating representations of color into """ def __init__(self, filename=None): """ __init__(self, filename) o filename Location of a file containing colorscheme information Optional parameters set the color scheme """ self._artemis_colorscheme = {0: (colors.Color(1, 1, 1,), "pathogenicity, adaptation, chaperones"), 1: (colors.Color(0.39, 0.39, 0.39), "energy metabolism"), 2: (colors.Color(1, 0, 0), "information transfer"), 3: (colors.Color(0, 1, 0), "surface"), 4: (colors.Color(0, 0, 1), "stable RNA"), 5: (colors.Color(0, 1, 1), "degradation of large molecules"), 6: (colors.Color(1, 0, 1), "degradation of small molecules"), 7: (colors.Color(1, 1, 0), "central/intermediary/miscellaneous metabolism"), 8: (colors.Color(0.60, 0.98, 0.60), "unknown"), 9: (colors.Color(0.53, 0.81, 0.98), "regulators"), 10: (colors.Color(1, 0.65, 0), "conserved hypotheticals"), 11: (colors.Color(0.78, 0.59, 0.39), "pseudogenes and partial genes"), 12: (colors.Color(1, 0.78, 0.78), "phage/IS elements"), 13: (colors.Color(0.70, 0.70, 0.70), "some miscellaneous information"), 14: (colors.Color(0, 0, 0), ""), 15: (colors.Color(1, 0.25, 0.25), "secondary metabolism"), 16: (colors.Color(1, 0.5, 0.5), ""), 17: (colors.Color(1, 0.75, 0.75), "") } # Hardwired Artemis color scheme self._colorscheme = {} if filename is not None: self.read_colorscheme(filename) # Imported color scheme else: self._colorscheme = self._artemis_colorscheme def translate(self, color=None, colour=None): """ translate(self, color) o color Color defined as an int, a tuple of three ints 0->255 or a tuple of three floats 0 -> 1, or a string giving one of the named colors defined by ReportLab, or a ReportLab color object (returned as is). (This argument is overridden by a backwards compatible argument with UK spelling, colour). Returns a colors.Color object, determined semi-intelligently depending on the input values """ # Let the UK spelling (colour) override the USA spelling (color) if colour is not None: color = colour if color is None: raise ValueError("Passed color (or colour) must be a valid color type") elif isinstance(color, int): color = self.scheme_color(color) elif isinstance(color, colors.Color): return color elif isinstance(color, basestring): # Assume its a named reportlab color like "red". color = colors.toColor(color) elif isinstance(color, tuple) and isinstance(color[0], float): color = self.float1_color(color) elif isinstance(color, tuple) and isinstance(color[0], int): color = self.int255_color(color) return color def read_colorscheme(self, filename): """ read_colorscheme(self, filename) o filename The location of a file defining colors in tab-separated format plaintext as: INT \t RED \t GREEN \t BLUE \t Comment Where RED, GREEN and BLUE are intensities in the range 0 -> 255 e.g. 2 \t 255 \t 0 \t 0 \t Red: Information transfer Reads information from a file containing color information and stores it internally """ with open(filename, 'r').readlines() as lines: for line in lines: data = line.strip().split('\t') try: label = int(data[0]) red, green, blue = int(data[1]), int(data[2]), int(data[3]) if len(data) > 4: comment = data[4] else: comment = "" self._colorscheme[label] = (self.int255_color((red, green, blue)), comment) except: raise ValueError("Expected INT \t INT \t INT \t INT \t string input") def get_artemis_colorscheme(self): """ get_artemis_colorscheme(self) Return the Artemis color scheme as a dictionary """ return self._artemis_colorscheme def artemis_color(self, value): """ artemis_color(self, value) o value An int representing a functional class in the Artemis color scheme (see www.sanger.ac.uk for a description), or a string from a GenBank feature annotation for the color which may be dot delimited (in which case the first value is used). Takes an int representing a functional class in the Artemis color scheme, and returns the appropriate colors.Color object """ try: value = int(value) except ValueError: if value.count('.'): # dot-delimited value = int(artemis_color.split('.', 1)[0]) # Use only first integer else: raise if value in self._artemis_colorscheme: return self._artemis_colorscheme[value][0] else: raise ValueError("Artemis color out of range: %d" % value) def get_colorscheme(self): """ get_colorscheme(self) Return the user-defined color scheme as a dictionary """ return self._colorscheme def scheme_color(self, value): """ scheme_color(self, value) o value An int representing a single color in the user-defined color scheme Takes an int representing a user-defined color and returns the appropriate colors.Color object """ if value in self._colorscheme: return self._colorscheme[value][0] else: raise ValueError("Scheme color out of range: %d" % value) def int255_color(self, values): """ int255_color(self, values) o values A tuple of (red, green, blue) intensities as integers in the range 0->255 Takes a tuple of (red, green, blue) intensity values in the range 0 -> 255 and returns an appropriate colors.Color object """ red, green, blue = values factor = 1/255. red, green, blue = red * factor, green * factor, blue * factor return colors.Color(red, green, blue) def float1_color(self, values): """ float1_color(self, values) o values A tuple of (red, green, blue) intensities as floats in the range 0 -> 1 Takes a tuple of (red, green, blue) intensity values in the range 0 -> 1 and returns an appropriate colors.Color object """ red, green, blue = values return colors.Color(red, green, blue) ################################################################################ # RUN AS SCRIPT ################################################################################ if __name__ == '__main__': # Test code gdct = ColorTranslator() print(gdct.float1_color((0.5, 0.5, 0.5))) print(gdct.int255_color((1, 75, 240))) print(gdct.artemis_color(7)) print(gdct.scheme_color(2)) print(gdct.translate((0.5, 0.5, 0.5))) print(gdct.translate((1, 75, 240))) print(gdct.translate(7)) print(gdct.translate(2))
Ambuj-UF/ConCat-1.0
src/Utils/Bio/Graphics/GenomeDiagram/_Colors.py
Python
gpl-2.0
9,061
[ "Biopython" ]
46f802e4be66746286db853c4bbe827808b15dda48d1b08148ad3606520a36b1
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import unicode_literals, division, print_function import yaml import unittest import sys from pymatgen.util.testing import PymatgenTest from pymatgen.io.abinit.tasks import ParalConf from pymatgen.io.abinit.qadapters import * from pymatgen.io.abinit.qadapters import QueueAdapter, SlurmAdapter from pymatgen.io.abinit import qutils as qu class ParseTimestr(PymatgenTest): def test_slurm_parse_timestr(self): days, hours, minutes, secs = 24*60*60, 60*60, 60, 1 aequal = self.assertEqual slurm_parse_timestr = qu.slurm_parse_timestr # "days-hours", aequal(slurm_parse_timestr("2-1"), 2*days + hours) # "days-hours:minutes", aequal(slurm_parse_timestr("2-1:1"), 2*days + hours + minutes) # "days-hours:minutes:seconds". aequal(slurm_parse_timestr("3-4:2:20"), 3*days + 4*hours + 2*minutes + 20*secs) # "minutes", aequal(slurm_parse_timestr("10"), 10*minutes) # "minutes:seconds", aequal(slurm_parse_timestr("3:20"), 3*minutes + 20*secs) # "hours:minutes:seconds", aequal(slurm_parse_timestr("3:2:5"), 3*hours + 2*minutes + 5*secs) @unittest.skipIf(sys.platform.startswith("win"), "Skipping for Windows") class QadapterTest(PymatgenTest): QDICT = yaml.load("""\ priority: 1 queue: qtype: slurm qname: Oban limits: timelimit: 2:00 min_cores: 1 max_cores: 24 #condition: {"$eq": {omp_threads: 2}} job: modules: - intel/compilerpro/13.0.1.117 - fftw3/intel/3.3 shell_env: PATH: /home/user/tmp_intel13/src/98_main/:/home/user//NAPS/intel13/bin:$PATH mpi_runner: mpirun hardware: num_nodes: 3 sockets_per_node: 2 cores_per_socket: 4 mem_per_node: 8 Gb """) def test_base(self): """unit tests for Qadapter subclasses. A more complete coverage would require integration testing.""" self.maxDiff = None aequal, atrue, afalse = self.assertEqual, self.assertTrue, self.assertFalse sub_classes = QueueAdapter.__subclasses__() # Test if we can instantiate the concrete classes with the abc protocol. for subc in sub_classes: print("subclass: ", subc) # Create the adapter subclass. self.QDICT["queue"]["qtype"] = subc.QTYPE qad = make_qadapter(**self.QDICT) print(qad) hw = qad.hw giga = 1024 # Test the programmatic interface used to change job parameters. aequal(qad.num_launches, 0) afalse(qad.has_omp) atrue(qad.has_mpi) qad.set_mpi_procs(2) aequal(qad.mpi_procs, 2) atrue(qad.pure_mpi) afalse(qad.pure_omp) afalse(qad.hybrid_mpi_omp) aequal(qad.mem_per_proc, giga) qad.set_mem_per_proc(2 * giga) aequal(qad.mem_per_proc, 2 * giga) aequal(qad.timelimit, 120) # Enable OMP qad.set_omp_threads(2) aequal(qad.omp_threads, 2) atrue(qad.has_omp) afalse(qad.pure_mpi) afalse(qad.pure_omp) atrue(qad.hybrid_mpi_omp) atrue(qad.hw.can_use_omp_threads(hw.sockets_per_node * hw.cores_per_socket)) afalse(qad.hw.can_use_omp_threads(hw.sockets_per_node * hw.cores_per_socket + 1)) # Test the creation of the script script = qad.get_script_str("job.sh", "/launch/dir", "executable", "qout_path", "qerr_path", stdin="STDIN", stdout="STDOUT", stderr="STDERR") # Test whether qad can be serialized with Pickle. deserialized_qads = self.serialize_with_pickle(qad, test_eq=False) for new_qad in deserialized_qads: new_script = new_qad.get_script_str("job.sh", "/launch/dir", "executable", "qout_path", "qerr_path", stdin="STDIN", stdout="STDOUT", stderr="STDERR") aequal(new_script, script) # Test can_run and distribute # The hardware has num_nodes=3, sockets_per_node=2, cores_per_socket=4, mem_per_node="8 Gb" afalse(qad.can_run_pconf(ParalConf(mpi_ncpus=hw.num_cores+1, omp_ncpus=1, mem_per_cpu=0.1))) afalse(qad.can_run_pconf(ParalConf(mpi_ncpus=4, omp_ncpus=9, mem_per_cpu=0.1))) afalse(qad.can_run_pconf(ParalConf(mpi_ncpus=4, omp_ncpus=1, mem_per_cpu=10 * giga))) d = qad.distribute(mpi_procs=4, omp_threads=1, mem_per_proc=giga) assert d.num_nodes == 1 and d.mpi_per_node == 4 and d.exact d = qad.distribute(mpi_procs=16, omp_threads=1, mem_per_proc=giga) assert d.num_nodes == 2 and d.mpi_per_node == 8 and d.exact # not enough memory per node but can distribute. d = qad.distribute(mpi_procs=8, omp_threads=1, mem_per_proc=2 * giga) assert d.num_nodes == 2 and d.mpi_per_node == 4 and not d.exact # mem_per_proc > mem_per_node! with self.assertRaises(qad.Error): d = qad.distribute(mpi_procs=9, omp_threads=1, mem_per_proc=10 * giga) # TODO # not commensurate with node #d = qad.distribute(mpi_procs=9, omp_threads=1, mem_per_proc=giga) #assert d.num_nodes == 3 and d.mpi_per_node == 3 and not d.exact with self.assertRaises(qad.Error): qad.set_mpi_procs(25) qad.validate() with self.assertRaises(qad.Error): qad.set_mpi_procs(100) qad.validate() with self.assertRaises(qad.Error): qad.set_omp_threads(10) qad.validate() with self.assertRaises(qad.Error): qad.set_mem_per_proc(9 * giga) qad.validate() # Test if one can register a customized class. class MyAdapter(SlurmAdapter): QTYPE = "myslurm" SlurmAdapter.register(MyAdapter) assert issubclass(MyAdapter, QueueAdapter) self.QDICT["queue"]["qtype"] = "myslurm" qad = make_qadapter(**self.QDICT) assert isinstance(qad, MyAdapter) @unittest.skipIf(sys.platform.startswith("win"), "Skipping for Windows") class ShellAdapterTest(PymatgenTest): """Test suite for Shell adapter.""" QDICT = yaml.load("""\ priority: 1 queue: qname: localhost qtype: shell job: mpi_runner: /home/local/bin/mpirun pre_run: - "source ~/env1.sh" limits: timelimit: 10:00 min_cores: 1 max_cores: 1 hardware: num_nodes: 1 sockets_per_node: 1 cores_per_socket: 1 mem_per_node: 4 Gb """) def test_methods(self): qad = make_qadapter(**self.QDICT) print(qad) print(qad.mpi_runner) assert qad.QTYPE == "shell" and qad.has_mpi and not qad.has_omp assert (qad.mpi_procs, qad.omp_threads) == (1, 1) assert qad.priority == 1 and qad.num_launches == 0 and qad.last_launch is None qad.set_omp_threads(1) assert qad.has_omp s = qad.get_script_str("job_name", "/launch_dir", "executable", "qout_path", "qerr_path", stdin="stdin", stdout="stdout", stderr="stderr") self.assertMultiLineEqual(s, """\ #!/bin/bash cd /launch_dir # OpenMp Environment export OMP_NUM_THREADS=1 # Commands before execution source ~/env1.sh /home/local/bin/mpirun -n 1 executable < stdin > stdout 2> stderr """) @unittest.skipIf(sys.platform.startswith("win"), "Skipping for Windows") class SlurmAdapterTest(PymatgenTest): """Test suite for Slurm adapter.""" QDICT = yaml.load("""\ priority: 5 queue: qtype: slurm qname: Oban qparams: account: user_account mail_user: [email protected] limits: timelimit: 10:00 min_cores: 3 max_cores: 16 job: mpi_runner: mpirun # pre_run is a string in verbatim mode (note |) setup: - echo ${SLURM_JOB_NODELIST} - ulimit -s unlimited modules: - intel/compilerpro/13.0.1.117 - fftw3/intel/3.3 shell_env: PATH: /home/user/bin:$PATH hardware: # Mandatory num_nodes: 2 sockets_per_node: 2 cores_per_socket: 4 mem_per_node: 8 Gb """) def test_methods(self): self.maxDiff = None qad = make_qadapter(**self.QDICT) print(qad) print(qad.mpi_runner) assert qad.QTYPE == "slurm" assert qad.has_mpi and not qad.has_omp assert (qad.mpi_procs, qad.omp_threads) == (3, 1) assert qad.priority == 5 and qad.num_launches == 0 and qad.last_launch is None qad.set_mpi_procs(4) s = qad.get_script_str("job_name", "/launch_dir", "executable", "qout_path", "qerr_path", stdin="stdin", stdout="stdout", stderr="stderr") print(s) self.assertMultiLineEqual(s, """\ #!/bin/bash #SBATCH --partition=Oban #SBATCH --job-name=job_name #SBATCH --ntasks=4 #SBATCH --mem-per-cpu=1024 #SBATCH --time=0-0:10:0 #SBATCH --account=user_account #SBATCH [email protected] #SBATCH --output=qout_path #SBATCH --error=qerr_path cd /launch_dir # Setup section echo ${SLURM_JOB_NODELIST} ulimit -s unlimited # Load Modules module purge module load intel/compilerpro/13.0.1.117 2>> mods.err module load fftw3/intel/3.3 2>> mods.err # OpenMp Environment export OMP_NUM_THREADS=1 # Shell Environment export PATH=/home/user/bin:$PATH mpirun -n 4 executable < stdin > stdout 2> stderr """) #assert 0 #qad.set_omp_threads(1) #assert qad.has_omp @unittest.skipIf(sys.platform.startswith("win"), "Skipping for Windows") class PbsProadapterTest(PymatgenTest): """Test suite for PbsPro adapter.""" QDICT = yaml.load("""\ priority: 1 queue: qtype: pbspro qname: fat qparams: group_list: naps limits: timelimit: 0:0:10 min_cores: 3 max_cores: 200 job: mpi_runner: mpirun hardware: num_nodes: 100 sockets_per_node: 2 cores_per_socket: 4 mem_per_node: 8 Gb""") QDICT_SHARED = yaml.load("""\ priority: 1 queue: qtype: pbspro qname: fat_shared qnodes: shared qparams: group_list: naps limits: timelimit: 0:0:10 min_cores: 3 max_cores: 200 min_mem_per_proc: 2000 master_mem_overhead: 1000 job: mpi_runner: mpirun hardware: num_nodes: 100 sockets_per_node: 2 cores_per_socket: 12 mem_per_node: 48000 Mb""") QDICT_EXCLUSIVE = yaml.load("""\ priority: 1 queue: qtype: pbspro qname: fat_exclusive qnodes: exclusive qparams: group_list: naps limits: timelimit: 0:0:10 min_cores: 3 max_cores: 200 min_mem_per_proc: 2000 master_mem_overhead: 1000 job: mpi_runner: mpirun hardware: num_nodes: 100 sockets_per_node: 2 cores_per_socket: 12 mem_per_node: 48000 Mb""") def test_methods(self): self.maxDiff = None aequal = self.assertEqual qad = make_qadapter(**self.QDICT) self.assertMSONable(qad) print(qad) print(qad.mpi_runner) assert qad.QTYPE == "pbspro" and qad.has_mpi and not qad.has_omp assert (qad.mpi_procs, qad.omp_threads) == (3, 1) assert qad.priority == 1 and qad.num_launches == 0 and qad.last_launch is None #qad.set_mpi_procs(4) s = qad.get_script_str("job_name", "/launch_dir", "executable", "qout_path", "qerr_path", stdin="stdin", stdout="stdout", stderr="stderr") print(s) self.assertMultiLineEqual(s, """\ #!/bin/bash #PBS -q fat #PBS -N job_name #PBS -l select=3:ncpus=1:vmem=1024mb:mpiprocs=1 #PBS -l pvmem=1024mb #PBS -l walltime=0:0:10 #PBS -W group_list=naps #PBS -o qout_path #PBS -e qerr_path cd /launch_dir # OpenMp Environment export OMP_NUM_THREADS=1 mpirun -n 3 executable < stdin > stdout 2> stderr """) mem = 1024 qad.set_mem_per_proc(mem) print(qad) qad.set_mpi_procs(4) s, params = qad.get_select(ret_dict=True) # IN_CORE PURE MPI: MPI: 4, OMP: 1 aequal(params, {'ncpus': 1, 'chunks': 4, 'mpiprocs': 1, "vmem": mem}) qad.set_omp_threads(2) s, params = qad.get_select(ret_dict=True) # HYBRID MPI-OPENMP run, perfectly divisible among nodes: MPI: 4, OMP: 2 aequal(params, {'vmem': mem, 'ncpus': 2, 'chunks': 4, 'ompthreads': 2, 'mpiprocs': 1}) qad.set_mpi_procs(12) s, params = qad.get_select(ret_dict=True) # HYBRID MPI-OPENMP run, perfectly divisible among nodes: MPI: 12, OMP: 2 aequal(params, {'vmem': mem, 'ncpus': 2, 'chunks': 12, 'ompthreads': 2, 'mpiprocs': 1}) qad.set_omp_threads(5) qad.set_mpi_procs(3) s, params = qad.get_select(ret_dict=True) # HYBRID MPI-OPENMP, NOT commensurate with nodes: MPI: 3, OMP: 5 aequal(params, {'vmem': mem, 'ncpus': 5, 'chunks': 3, 'ompthreads': 5, 'mpiprocs': 1}) # Testing the handling of master memory overhead # Shared mode (the nodes might be shared amongst different jobs from different users) qad_shared = make_qadapter(**self.QDICT_SHARED) aequal(qad_shared.hw.mem_per_node, 48000) qad_shared.set_mpi_procs(15) qad_shared.set_mem_per_proc(6000) aequal(qad_shared.get_select(), '1:ncpus=1:vmem=7000mb:mpiprocs=1+' '14:ncpus=1:vmem=6000mb:mpiprocs=1') qad_shared.set_mpi_procs(64) qad_shared.set_mem_per_proc(3500) qad_shared.set_master_mem_overhead(4000) self.assertMSONable(qad_shared) aequal(qad_shared.get_select(), '1:ncpus=1:vmem=7500mb:mpiprocs=1+' '63:ncpus=1:vmem=3500mb:mpiprocs=1') # Exclusive mode (the nodes are attributed exclusively to a given user) qad_exclusive = make_qadapter(**self.QDICT_EXCLUSIVE) aequal(qad_exclusive.hw.mem_per_node, 48000) qad_exclusive.set_mpi_procs(47) qad_exclusive.set_mem_per_proc(2000) qad_exclusive.set_master_mem_overhead(1) self.assertMSONable(qad_exclusive) aequal(qad_exclusive.get_select(), '1:ncpus=23:vmem=48000mb:mpiprocs=23+' '1:ncpus=24:vmem=48000mb:mpiprocs=24') qad_exclusive.set_mpi_procs(48) aequal(qad_exclusive.get_select(), '1:ncpus=1:vmem=48000mb:mpiprocs=1+' '1:ncpus=24:vmem=48000mb:mpiprocs=24+' '1:ncpus=23:vmem=48000mb:mpiprocs=23') qad_exclusive.set_mpi_procs(50) aequal(qad_exclusive.get_select(), '1:ncpus=2:vmem=48000mb:mpiprocs=2+' '2:ncpus=24:vmem=48000mb:mpiprocs=24') if __name__ == '__main__': import unittest unittest.main()
xhqu1981/pymatgen
pymatgen/io/abinit/tests/test_qadapters.py
Python
mit
15,154
[ "ABINIT", "pymatgen" ]
6d0c17a2391ff3e1175ab5e025d8b6f6cc12d62baca4da8b7bb87d79d78b3283
'''This example shows how to use importance sampling and how to adapt the proposal density using the pmc algorithm. ''' import numpy as np import pypmc # define the target; i.e., the function you want to sample from. # In this case, it is a bimodal Gaussian # # Note that the target function "log_target" returns the log of the # target function. component_weights = np.array([0.3, 0.7]) mean0 = np.array ([ 5.0 , 0.01 ]) covariance0 = np.array([[ 0.01 , 0.003 ], [ 0.003, 0.0025]]) inv_covariance0 = np.linalg.inv(covariance0) mean1 = np.array ([-4.0 , 1.0 ]) covariance1 = np.array([[ 0.1 , 0. ], [ 0. , 0.02 ]]) inv_covariance1 = np.linalg.inv(covariance1) component_means = [mean0, mean1] component_covariances = [covariance0, covariance1] target_mixture = pypmc.density.mixture.create_gaussian_mixture(component_means, component_covariances, component_weights) log_target = target_mixture.evaluate # define the initial proposal density # In this case a three-modal gaussian used # the initial covariances are set to the unit-matrix # the initial component weights are set equal initial_prop_means = [] initial_prop_means.append( np.array([ 4.0, 0.0]) ) initial_prop_means.append( np.array([-5.0, 0.0]) ) initial_prop_means.append( np.array([ 0.0, 0.0]) ) initial_prop_covariance = np.eye(2) initial_prop_components = [] for i in range(3): initial_prop_components.append(pypmc.density.gauss.Gauss(initial_prop_means[i], initial_prop_covariance)) initial_proposal = pypmc.density.mixture.MixtureDensity(initial_prop_components) # define an ImportanceSampler object sampler = pypmc.sampler.importance_sampling.ImportanceSampler(log_target, initial_proposal) # draw 10,000 samples adapting the proposal every 1,000 samples # hereby save the generating proposal component for each sample which is # returned by sampler.run # Note: With too few samples components may die out, and one mode might be lost. generating_components = [] for i in range(10): print("\rstep", i, "...\n\t", end='') # draw 1,000 samples and save the generating component generating_components.append(sampler.run(10**3, trace_sort=True)) # get a reference to the weights and samples that have just been generated samples = sampler.samples[:] weights = sampler.weights[:][:,0] # update the proposal using the pmc algorithm in the non Rao-Blackwellized form pypmc.mix_adapt.pmc.gaussian_pmc(samples, sampler.proposal, weights, generating_components[-1], mincount=20, rb=True, copy=False) print("\rsampling finished") print( '-----------------') print('\n') # print information about the adapted proposal print('initial component weights:', initial_proposal.weights) print('final component weights:', sampler.proposal.weights) print('target component weights:', component_weights) print() for k, m in enumerate([mean0, mean1, None]): print('initial mean of component %i:' %k, initial_proposal.components[k].mu) print('final mean of component %i:' %k, sampler.proposal.components[k].mu) print('target mean of component %i:' %k, m) print() print() for k, c in enumerate([covariance0, covariance1, None]): print('initial covariance of component %i:\n' %k, initial_proposal.components[k].sigma, sep='') print() print('final covariance of component %i:\n' %k, sampler.proposal.components[k].sigma, sep='') print() print('target covariance of component %i:\n' %k, c, sep='') print('\n') # plot results try: import matplotlib.pyplot as plt except ImportError: print('For plotting "matplotlib" needs to be installed') exit(1) def set_axlimits(): plt.xlim(-6.0, +6.000) plt.ylim(-0.2, +1.401) plt.subplot(221) plt.title('target mixture') pypmc.tools.plot_mixture(target_mixture, cmap='jet') set_axlimits() plt.subplot(222) plt.title('pmc fit') pypmc.tools.plot_mixture(sampler.proposal, cmap='nipy_spectral', cutoff=0.01) set_axlimits() plt.subplot(223) plt.title('target mixture and pmc fit') pypmc.tools.plot_mixture(target_mixture, cmap='jet') pypmc.tools.plot_mixture(sampler.proposal, cmap='nipy_spectral', cutoff=0.01) set_axlimits() plt.subplot(224) plt.title('weighted samples') plt.hist2d(sampler.samples[-1][:,0], sampler.samples[-1][:,1], weights=sampler.weights[-1][:,0], cmap='gray_r', bins=200) set_axlimits() plt.tight_layout() plt.show()
fredRos/pypmc
examples/pmc.py
Python
gpl-2.0
4,459
[ "Gaussian" ]
147bea1a87fcf67b4b65c13e30c95516ba59d17d94471c009d8833c058517e13
#============================================================================== # # Program: ParaView # Module: numeric.py # # Copyright (c) Kitware, Inc. # All rights reserved. # See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details. # # This software is distributed WITHOUT ANY WARRANTY; without even # the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR # PURPOSE. See the above copyright notice for more information. # #============================================================================== r""" This module provides functions to vtk data arrays to NumPy arrays. """ __num_py_available__ = False try: import numpy __num_py_available__ = True except: raise """NumPy module "numpy" is not accessible. Please make sure that NumPy is installed correctly.""" # These types are returned by GetDataType to indicate data type. VTK_VOID = 0 VTK_BIT = 1 VTK_CHAR = 2 VTK_UNSIGNED_CHAR = 3 VTK_SHORT = 4 VTK_UNSIGNED_SHORT = 5 VTK_INT = 6 VTK_UNSIGNED_INT = 7 VTK_LONG = 8 VTK_UNSIGNED_LONG = 9 VTK_FLOAT =10 VTK_DOUBLE =11 VTK_ID_TYPE =12 __typeDict = { VTK_CHAR:numpy.int8, VTK_UNSIGNED_CHAR:numpy.uint8, VTK_SHORT:numpy.int16, VTK_UNSIGNED_SHORT:numpy.int16, VTK_INT:numpy.int32, VTK_FLOAT:numpy.float32, VTK_DOUBLE:numpy.float64 } def fromvtkarray(vtkarray): """This function takes a vtkDataArray of any type and converts it to a NumPy array of appropriate type and dimensions.""" global __typeDict__ global __num_py_available__ if not __num_py_available__: raise "NumPy module is not available." #create a numpy array of the correct type. vtktype = vtkarray.GetDataType() if not __typeDict.has_key(vtktype): raise "Cannot convert data arrays of the type %s" \ % vtkarray.GetDataTypeAsString() # size = num_comps * num_tuples # imArray = numpy.empty((size,), type) # vtkarray.ExportToVoidPointer(imArray) type = __typeDict[vtktype] pyarray = numpy.frombuffer(vtkarray, dtype=type) # re-shape the array to current number of rows and columns. num_tuples = vtkarray.GetNumberOfTuples() num_comps = vtkarray.GetNumberOfComponents() pyarray = numpy.reshape(pyarray, (num_tuples, num_comps)) return pyarray
HopeFOAM/HopeFOAM
ThirdParty-0.1/ParaView-5.0.1/Wrapping/Python/paraview/numeric.py
Python
gpl-3.0
2,496
[ "ParaView", "VTK" ]
3665cd08ce9b00db63f05300ddc21e83b8c890282d77b1f22cc8789e473cc1f0
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Base classes for probability distributions.""" import abc import collections import contextlib import functools import inspect import logging import types import decorator import six import tensorflow.compat.v2 as tf from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import auto_composite_tensor from tensorflow_probability.python.internal import batch_shape_lib from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import name_util from tensorflow_probability.python.internal import nest_util from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import slicing from tensorflow_probability.python.internal import tensorshape_util # Symbol import needed to avoid BUILD-dependency cycle from tensorflow_probability.python.math.generic import log1mexp from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import from tensorflow.python.util import nest # pylint: disable=g-direct-tensorflow-import from tensorflow.python.util import tf_inspect # pylint: disable=g-direct-tensorflow-import __all__ = [ 'Distribution', ] _DISTRIBUTION_PUBLIC_METHOD_WRAPPERS = { 'batch_shape': '_batch_shape', 'batch_shape_tensor': '_batch_shape_tensor', 'cdf': '_cdf', 'covariance': '_covariance', 'cross_entropy': '_cross_entropy', 'entropy': '_entropy', 'event_shape': '_event_shape', 'event_shape_tensor': '_event_shape_tensor', 'experimental_default_event_space_bijector': ( '_default_event_space_bijector'), 'experimental_sample_and_log_prob': '_sample_and_log_prob', 'kl_divergence': '_kl_divergence', 'log_cdf': '_log_cdf', 'log_prob': '_log_prob', 'log_survival_function': '_log_survival_function', 'mean': '_mean', 'mode': '_mode', 'prob': '_prob', 'sample': '_sample_n', 'stddev': '_stddev', 'survival_function': '_survival_function', 'variance': '_variance', } _ALWAYS_COPY_PUBLIC_METHOD_WRAPPERS = ['kl_divergence', 'cross_entropy'] UNSET_VALUE = object() JAX_MODE = False # Overwritten by rewrite script. @six.add_metaclass(abc.ABCMeta) class _BaseDistribution(tf.Module): """Abstract base class needed for resolving subclass hierarchy.""" pass def _copy_fn(fn): """Create a deep copy of fn. Args: fn: a callable Returns: A `FunctionType`: a deep copy of fn. Raises: TypeError: if `fn` is not a callable. """ if not callable(fn): raise TypeError('fn is not callable: {}'.format(fn)) # The blessed way to copy a function. copy.deepcopy fails to create a # non-reference copy. Since: # types.FunctionType == type(lambda: None), # and the docstring for the function type states: # # function(code, globals[, name[, argdefs[, closure]]]) # # Create a function object from a code object and a dictionary. # ... # # Here we can use this to create a new function with the old function's # code, globals, closure, etc. return types.FunctionType( code=fn.__code__, globals=fn.__globals__, name=fn.__name__, argdefs=fn.__defaults__, closure=fn.__closure__) def _update_docstring(old_str, append_str): """Update old_str by inserting append_str just before the 'Args:' section.""" old_str = old_str or '' old_str_lines = old_str.split('\n') # Step 0: Prepend spaces to all lines of append_str. This is # necessary for correct markdown generation. append_str = '\n'.join(' %s' % line for line in append_str.split('\n')) # Step 1: Find mention of 'Args': has_args_ix = [ ix for ix, line in enumerate(old_str_lines) if line.strip().lower() == 'args:'] if has_args_ix: final_args_ix = has_args_ix[-1] return ('\n'.join(old_str_lines[:final_args_ix]) + '\n\n' + append_str + '\n\n' + '\n'.join(old_str_lines[final_args_ix:])) else: return old_str + '\n\n' + append_str def _remove_dict_keys_with_value(dict_, val): """Removes `dict` keys which have have `self` as value.""" return {k: v for k, v in dict_.items() if v is not val} def _set_sample_static_shape_for_tensor(x, event_shape, batch_shape, sample_shape): """Helper to `_set_sample_static_shape`; sets shape info for a `Tensor`.""" sample_shape = tf.TensorShape(tf.get_static_value(sample_shape)) ndims = tensorshape_util.rank(x.shape) sample_ndims = tensorshape_util.rank(sample_shape) batch_ndims = tensorshape_util.rank(batch_shape) event_ndims = tensorshape_util.rank(event_shape) # Infer rank(x). if (ndims is None and sample_ndims is not None and batch_ndims is not None and event_ndims is not None): ndims = sample_ndims + batch_ndims + event_ndims tensorshape_util.set_shape(x, [None] * ndims) # Infer sample shape. if ndims is not None and sample_ndims is not None: shape = tensorshape_util.concatenate(sample_shape, [None] * (ndims - sample_ndims)) tensorshape_util.set_shape(x, shape) # Infer event shape. if ndims is not None and event_ndims is not None: shape = tf.TensorShape( [None]*(ndims - event_ndims)).concatenate(event_shape) tensorshape_util.set_shape(x, shape) # Infer batch shape. if batch_ndims is not None: if ndims is not None: if sample_ndims is None and event_ndims is not None: sample_ndims = ndims - batch_ndims - event_ndims elif event_ndims is None and sample_ndims is not None: event_ndims = ndims - batch_ndims - sample_ndims if sample_ndims is not None and event_ndims is not None: shape = tf.TensorShape([None]*sample_ndims).concatenate( batch_shape).concatenate([None]*event_ndims) tensorshape_util.set_shape(x, shape) return x class _DistributionMeta(abc.ABCMeta): """Helper metaclass for tfp.Distribution.""" def __new__(mcs, classname, baseclasses, attrs): """Control the creation of subclasses of the Distribution class. The main purpose of this method is to properly propagate docstrings from private Distribution methods, like `_log_prob`, into their public wrappers as inherited by the Distribution base class (e.g. `log_prob`). Args: classname: The name of the subclass being created. baseclasses: A tuple of parent classes. attrs: A dict mapping new attributes to their values. Returns: The class object. Raises: TypeError: If `Distribution` is not a subclass of `BaseDistribution`, or the new class is derived via multiple inheritance and the first parent class is not a subclass of `BaseDistribution`. AttributeError: If `Distribution` does not implement e.g. `log_prob`. ValueError: If a `Distribution` public method lacks a docstring. """ if not baseclasses: # Nothing to be done for Distribution raise TypeError('Expected non-empty baseclass. Does Distribution ' 'not subclass _BaseDistribution?') which_base = [ base for base in baseclasses if base == _BaseDistribution or issubclass(base, Distribution)] base = which_base[0] if which_base else None if base is None or base == _BaseDistribution: # Nothing to be done for Distribution or unrelated subclass. return super(_DistributionMeta, mcs).__new__( mcs, classname, baseclasses, attrs) if not issubclass(base, Distribution): raise TypeError('First parent class declared for {} must be ' 'Distribution, but saw "{}"'.format( classname, base.__name__)) for attr, special_attr in _DISTRIBUTION_PUBLIC_METHOD_WRAPPERS.items(): if attr in attrs: # The method is being overridden, do not update its docstring. continue class_attr_value = attrs.get(attr, None) base_attr_value = getattr(base, attr, None) if not base_attr_value: raise AttributeError( 'Internal error: expected base class "{}" to ' 'implement method "{}"'.format(base.__name__, attr)) class_special_attr_value = attrs.get(special_attr, None) class_special_attr_docstring = ( None if class_special_attr_value is None else tf_inspect.getdoc(class_special_attr_value)) if (class_special_attr_docstring or attr in _ALWAYS_COPY_PUBLIC_METHOD_WRAPPERS): class_attr_value = _copy_fn(base_attr_value) attrs[attr] = class_attr_value if not class_special_attr_docstring: # No docstring to append. continue class_attr_docstring = tf_inspect.getdoc(base_attr_value) if class_attr_docstring is None: raise ValueError( 'Expected base class fn to contain a docstring: {}.{}'.format( base.__name__, attr)) class_attr_value.__doc__ = _update_docstring( class_attr_value.__doc__, 'Additional documentation from `{}`:\n\n{}'.format( classname, class_special_attr_docstring)) # Now we'll intercept the default __init__ if it exists. default_init = attrs.get('__init__', None) if default_init is None: # The class has no __init__ because its abstract. (And we won't add one.) return super(_DistributionMeta, mcs).__new__( mcs, classname, baseclasses, attrs) # Warn when a subclass inherits `_parameter_properties` from its parent # (this is unsafe, since the subclass will in general have different # parameters). Exceptions are: # - Subclasses that don't define their own `__init__` (handled above by # the short-circuit when `default_init is None`). # - Subclasses that define a passthrough `__init__(self, *args, **kwargs)`. # pylint: disable=protected-access init_argspec = tf_inspect.getfullargspec(default_init) if ('_parameter_properties' not in attrs # Passthrough exception: may only take `self` and at least one of # `*args` and `**kwargs`. and (len(init_argspec.args) > 1 or not (init_argspec.varargs or init_argspec.varkw))): @functools.wraps(base._parameter_properties) def wrapped_properties(*args, **kwargs): # pylint: disable=missing-docstring """Wrapper to warn if `parameter_properties` is inherited.""" properties = base._parameter_properties(*args, **kwargs) # Warn *after* calling the base method, so that we don't bother warning # if it just raised NotImplementedError anyway. logging.warning(""" Distribution subclass %s inherits `_parameter_properties from its parent (%s) while also redefining `__init__`. The inherited annotations cover the following parameters: %s. It is likely that these do not match the subclass parameters. This may lead to errors when computing batch shapes, slicing into batch dimensions, calling `.copy()`, flattening the distribution as a CompositeTensor (e.g., when it is passed or returned from a `tf.function`), and possibly other cases. The recommended pattern for distribution subclasses is to define a new `_parameter_properties` method with the subclass parameters, and to store the corresponding parameter values as `self._parameters` in `__init__`, after calling the superclass constructor: ``` class MySubclass(tfd.SomeDistribution): def __init__(self, param_a, param_b): parameters = dict(locals()) # ... do subclass initialization ... super(MySubclass, self).__init__(**base_class_params) # Ensure that the subclass (not base class) parameters are stored. self._parameters = parameters def _parameter_properties(self, dtype, num_classes=None): return dict( # Annotations may optionally specify properties, such as `event_ndims`, # `default_constraining_bijector_fn`, `specifies_shape`, etc.; see # the `ParameterProperties` documentation for details. param_a=tfp.util.ParameterProperties(), param_b=tfp.util.ParameterProperties()) ``` """, classname, base.__name__, str(properties.keys())) return properties attrs['_parameter_properties'] = wrapped_properties # For a comparison of different methods for wrapping functions, see: # https://hynek.me/articles/decorators/ @decorator.decorator def wrapped_init(wrapped, self_, *args, **kwargs): """A 'top-level `__init__`' which is always called.""" # We can't use `wrapped` because it results in a self reference which # confounds `tf.function`. del wrapped # Note: if we ever want to have things set in `self` before `__init__` is # called, here is the place to do it. self_._parameters = None default_init(self_, *args, **kwargs) # Note: if we ever want to override things set in `self` by subclass # `__init__`, here is the place to do it. if self_._parameters is None: # We prefer subclasses will set `parameters = dict(locals())` because # this has nearly zero overhead. However, failing to do this, we will # resolve the input arguments dynamically and only when needed. dummy_self = tuple() self_._parameters = self_._no_dependency(lambda: ( # pylint: disable=g-long-lambda _remove_dict_keys_with_value( inspect.getcallargs(default_init, dummy_self, *args, **kwargs), dummy_self))) elif hasattr(self_._parameters, 'pop'): self_._parameters = self_._no_dependency( _remove_dict_keys_with_value(self_._parameters, self_)) # pylint: enable=protected-access attrs['__init__'] = wrapped_init(default_init) # pylint: disable=no-value-for-parameter,assignment-from-no-return return super(_DistributionMeta, mcs).__new__( mcs, classname, baseclasses, attrs) def __init__(cls, name, bases, dct): super(_DistributionMeta, cls).__init__(name, bases, dct) if not JAX_MODE: return def flatten(dist): param_names = set(dist._composite_tensor_nonshape_params) # pylint: disable=protected-access components = {param_name: getattr( dist, param_name, value) for param_name, value in dist.parameters.items() if param_name in param_names} metadata = {param_name: value for param_name, value in dist.parameters.items() if param_name not in param_names} if components: keys, values = zip(*sorted(components.items())) else: keys, values = (), () # Mimics the logic in `tfp.experimental.composite_tensor` where we # aggressively try to convert arguments into Tensors. def _maybe_convert_to_tensor(value, name): try: value = tf.convert_to_tensor(value, name=name) except (ValueError, TypeError, AssertionError): pass return value values = tuple([_maybe_convert_to_tensor(value, name) for value, name, in zip(values, keys)]) return values, (keys, metadata) def unflatten(info, xs): keys, metadata = info parameters = dict(list(zip(keys, xs)), **metadata) return cls(**parameters) from jax import tree_util # pylint: disable=g-import-not-at-top tree_util.register_pytree_node(cls, flatten, unflatten) @six.add_metaclass(_DistributionMeta) class Distribution(_BaseDistribution): """A generic probability distribution base class. `Distribution` is a base class for constructing and organizing properties (e.g., mean, variance) of random variables (e.g, Bernoulli, Gaussian). #### Subclassing Subclasses are expected to implement a leading-underscore version of the same-named function. The argument signature should be identical except for the omission of `name='...'`. For example, to enable `log_prob(value, name='log_prob')` a subclass should implement `_log_prob(value)`. Subclasses can append to public-level docstrings by providing docstrings for their method specializations. For example: ```python @distribution_util.AppendDocstring('Some other details.') def _log_prob(self, value): ... ``` would add the string "Some other details." to the `log_prob` function docstring. This is implemented as a simple decorator to avoid python linter complaining about missing Args/Returns/Raises sections in the partial docstrings. TFP methods generally assume that Distribution subclasses implement at least the following methods: - `_sample_n`. - `_log_prob` or `_prob`. - `_event_shape` and `_event_shape_tensor`. - `_parameter_properties` OR `_batch_shape` and `_batch_shape_tensor`. Batch shape methods can be automatically derived from `parameter_properties` in most cases, so it's usually not necessary to implement them directly. Exceptions include Distributions that accept non-Tensor parameters (for example, a distribution parameterized by a callable), or that have nonstandard batch semantics (for example, `BatchReshape`). Some functionality may depend on implementing additional methods. It is common for Distribution subclasses to implement: - Relevant statistics, such as `_mean`, `_mode`, `_variance` and/or `_stddev`. - At least one of `_log_cdf`, `_cdf`, `_survival_function`, or `_log_survival_function`. - `_quantile`. - `_entropy`. - `_default_event_space_bijector`. - `_parameter_properties` (to support automatic batch shape derivation, batch slicing and other features). - `_sample_and_log_prob`, - `_maximum_likelihood_parameters`. Note that subclasses of existing Distributions that redefine `__init__` do *not* automatically inherit `_parameter_properties` annotations from their parent: the subclass must explicitly implement its own `_parameter_properties` method to support the features, such as batch slicing, that this enables. #### Broadcasting, batching, and shapes All distributions support batches of independent distributions of that type. The batch shape is determined by broadcasting together the parameters. The shape of arguments to `__init__`, `cdf`, `log_cdf`, `prob`, and `log_prob` reflect this broadcasting, as does the return value of `sample`. `sample_n_shape = [n] + batch_shape + event_shape`, where `sample_n_shape` is the shape of the `Tensor` returned from `sample(n)`, `n` is the number of samples, `batch_shape` defines how many independent distributions there are, and `event_shape` defines the shape of samples from each of those independent distributions. Samples are independent along the `batch_shape` dimensions, but not necessarily so along the `event_shape` dimensions (depending on the particulars of the underlying distribution). Using the `Uniform` distribution as an example: ```python minval = 3.0 maxval = [[4.0, 6.0], [10.0, 12.0]] # Broadcasting: # This instance represents 4 Uniform distributions. Each has a lower bound at # 3.0 as the `minval` parameter was broadcasted to match `maxval`'s shape. u = Uniform(minval, maxval) # `event_shape` is `TensorShape([])`. event_shape = u.event_shape # `event_shape_t` is a `Tensor` which will evaluate to []. event_shape_t = u.event_shape_tensor() # Sampling returns a sample per distribution. `samples` has shape # [5, 2, 2], which is [n] + batch_shape + event_shape, where n=5, # batch_shape=[2, 2], and event_shape=[]. samples = u.sample(5) # The broadcasting holds across methods. Here we use `cdf` as an example. The # same holds for `log_cdf` and the likelihood functions. # `cum_prob` has shape [2, 2] as the `value` argument was broadcasted to the # shape of the `Uniform` instance. cum_prob_broadcast = u.cdf(4.0) # `cum_prob`'s shape is [2, 2], one per distribution. No broadcasting # occurred. cum_prob_per_dist = u.cdf([[4.0, 5.0], [6.0, 7.0]]) # INVALID as the `value` argument is not broadcastable to the distribution's # shape. cum_prob_invalid = u.cdf([4.0, 5.0, 6.0]) ``` #### Shapes There are three important concepts associated with TensorFlow Distributions shapes: - Event shape describes the shape of a single draw from the distribution; it may be dependent across dimensions. For scalar distributions, the event shape is `[]`. For a 5-dimensional MultivariateNormal, the event shape is `[5]`. - Batch shape describes independent, not identically distributed draws, aka a "collection" or "bunch" of distributions. - Sample shape describes independent, identically distributed draws of batches from the distribution family. The event shape and the batch shape are properties of a Distribution object, whereas the sample shape is associated with a specific call to `sample` or `log_prob`. For detailed usage examples of TensorFlow Distributions shapes, see [this tutorial]( https://github.com/tensorflow/probability/blob/main/tensorflow_probability/examples/jupyter_notebooks/Understanding_TensorFlow_Distributions_Shapes.ipynb) #### Parameter values leading to undefined statistics or distributions. Some distributions do not have well-defined statistics for all initialization parameter values. For example, the beta distribution is parameterized by positive real numbers `concentration1` and `concentration0`, and does not have well-defined mode if `concentration1 < 1` or `concentration0 < 1`. The user is given the option of raising an exception or returning `NaN`. ```python a = tf.exp(tf.matmul(logits, weights_a)) b = tf.exp(tf.matmul(logits, weights_b)) # Will raise exception if ANY batch member has a < 1 or b < 1. dist = distributions.beta(a, b, allow_nan_stats=False) mode = dist.mode() # Will return NaN for batch members with either a < 1 or b < 1. dist = distributions.beta(a, b, allow_nan_stats=True) # Default behavior mode = dist.mode() ``` In all cases, an exception is raised if *invalid* parameters are passed, e.g. ```python # Will raise an exception if any Op is run. negative_a = -1.0 * a # beta distribution by definition has a > 0. dist = distributions.beta(negative_a, b, allow_nan_stats=True) dist.mean() ``` """ def __init__(self, dtype, reparameterization_type, validate_args, allow_nan_stats, parameters=None, graph_parents=None, name=None): """Constructs the `Distribution`. **This is a private method for subclass use.** Args: dtype: The type of the event samples. `None` implies no type-enforcement. reparameterization_type: Instance of `ReparameterizationType`. If `tfd.FULLY_REPARAMETERIZED`, then samples from the distribution are fully reparameterized, and straight-through gradients are supported. If `tfd.NOT_REPARAMETERIZED`, then samples from the distribution are not fully reparameterized, and straight-through gradients are either partially unsupported or are not supported at all. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. parameters: Python `dict` of parameters used to instantiate this `Distribution`. graph_parents: Python `list` of graph prerequisites of this `Distribution`. name: Python `str` name prefixed to Ops created by this class. Default: subclass name. Raises: ValueError: if any member of graph_parents is `None` or not a `Tensor`. """ if not name: name = type(self).__name__ name = name_util.camel_to_lower_snake(name) constructor_name_scope = name_util.get_name_scope_name(name) # Extract the (locally unique) name from the scope. name = (constructor_name_scope.split('/')[-2] if '/' in constructor_name_scope else name) name = name_util.strip_invalid_chars(name) super(Distribution, self).__init__(name=name) self._constructor_name_scope = constructor_name_scope self._name = name graph_parents = [] if graph_parents is None else graph_parents for i, t in enumerate(graph_parents): if t is None or not tf.is_tensor(t): raise ValueError('Graph parent item %d is not a Tensor; %s.' % (i, t)) self._dtype = self._no_dependency(dtype) self._reparameterization_type = reparameterization_type self._allow_nan_stats = allow_nan_stats self._validate_args = validate_args self._parameters = self._no_dependency(parameters) self._parameters_sanitized = False self._graph_parents = graph_parents self._defer_all_assertions = ( auto_composite_tensor.is_deferred_assertion_context()) if not self._defer_all_assertions: self._initial_parameter_control_dependencies = tuple( d for d in self._parameter_control_dependencies(is_init=True) if d is not None) else: self._initial_parameter_control_dependencies = () if self._initial_parameter_control_dependencies: self._initial_parameter_control_dependencies = ( tf.group(*self._initial_parameter_control_dependencies),) @property def _composite_tensor_params(self): """A tuple describing which parameters are expected to be tensors. CompositeTensor requires us to partition dynamic (tensor) parts from static (metadata) parts like 'validate_args'. This collects the keys of parameters which are expected to be tensors. """ return (self._composite_tensor_nonshape_params + self._composite_tensor_shape_params) @property def _composite_tensor_nonshape_params(self): """A tuple describing which parameters are non-shape-related tensors. Flattening in JAX involves many of the same considerations with regards to identifying tensor arguments for the purposes of CompositeTensor, except that shape-related items will be considered metadata. This property identifies the keys of parameters that are expected to be tensors, except those that are shape-related. """ return tuple(k for k, v in self.parameter_properties().items() if not v.specifies_shape) @property def _composite_tensor_shape_params(self): """A tuple describing which parameters are shape-related tensors. Flattening in JAX involves many of the same considerations with regards to identifying tensor arguments for the purposes of CompositeTensor, except that shape-related items will be considered metadata. This property identifies the keys of parameters that are expected to be shape-related tensors, so that they can be collected appropriately in CompositeTensor but not in JAX applications. """ return tuple(k for k, v in self.parameter_properties().items() if v.specifies_shape) @classmethod def _parameter_properties(cls, dtype, num_classes=None): raise NotImplementedError( '_parameter_properties` is not implemented: {}.'.format(cls.__name__)) @classmethod def parameter_properties(cls, dtype=tf.float32, num_classes=None): """Returns a dict mapping constructor arg names to property annotations. This dict should include an entry for each of the distribution's `Tensor`-valued constructor arguments. Distribution subclasses are not required to implement `_parameter_properties`, so this method may raise `NotImplementedError`. Providing a `_parameter_properties` implementation enables several advanced features, including: - Distribution batch slicing (`sliced_distribution = distribution[i:j]`). - Automatic inference of `_batch_shape` and `_batch_shape_tensor`, which must otherwise be computed explicitly. - Automatic instantiation of the distribution within TFP's internal property tests. - Automatic construction of 'trainable' instances of the distribution using appropriate bijectors to avoid violating parameter constraints. This enables the distribution family to be used easily as a surrogate posterior in variational inference. In the future, parameter property annotations may enable additional functionality; for example, returning Distribution instances from `tf.vectorized_map`. Args: dtype: Optional float `dtype` to assume for continuous-valued parameters. Some constraining bijectors require advance knowledge of the dtype because certain constants (e.g., `tfb.Softplus.low`) must be instantiated with the same dtype as the values to be transformed. num_classes: Optional `int` `Tensor` number of classes to assume when inferring the shape of parameters for categorical-like distributions. Otherwise ignored. Returns: parameter_properties: A `str -> `tfp.python.internal.parameter_properties.ParameterProperties` dict mapping constructor argument names to `ParameterProperties` instances. Raises: NotImplementedError: if the distribution class does not implement `_parameter_properties`. """ with tf.name_scope('parameter_properties'): return cls._parameter_properties(dtype, num_classes=num_classes) @classmethod @deprecation.deprecated('2021-03-01', 'The `param_shapes` method of `tfd.Distribution` is ' 'deprecated; use `parameter_properties` instead.') def param_shapes(cls, sample_shape, name='DistributionParamShapes'): """Shapes of parameters given the desired shape of a call to `sample()`. This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`. Subclasses should override class method `_param_shapes`. Args: sample_shape: `Tensor` or python list/tuple. Desired shape of a call to `sample()`. name: name to prepend ops with. Returns: `dict` of parameter name to `Tensor` shapes. """ with tf.name_scope(name): param_shapes = {} for (param_name, param) in cls.parameter_properties().items(): param_shapes[param_name] = tf.convert_to_tensor( param.shape_fn(sample_shape), dtype=tf.int32) return param_shapes @classmethod @deprecation.deprecated( '2021-03-01', 'The `param_static_shapes` method of `tfd.Distribution` is ' 'deprecated; use `parameter_properties` instead.') def param_static_shapes(cls, sample_shape): """param_shapes with static (i.e. `TensorShape`) shapes. This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`. Assumes that the sample's shape is known statically. Subclasses should override class method `_param_shapes` to return constant-valued tensors when constant values are fed. Args: sample_shape: `TensorShape` or python list/tuple. Desired shape of a call to `sample()`. Returns: `dict` of parameter name to `TensorShape`. Raises: ValueError: if `sample_shape` is a `TensorShape` and is not fully defined. """ if isinstance(sample_shape, tf.TensorShape): if not tensorshape_util.is_fully_defined(sample_shape): raise ValueError('TensorShape sample_shape must be fully defined') sample_shape = tensorshape_util.as_list(sample_shape) params = cls.param_shapes(sample_shape) static_params = {} for name, shape in params.items(): static_shape = tf.get_static_value(shape) if static_shape is None: raise ValueError( 'sample_shape must be a fully-defined TensorShape or list/tuple') static_params[name] = tf.TensorShape(static_shape) return static_params @property def name(self): """Name prepended to all ops created by this `Distribution`.""" return self._name if hasattr(self, '_name') else None @property def dtype(self): """The `DType` of `Tensor`s handled by this `Distribution`.""" return self._dtype if hasattr(self, '_dtype') else None @property def parameters(self): """Dictionary of parameters used to instantiate this `Distribution`.""" # Remove 'self', '__class__', or other special variables. These can appear # if the subclass used: `parameters = dict(locals())`. if (not hasattr(self, '_parameters_sanitized') or not self._parameters_sanitized): p = self._parameters() if callable(self._parameters) else self._parameters self._parameters = self._no_dependency({ k: v for k, v in p.items() if not k.startswith('__') and v is not self}) self._parameters_sanitized = True # In some situations, the Distribution metaclass logic defers the evaluation # of parameters, but at this point we actually want to evaluate the # parameters. return dict( self._parameters() if callable(self._parameters) else self._parameters) def _params_event_ndims(self): """Returns a dict mapping constructor argument names to per-event rank. The ranks are pulled from `cls.parameter_properties()`; this is a convenience wrapper. Returns: params_event_ndims: Per-event parameter ranks, a `str->int dict`. """ try: properties = type(self).parameter_properties() except NotImplementedError: raise NotImplementedError( '{} does not support batch slicing; must implement ' '_parameter_properties.'.format(type(self))) params_event_ndims = {} for (k, param) in properties.items(): ndims = param.instance_event_ndims(self) if param.is_tensor and ndims is not None: params_event_ndims[k] = ndims return params_event_ndims def __getitem__(self, slices): """Slices the batch axes of this distribution, returning a new instance. ```python b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9])) b.batch_shape # => [3, 5, 7, 9] b2 = b[:, tf.newaxis, ..., -2:, 1::2] b2.batch_shape # => [3, 1, 5, 2, 4] x = tf.random.normal([5, 3, 2, 2]) cov = tf.matmul(x, x, transpose_b=True) chol = tf.linalg.cholesky(cov) loc = tf.random.normal([4, 1, 3, 1]) mvn = tfd.MultivariateNormalTriL(loc, chol) mvn.batch_shape # => [4, 5, 3] mvn.event_shape # => [2] mvn2 = mvn[:, 3:, ..., ::-1, tf.newaxis] mvn2.batch_shape # => [4, 2, 3, 1] mvn2.event_shape # => [2] ``` Args: slices: slices from the [] operator Returns: dist: A new `tfd.Distribution` instance with sliced parameters. """ return slicing.batch_slice(self, {}, slices) def __iter__(self): raise TypeError('{!r} object is not iterable'.format(type(self).__name__)) @property def reparameterization_type(self): """Describes how samples from the distribution are reparameterized. Currently this is one of the static instances `tfd.FULLY_REPARAMETERIZED` or `tfd.NOT_REPARAMETERIZED`. Returns: An instance of `ReparameterizationType`. """ return self._reparameterization_type @property def allow_nan_stats(self): """Python `bool` describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. Returns: allow_nan_stats: Python `bool`. """ return self._allow_nan_stats @property def validate_args(self): """Python `bool` indicating possibly expensive checks are enabled.""" return self._validate_args @property def experimental_shard_axis_names(self): """The list or structure of lists of active shard axis names.""" return [] def copy(self, **override_parameters_kwargs): """Creates a deep copy of the distribution. Note: the copy distribution may continue to depend on the original initialization arguments. Args: **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values. Returns: distribution: A new instance of `type(self)` initialized from the union of self.parameters and override_parameters_kwargs, i.e., `dict(self.parameters, **override_parameters_kwargs)`. """ try: # We want track provenance from origin variables, so we use batch_slice # if this distribution supports slicing. See the comment on # PROVENANCE_ATTR in batch_slicing.py return slicing.batch_slice(self, override_parameters_kwargs, Ellipsis) except NotImplementedError: pass parameters = dict(self.parameters, **override_parameters_kwargs) d = type(self)(**parameters) # pylint: disable=protected-access d._parameters = self._no_dependency(parameters) d._parameters_sanitized = True # pylint: enable=protected-access return d def _broadcast_parameters_with_batch_shape(self, batch_shape): """Broadcasts each parameter's batch shape with the given `batch_shape`. This is semantically equivalent to wrapping with the `BatchBroadcast` distribution, but returns a distribution of the same type as the original in which all parameter Tensors are reified at the the broadcast batch shape. It can be understood as a pseudo-inverse operation to batch slicing: ```python dist = tfd.Normal(0., 1.) # ==> `dist.batch_shape == []` broadcast_dist = dist._broadcast_parameters_with_batch_shape([3]) # ==> `broadcast_dist.batch_shape == [3]` # `broadcast_dist.loc.shape == [3]` # `broadcast_dist.scale.shape == [3]` sliced_dist = broadcast_dist[0] # ==> `sliced_dist.batch_shape == []`. ``` Args: batch_shape: Integer `Tensor` batch shape. Returns: broadcast_dist: copy of this distribution in which each parameter's batch shape is determined by broadcasting its current batch shape with the given `batch_shape`. """ return self.copy( **batch_shape_lib.broadcast_parameters_with_batch_shape( self, batch_shape)) def _batch_shape_tensor(self, **parameter_kwargs): """Infers batch shape from parameters. The overall batch shape is inferred by broadcasting the batch shapes of all parameters, ```python parameter_batch_shapes = [] for name, properties in self.parameter_properties.items(): parameter = self.parameters[name] parameter_batch_shapes.append( base_shape(parameter)[:-properties.instance_event_ndims(parameter)]) ``` where a parameter's `base_shape` is its batch shape if it defines one (e.g., if it is a Distribution, LinearOperator, etc.), and its Tensor shape otherwise. Parameters with structured batch shape (in particular, non-autobatched JointDistributions) are not currently supported. Args: **parameter_kwargs: Optional keyword arguments overriding the parameter values in `self.parameters`. Typically this is used to avoid multiple Tensor conversions of the same value. Returns: batch_shape_tensor: `Tensor` broadcast batch shape of all parameters. """ try: return batch_shape_lib.inferred_batch_shape_tensor( self, **parameter_kwargs) except NotImplementedError: raise NotImplementedError('Cannot compute batch shape of distribution ' '{}: you must implement at least one of ' '`_batch_shape_tensor` or ' '`_parameter_properties`.'.format(self)) def batch_shape_tensor(self, name='batch_shape_tensor'): """Shape of a single sample from a single event index as a 1-D `Tensor`. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. Args: name: name to give to the op Returns: batch_shape: `Tensor`. """ with self._name_and_control_scope(name): # Joint distributions may have a structured `batch shape_tensor` or a # single `batch_shape_tensor` that applies to all components. (Simple # distributions always have a single `batch_shape_tensor`.) If the # distribution's `batch_shape` is an instance of `tf.TensorShape`, we # infer that `batch_shape_tensor` is not structured. shallow_structure = (None if isinstance(self.batch_shape, tf.TensorShape) else self.dtype) if all([tensorshape_util.is_fully_defined(s) for s in nest.flatten_up_to( shallow_structure, self.batch_shape, check_types=False)]): batch_shape = nest.map_structure_up_to( shallow_structure, tensorshape_util.as_list, self.batch_shape, check_types=False) else: batch_shape = self._batch_shape_tensor() def conversion_fn(s): return tf.identity( tf.convert_to_tensor(s, dtype=tf.int32), name='batch_shape') if JAX_MODE: conversion_fn = ps.convert_to_shape_tensor return nest.map_structure_up_to( shallow_structure, conversion_fn, batch_shape, check_types=False) def _batch_shape(self): """Infers static batch shape from parameters. The overall batch shape is inferred by broadcasting the batch shapes of all parameters ```python parameter_batch_shapes = [] for name, properties in self.parameter_properties.items(): parameter = self.parameters[name] parameter_batch_shapes.append( base_shape(parameter)[:-properties.instance_event_ndims(parameter)]) ``` where a parameter's `base_shape` is its batch shape if it defines one (e.g., if it is a Distribution, LinearOperator, etc.), and its Tensor shape otherwise. Distributions with structured batch shape (in particular, non-autobatched JointDistributions) are not currently supported. Returns: batch_shape: `tf.TensorShape` broadcast batch shape of all parameters; may be partially defined or unknown. """ try: return batch_shape_lib.inferred_batch_shape(self) except NotImplementedError: # If a distribution doesn't implement `_parameter_properties` or its own # `_batch_shape` method, we can only return the most general shape. return tf.TensorShape(None) @property def batch_shape(self): """Shape of a single sample from a single event index as a `TensorShape`. May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. Returns: batch_shape: `TensorShape`, possibly unknown. """ if not hasattr(self, '__cached_batch_shape'): # Cache the batch shape so that it's only inferred once. This is safe # because runtime changes to parameter shapes can only affect # `batch_shape_tensor`, never `batch_shape`. batch_shape = self._batch_shape() # See comment in `batch_shape_tensor()` on structured batch shapes. If # `_batch_shape()` is a `tf.TensorShape` instance or a flat list/tuple # that does not contain `tf.TensorShape`s, we infer that it is not # structured. if (isinstance(batch_shape, tf.TensorShape) or all(len(path) == 1 and not isinstance(s, tf.TensorShape) for path, s in nest.flatten_with_tuple_paths(batch_shape))): batch_shape = tf.TensorShape(batch_shape) else: batch_shape = nest.map_structure_up_to( self.dtype, tf.TensorShape, batch_shape, check_types=False) self.__cached_batch_shape = self._no_dependency(batch_shape) return self.__cached_batch_shape def _event_shape_tensor(self): raise NotImplementedError( 'event_shape_tensor is not implemented: {}'.format(type(self).__name__)) def event_shape_tensor(self, name='event_shape_tensor'): """Shape of a single sample from a single batch as a 1-D int32 `Tensor`. Args: name: name to give to the op Returns: event_shape: `Tensor`. """ with self._name_and_control_scope(name): if all([tensorshape_util.is_fully_defined(s) for s in nest.flatten(self.event_shape)]): event_shape = nest.map_structure_up_to( self.dtype, tensorshape_util.as_list, self.event_shape, check_types=False) else: event_shape = self._event_shape_tensor() def conversion_fn(s): return tf.identity( tf.convert_to_tensor(s, dtype=tf.int32), name='event_shape') if JAX_MODE: conversion_fn = ps.convert_to_shape_tensor return nest.map_structure_up_to( self.dtype, conversion_fn, event_shape, check_types=False) def _event_shape(self): return None @property def event_shape(self): """Shape of a single sample from a single batch as a `TensorShape`. May be partially defined or unknown. Returns: event_shape: `TensorShape`, possibly unknown. """ return nest.map_structure_up_to( self.dtype, tf.TensorShape, self._event_shape(), check_types=False) def is_scalar_event(self, name='is_scalar_event'): """Indicates that `event_shape == []`. Args: name: Python `str` prepended to names of ops created by this function. Returns: is_scalar_event: `bool` scalar `Tensor`. """ with self._name_and_control_scope(name): return tf.convert_to_tensor( self._is_scalar_helper(self.event_shape, self.event_shape_tensor), name='is_scalar_event') def is_scalar_batch(self, name='is_scalar_batch'): """Indicates that `batch_shape == []`. Args: name: Python `str` prepended to names of ops created by this function. Returns: is_scalar_batch: `bool` scalar `Tensor`. """ with self._name_and_control_scope(name): return tf.convert_to_tensor( self._is_scalar_helper(self.batch_shape, self.batch_shape_tensor), name='is_scalar_batch') def _sample_n(self, n, seed=None, **kwargs): raise NotImplementedError('sample_n is not implemented: {}'.format( type(self).__name__)) def _call_sample_n(self, sample_shape, seed, **kwargs): """Wrapper around _sample_n.""" if JAX_MODE and seed is None: raise ValueError('Must provide JAX PRNGKey as `dist.sample(seed=.)`') sample_shape = ps.convert_to_shape_tensor( ps.cast(sample_shape, tf.int32), name='sample_shape') sample_shape, n = self._expand_sample_shape_to_vector( sample_shape, 'sample_shape') samples = self._sample_n( n, seed=seed() if callable(seed) else seed, **kwargs) samples = tf.nest.map_structure( lambda x: tf.reshape(x, ps.concat([sample_shape, ps.shape(x)[1:]], 0)), samples) return self._set_sample_static_shape(samples, sample_shape) def sample(self, sample_shape=(), seed=None, name='sample', **kwargs): """Generate samples of the specified shape. Note that a call to `sample()` without arguments will generate a single sample. Args: sample_shape: 0D or 1D `int32` `Tensor`. Shape of the generated samples. seed: PRNG seed; see `tfp.random.sanitize_seed` for details. name: name to give to the op. **kwargs: Named arguments forwarded to subclass implementation. Returns: samples: a `Tensor` with prepended dimensions `sample_shape`. """ with self._name_and_control_scope(name): return self._call_sample_n(sample_shape, seed, **kwargs) def _call_sample_and_log_prob(self, sample_shape, seed, **kwargs): """Wrapper around `_sample_and_log_prob`.""" if hasattr(self, '_sample_and_log_prob'): sample_shape = ps.convert_to_shape_tensor( ps.cast(sample_shape, tf.int32), name='sample_shape') return self._sample_and_log_prob( distribution_util.expand_to_vector( sample_shape, tensor_name='sample_shape'), seed=seed, **kwargs) # Naive default implementation. This calls private, rather than public, # methods, to avoid duplicating the name_and_control_scope. value = self._call_sample_n(sample_shape, seed=seed, **kwargs) if hasattr(self, '_log_prob'): log_prob = self._log_prob(value, **kwargs) elif hasattr(self, '_prob'): log_prob = tf.math.log(self._prob(value, **kwargs)) else: raise NotImplementedError('log_prob is not implemented: {}'.format( type(self).__name__)) return value, log_prob def experimental_sample_and_log_prob(self, sample_shape=(), seed=None, name='sample_and_log_prob', **kwargs): """Samples from this distribution and returns the log density of the sample. The default implementation simply calls `sample` and `log_prob`: ``` def _sample_and_log_prob(self, sample_shape, seed, **kwargs): x = self.sample(sample_shape=sample_shape, seed=seed, **kwargs) return x, self.log_prob(x, **kwargs) ``` However, some subclasses may provide more efficient and/or numerically stable implementations. Args: sample_shape: integer `Tensor` desired shape of samples to draw. Default value: `()`. seed: PRNG seed; see `tfp.random.sanitize_seed` for details. Default value: `None`. name: name to give to the op. Default value: `'sample_and_log_prob'`. **kwargs: Named arguments forwarded to subclass implementation. Returns: samples: a `Tensor`, or structure of `Tensor`s, with prepended dimensions `sample_shape`. log_prob: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ with self._name_and_control_scope(name): return self._call_sample_and_log_prob(sample_shape, seed=seed, **kwargs) def _call_log_prob(self, value, name, **kwargs): """Wrapper around _log_prob.""" value = nest_util.cast_structure(value, self.dtype) value = nest_util.convert_to_nested_tensor( value, name='value', dtype_hint=self.dtype, allow_packing=True) with self._name_and_control_scope(name, value, kwargs): if hasattr(self, '_log_prob'): return self._log_prob(value, **kwargs) if hasattr(self, '_prob'): return tf.math.log(self._prob(value, **kwargs)) raise NotImplementedError('log_prob is not implemented: {}'.format( type(self).__name__)) def log_prob(self, value, name='log_prob', **kwargs): """Log probability density/mass function. Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: log_prob: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_log_prob(value, name, **kwargs) def _call_prob(self, value, name, **kwargs): """Wrapper around _prob.""" value = nest_util.cast_structure(value, self.dtype) value = nest_util.convert_to_nested_tensor( value, name='value', dtype_hint=self.dtype, allow_packing=True) with self._name_and_control_scope(name, value, kwargs): if hasattr(self, '_prob'): return self._prob(value, **kwargs) if hasattr(self, '_log_prob'): return tf.exp(self._log_prob(value, **kwargs)) raise NotImplementedError('prob is not implemented: {}'.format( type(self).__name__)) def prob(self, value, name='prob', **kwargs): """Probability density/mass function. Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: prob: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_prob(value, name, **kwargs) def _call_unnormalized_log_prob(self, value, name, **kwargs): """Wrapper around _unnormalized_log_prob.""" value = nest_util.cast_structure(value, self.dtype) value = nest_util.convert_to_nested_tensor( value, name='value', dtype_hint=self.dtype, allow_packing=True) with self._name_and_control_scope(name, value, kwargs): if hasattr(self, '_unnormalized_log_prob'): return self._unnormalized_log_prob(value, **kwargs) if hasattr(self, '_unnormalized_prob'): return tf.math.log(self._unnormalized_prob(value, **kwargs)) if hasattr(self, '_log_prob'): return self._log_prob(value, **kwargs) if hasattr(self, '_prob'): return tf.math.log(self._prob(value, **kwargs)) raise NotImplementedError( 'unnormalized_log_prob is not implemented: {}'.format( type(self).__name__)) def unnormalized_log_prob(self, value, name='unnormalized_log_prob', **kwargs): """Potentially unnormalized log probability density/mass function. This function is similar to `log_prob`, but does not require that the return value be normalized. (Normalization here refers to the total integral of probability being one, as it should be by definition for any probability distribution.) This is useful, for example, for distributions where the normalization constant is difficult or expensive to compute. By default, this simply calls `log_prob`. Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: unnormalized_log_prob: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_unnormalized_log_prob(value, name, **kwargs) def _call_log_cdf(self, value, name, **kwargs): """Wrapper around _log_cdf.""" value = nest_util.cast_structure(value, self.dtype) value = nest_util.convert_to_nested_tensor( value, name='value', dtype_hint=self.dtype, allow_packing=True) with self._name_and_control_scope(name, value, kwargs): if hasattr(self, '_log_cdf'): return self._log_cdf(value, **kwargs) if hasattr(self, '_cdf'): return tf.math.log(self._cdf(value, **kwargs)) raise NotImplementedError('log_cdf is not implemented: {}'.format( type(self).__name__)) def log_cdf(self, value, name='log_cdf', **kwargs): """Log cumulative distribution function. Given random variable `X`, the cumulative distribution function `cdf` is: ```none log_cdf(x) := Log[ P[X <= x] ] ``` Often, a numerical approximation can be used for `log_cdf(x)` that yields a more accurate answer than simply taking the logarithm of the `cdf` when `x << -1`. Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: logcdf: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_log_cdf(value, name, **kwargs) def _call_cdf(self, value, name, **kwargs): """Wrapper around _cdf.""" value = nest_util.cast_structure(value, self.dtype) value = nest_util.convert_to_nested_tensor( value, name='value', dtype_hint=self.dtype, allow_packing=True) with self._name_and_control_scope(name, value, kwargs): if hasattr(self, '_cdf'): return self._cdf(value, **kwargs) if hasattr(self, '_log_cdf'): return tf.exp(self._log_cdf(value, **kwargs)) raise NotImplementedError('cdf is not implemented: {}'.format( type(self).__name__)) def cdf(self, value, name='cdf', **kwargs): """Cumulative distribution function. Given random variable `X`, the cumulative distribution function `cdf` is: ```none cdf(x) := P[X <= x] ``` Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: cdf: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_cdf(value, name, **kwargs) def _log_survival_function(self, value, **kwargs): raise NotImplementedError( 'log_survival_function is not implemented: {}'.format( type(self).__name__)) def _call_log_survival_function(self, value, name, **kwargs): """Wrapper around _log_survival_function.""" value = nest_util.cast_structure(value, self.dtype) value = nest_util.convert_to_nested_tensor( value, name='value', dtype_hint=self.dtype, allow_packing=True) with self._name_and_control_scope(name, value, kwargs): try: return self._log_survival_function(value, **kwargs) except NotImplementedError: if hasattr(self, '_log_cdf'): return log1mexp(self._log_cdf(value, **kwargs)) if hasattr(self, '_cdf'): return tf.math.log1p(-self._cdf(value, **kwargs)) raise def log_survival_function(self, value, name='log_survival_function', **kwargs): """Log survival function. Given random variable `X`, the survival function is defined: ```none log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] ``` Typically, different numerical approximations can be used for the log survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_log_survival_function(value, name, **kwargs) def _survival_function(self, value, **kwargs): raise NotImplementedError('survival_function is not implemented: {}'.format( type(self).__name__)) def _call_survival_function(self, value, name, **kwargs): """Wrapper around _survival_function.""" value = nest_util.cast_structure(value, self.dtype) value = nest_util.convert_to_nested_tensor( value, name='value', dtype_hint=self.dtype, allow_packing=True) with self._name_and_control_scope(name, value, kwargs): try: return self._survival_function(value, **kwargs) except NotImplementedError: if hasattr(self, '_log_cdf'): return -tf.math.expm1(self._log_cdf(value, **kwargs)) if hasattr(self, '_cdf'): return 1. - self.cdf(value, **kwargs) raise def survival_function(self, value, name='survival_function', **kwargs): """Survival function. Given random variable `X`, the survival function is defined: ```none survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). ``` Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_survival_function(value, name, **kwargs) def _entropy(self, **kwargs): raise NotImplementedError('entropy is not implemented: {}'.format( type(self).__name__)) def entropy(self, name='entropy', **kwargs): """Shannon entropy in nats.""" with self._name_and_control_scope(name): return self._entropy(**kwargs) def _mean(self, **kwargs): raise NotImplementedError('mean is not implemented: {}'.format( type(self).__name__)) def mean(self, name='mean', **kwargs): """Mean.""" with self._name_and_control_scope(name): return self._mean(**kwargs) def _quantile(self, value, **kwargs): raise NotImplementedError('quantile is not implemented: {}'.format( type(self).__name__)) def _call_quantile(self, value, name, **kwargs): with self._name_and_control_scope(name): dtype = tf.float32 if tf.nest.is_nested(self.dtype) else self.dtype value = tf.convert_to_tensor(value, name='value', dtype_hint=dtype) if self.validate_args: value = distribution_util.with_dependencies([ assert_util.assert_less_equal(value, tf.cast(1, value.dtype), message='`value` must be <= 1'), assert_util.assert_greater_equal(value, tf.cast(0, value.dtype), message='`value` must be >= 0') ], value) return self._quantile(value, **kwargs) def quantile(self, value, name='quantile', **kwargs): """Quantile function. Aka 'inverse cdf' or 'percent point function'. Given random variable `X` and `p in [0, 1]`, the `quantile` is: ```none quantile(p) := x such that P[X <= x] == p ``` Args: value: `float` or `double` `Tensor`. name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: quantile: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_quantile(value, name, **kwargs) def _variance(self, **kwargs): raise NotImplementedError('variance is not implemented: {}'.format( type(self).__name__)) def variance(self, name='variance', **kwargs): """Variance. Variance is defined as, ```none Var = E[(X - E[X])**2] ``` where `X` is the random variable associated with this distribution, `E` denotes expectation, and `Var.shape = batch_shape + event_shape`. Args: name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: variance: Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`. """ with self._name_and_control_scope(name): try: return self._variance(**kwargs) except NotImplementedError: try: return tf.nest.map_structure(tf.square, self._stddev(**kwargs)) except NotImplementedError: pass raise def _stddev(self, **kwargs): raise NotImplementedError('stddev is not implemented: {}'.format( type(self).__name__)) def stddev(self, name='stddev', **kwargs): """Standard deviation. Standard deviation is defined as, ```none stddev = E[(X - E[X])**2]**0.5 ``` where `X` is the random variable associated with this distribution, `E` denotes expectation, and `stddev.shape = batch_shape + event_shape`. Args: name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: stddev: Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`. """ with self._name_and_control_scope(name): try: return self._stddev(**kwargs) except NotImplementedError: try: return tf.nest.map_structure(tf.sqrt, self._variance(**kwargs)) except NotImplementedError: pass raise def _covariance(self, **kwargs): raise NotImplementedError('covariance is not implemented: {}'.format( type(self).__name__)) def covariance(self, name='covariance', **kwargs): """Covariance. Covariance is (possibly) defined only for non-scalar-event distributions. For example, for a length-`k`, vector-valued distribution, it is calculated as, ```none Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])] ``` where `Cov` is a (batch of) `k x k` matrix, `0 <= (i, j) < k`, and `E` denotes expectation. Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), `Covariance` shall return a (batch of) matrices under some vectorization of the events, i.e., ```none Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above] ``` where `Cov` is a (batch of) `k' x k'` matrices, `0 <= (i, j) < k' = reduce_prod(event_shape)`, and `Vec` is some function mapping indices of this distribution's event dimensions to indices of a length-`k'` vector. Args: name: Python `str` prepended to names of ops created by this function. **kwargs: Named arguments forwarded to subclass implementation. Returns: covariance: Floating-point `Tensor` with shape `[B1, ..., Bn, k', k']` where the first `n` dimensions are batch coordinates and `k' = reduce_prod(self.event_shape)`. """ with self._name_and_control_scope(name): return self._covariance(**kwargs) def _mode(self, **kwargs): raise NotImplementedError('mode is not implemented: {}'.format( type(self).__name__)) def mode(self, name='mode', **kwargs): """Mode.""" with self._name_and_control_scope(name): return self._mode(**kwargs) def _cross_entropy(self, other): return kullback_leibler.cross_entropy( self, other, allow_nan_stats=self.allow_nan_stats) def cross_entropy(self, other, name='cross_entropy'): """Computes the (Shannon) cross entropy. Denote this distribution (`self`) by `P` and the `other` distribution by `Q`. Assuming `P, Q` are absolutely continuous with respect to one another and permit densities `p(x) dr(x)` and `q(x) dr(x)`, (Shannon) cross entropy is defined as: ```none H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x) ``` where `F` denotes the support of the random variable `X ~ P`. Args: other: `tfp.distributions.Distribution` instance. name: Python `str` prepended to names of ops created by this function. Returns: cross_entropy: `self.dtype` `Tensor` with shape `[B1, ..., Bn]` representing `n` different calculations of (Shannon) cross entropy. """ with self._name_and_control_scope(name): return self._cross_entropy(other) def _kl_divergence(self, other): return kullback_leibler.kl_divergence( self, other, allow_nan_stats=self.allow_nan_stats) def kl_divergence(self, other, name='kl_divergence'): """Computes the Kullback--Leibler divergence. Denote this distribution (`self`) by `p` and the `other` distribution by `q`. Assuming `p, q` are absolutely continuous with respect to reference measure `r`, the KL divergence is defined as: ```none KL[p, q] = E_p[log(p(X)/q(X))] = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x) = H[p, q] - H[p] ``` where `F` denotes the support of the random variable `X ~ p`, `H[., .]` denotes (Shannon) cross entropy, and `H[.]` denotes (Shannon) entropy. Args: other: `tfp.distributions.Distribution` instance. name: Python `str` prepended to names of ops created by this function. Returns: kl_divergence: `self.dtype` `Tensor` with shape `[B1, ..., Bn]` representing `n` different calculations of the Kullback-Leibler divergence. """ # NOTE: We do not enter a `self._name_and_control_scope` here. We rely on # `tfd.kl_divergence(self, other)` to use `_name_and_control_scope` to apply # assertions on both Distributions. # # Subclasses that override `Distribution.kl_divergence` or `_kl_divergence` # must ensure that assertions are applied for both `self` and `other`. return self._kl_divergence(other) def _default_event_space_bijector(self, *args, **kwargs): raise NotImplementedError( '_default_event_space_bijector` is not implemented: {}'.format( type(self).__name__)) def experimental_default_event_space_bijector(self, *args, **kwargs): """Bijector mapping the reals (R**n) to the event space of the distribution. Distributions with continuous support may implement `_default_event_space_bijector` which returns a subclass of `tfp.bijectors.Bijector` that maps R**n to the distribution's event space. For example, the default bijector for the `Beta` distribution is `tfp.bijectors.Sigmoid()`, which maps the real line to `[0, 1]`, the support of the `Beta` distribution. The default bijector for the `CholeskyLKJ` distribution is `tfp.bijectors.CorrelationCholesky`, which maps R^(k * (k-1) // 2) to the submanifold of k x k lower triangular matrices with ones along the diagonal. The purpose of `experimental_default_event_space_bijector` is to enable gradient descent in an unconstrained space for Variational Inference and Hamiltonian Monte Carlo methods. Some effort has been made to choose bijectors such that the tails of the distribution in the unconstrained space are between Gaussian and Exponential. For distributions with discrete event space, or for which TFP currently lacks a suitable bijector, this function returns `None`. Args: *args: Passed to implementation `_default_event_space_bijector`. **kwargs: Passed to implementation `_default_event_space_bijector`. Returns: event_space_bijector: `Bijector` instance or `None`. """ return self._default_event_space_bijector(*args, **kwargs) @classmethod def experimental_fit(cls, value, sample_ndims=1, validate_args=False, **init_kwargs): """Instantiates a distribution that maximizes the likelihood of `x`. Args: value: a `Tensor` valid sample from this distribution family. sample_ndims: Positive `int` Tensor number of leftmost dimensions of `value` that index i.i.d. samples. Default value: `1`. validate_args: Python `bool`, default `False`. When `True`, distribution parameters are checked for validity despite possibly degrading runtime performance. When `False`, invalid inputs may silently render incorrect outputs. Default value: `False`. **init_kwargs: Additional keyword arguments passed through to `cls.__init__`. These take precedence in case of collision with the fitted parameters; for example, `tfd.Normal.experimental_fit([1., 1.], scale=20.)` returns a Normal distribution with `scale=20.` rather than the maximum likelihood parameter `scale=0.`. Returns: maximum_likelihood_instance: instance of `cls` with parameters that maximize the likelihood of `value`. """ with tf.name_scope('experimental_fit'): value = tf.convert_to_tensor(value, name='value') sample_ndims_ = tf.get_static_value(sample_ndims) # Reshape `value` if needed to have a single leftmost sample dimension. if sample_ndims_ != 1: assertions = [] if sample_ndims_ is None and validate_args: assertions += [assert_util.assert_positive( sample_ndims, message='`sample_ndims` must be a positive integer.')] elif sample_ndims_ is not None and sample_ndims_ < 1: raise ValueError( '`sample_ndims` must be a positive integer. (saw: `{}`)'.format( sample_ndims_)) with tf.control_dependencies(assertions): value_shape = ps.convert_to_shape_tensor(ps.shape(value)) value = tf.reshape( value, ps.concat([[-1], value_shape[sample_ndims:]], axis=0)) kwargs = cls._maximum_likelihood_parameters(value) kwargs.update(init_kwargs) return cls(**kwargs, validate_args=validate_args) @classmethod def _maximum_likelihood_parameters(cls, value): """Returns a dictionary of parameters that maximize likelihood of `value`. Following the [`Distribution` contract]( https://github.com/tensorflow/probability/blob/main/discussion/tfp_distributions_contract.md), this method should be implemented only when the parameter estimate can be computed efficiently and accurately. Iterative algorithms are permitted if they are guaranteed to converge within a fixed number of steps (for example, Newton iterations on a convex objective). Args: value: a `Tensor` valid sample from this distribution family, whose leftmost dimension indexes independent samples. Returns: parameters: a dict with `str` keys and `Tensor` values, such that `cls(**parameters)` gives maximum likelihood to `value` among all instances of `cls`. """ raise NotImplementedError( 'Fitting maximum likelihood parameters is not implemented for this ' 'distribution: {}.'.format(cls.__name__)) def experimental_local_measure(self, value, backward_compat=False, **kwargs): """Returns a log probability density together with a `TangentSpace`. A `TangentSpace` allows us to calculate the correct push-forward density when we apply a transformation to a `Distribution` on a strict submanifold of R^n (typically via a `Bijector` in the `TransformedDistribution` subclass). The density correction uses the basis of the tangent space. Args: value: `float` or `double` `Tensor`. backward_compat: `bool` specifying whether to fall back to returning `FullSpace` as the tangent space, and representing R^n with the standard basis. **kwargs: Named arguments forwarded to subclass implementation. Returns: log_prob: a `Tensor` representing the log probability density, of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. tangent_space: a `TangentSpace` object (by default `FullSpace`) representing the tangent space to the manifold at `value`. Raises: UnspecifiedTangentSpaceError if `backward_compat` is False and the `_experimental_tangent_space` attribute has not been defined. """ log_prob = self.log_prob(value, **kwargs) tangent_space = None if hasattr(self, '_experimental_tangent_space'): tangent_space = self._experimental_tangent_space elif backward_compat: # Import here rather than top-level to avoid circular import. # pylint: disable=g-import-not-at-top from tensorflow_probability.python.experimental import tangent_spaces tangent_space = tangent_spaces.FullSpace() if not tangent_space: # Import here rather than top-level to avoid circular import. # pylint: disable=g-import-not-at-top from tensorflow_probability.python.experimental import tangent_spaces raise tangent_spaces.UnspecifiedTangentSpaceError return log_prob, tangent_space def __str__(self): if self.batch_shape: maybe_batch_shape = ', batch_shape=' + _str_tensorshape(self.batch_shape) else: maybe_batch_shape = '' if self.event_shape: maybe_event_shape = ', event_shape=' + _str_tensorshape(self.event_shape) else: maybe_event_shape = '' if self.dtype is not None: maybe_dtype = ', dtype=' + _str_dtype(self.dtype) else: maybe_dtype = '' return ('tfp.distributions.{type_name}(' '"{self_name}"' '{maybe_batch_shape}' '{maybe_event_shape}' '{maybe_dtype})'.format( type_name=type(self).__name__, self_name=self.name or '<unknown>', maybe_batch_shape=maybe_batch_shape, maybe_event_shape=maybe_event_shape, maybe_dtype=maybe_dtype)) def __repr__(self): return ('<tfp.distributions.{type_name} ' '\'{self_name}\'' ' batch_shape={batch_shape}' ' event_shape={event_shape}' ' dtype={dtype}>'.format( type_name=type(self).__name__, self_name=self.name or '<unknown>', batch_shape=_str_tensorshape(self.batch_shape), event_shape=_str_tensorshape(self.event_shape), dtype=_str_dtype(self.dtype))) @contextlib.contextmanager def _name_and_control_scope(self, name=None, value=UNSET_VALUE, kwargs=None): """Helper function to standardize op scope.""" # Note: we recieve `kwargs` and not `**kwargs` to ensure no collisions on # other args we choose to take in this function. with name_util.instance_scope( instance_name=self.name, constructor_name_scope=self._constructor_name_scope): with tf.name_scope(name) as name_scope: deps = [] if self._defer_all_assertions: deps.extend(self._parameter_control_dependencies(is_init=True)) else: deps.extend(self._initial_parameter_control_dependencies) deps.extend(self._parameter_control_dependencies(is_init=False)) if value is not UNSET_VALUE: deps.extend(self._sample_control_dependencies( value, **({} if kwargs is None else kwargs))) if not deps: yield name_scope return # In eager mode, some `assert_util.assert_xyz` calls return None. If a # Distribution is created in eager mode with `validate_args=True`, then # used in a `tf.function` context, it can result in errors when # `tf.convert_to_tensor` is called on the inputs to # `tf.control_dependencies` below. To avoid these errors, we drop the # `None`s here. deps = [x for x in deps if x is not None] with tf.control_dependencies(deps) as deps_scope: yield deps_scope def _expand_sample_shape_to_vector(self, x, name): """Helper to `sample` which ensures input is 1D.""" prod = ps.reduce_prod(x) x = distribution_util.expand_to_vector(x, tensor_name=name) return x, prod def _set_sample_static_shape(self, x, sample_shape): """Helper to `sample`; sets static shape info.""" batch_shape = self.batch_shape if (tf.nest.is_nested(self.dtype) and not tf.nest.is_nested(batch_shape)): batch_shape = tf.nest.map_structure( lambda _: batch_shape, self.dtype) return tf.nest.map_structure( functools.partial( _set_sample_static_shape_for_tensor, sample_shape=sample_shape), x, self.event_shape, batch_shape) def _is_scalar_helper(self, static_shape, dynamic_shape_fn): """Implementation for `is_scalar_batch` and `is_scalar_event`.""" if tensorshape_util.rank(static_shape) is not None: return tensorshape_util.rank(static_shape) == 0 shape = dynamic_shape_fn() if tf.compat.dimension_value(shape.shape[0]) is not None: # If the static_shape is correctly written then we should never execute # this branch. We keep it just in case there's some unimagined corner # case. return tensorshape_util.as_list(shape.shape) == [0] return tf.equal(tf.shape(shape)[0], 0) def _parameter_control_dependencies(self, is_init): """Returns a list of ops to be executed in members with graph deps. Typically subclasses override this function to return parameter specific assertions (eg, positivity of `scale`, etc.). Args: is_init: Python `bool` indicating that the call site is `__init__`. Returns: dependencies: `list`-like of ops to be executed in member functions with graph dependencies. """ return () def _sample_control_dependencies(self, value, **kwargs): """Returns a list of ops to be executed to validate distribution samples. The ops are executed in methods that take distribution samples as an argument (e.g. `log_prob` and `cdf`). They validate that `value` is within the support of the distribution. Typically subclasses override this function to return assertions specific to the distribution (e.g. samples from `Beta` must be between `0` and `1`). By convention, finite bounds of the support are considered valid samples, since `sample` may output values that are numerically equivalent to the bounds. Args: value: `float` or `double` `Tensor`. **kwargs: Additional keyword args. Returns: assertions: `list`-like of ops to be executed in member functions that take distribution samples as input. """ return () class _AutoCompositeTensorDistributionMeta(_DistributionMeta): """Metaclass for `AutoCompositeTensorBijector`.""" def __new__(mcs, classname, baseclasses, attrs): # pylint: disable=bad-mcs-classmethod-argument """Give subclasses their own type_spec, not an inherited one.""" cls = super(_AutoCompositeTensorDistributionMeta, mcs).__new__( # pylint: disable=too-many-function-args mcs, classname, baseclasses, attrs) if 'tensorflow_probability.python.distributions' in cls.__module__: module_name = 'tfp.distributions' elif ('tensorflow_probability.python.experimental.distributions' in cls.__module__): module_name = 'tfp.experimental.distributions' else: module_name = cls.__module__ return auto_composite_tensor.auto_composite_tensor( cls, omit_kwargs=('parameters',), non_identifying_kwargs=('name',), module_name=module_name) class AutoCompositeTensorDistribution( Distribution, auto_composite_tensor.AutoCompositeTensor, metaclass=_AutoCompositeTensorDistributionMeta): r"""Base for `CompositeTensor` bijectors with auto-generated `TypeSpec`s. `CompositeTensor` objects are able to pass in and out of `tf.function` and `tf.while_loop`, or serve as part of the signature of a TF saved model. `Distribution` subclasses that follow the contract of `tfp.experimental.auto_composite_tensor` may be defined as `CompositeTensor`s by inheriting from `AutoCompositeTensorDistribution`: ```python class MyDistribution(tfb.AutoCompositeTensorDistribution): # The remainder of the subclass implementation is unchanged. ``` """ pass class _PrettyDict(dict): """`dict` with stable `repr`, `str`.""" def __str__(self): pairs = (': '.join([str(k), str(v)]) for k, v in sorted(self.items())) return '{' + ', '.join(pairs) + '}' def __repr__(self): pairs = (': '.join([repr(k), repr(v)]) for k, v in sorted(self.items())) return '{' + ', '.join(pairs) + '}' def _recursively_replace_dict_for_pretty_dict(x): """Recursively replace `dict`s with `_PrettyDict`.""" # We use "PrettyDict" because collections.OrderedDict repr/str has the word # "OrderedDict" in it. We only want to print "OrderedDict" if in fact the # input really is an OrderedDict. if isinstance(x, dict): return _PrettyDict({ k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) if (isinstance(x, collections.abc.Sequence) and not isinstance(x, six.string_types)): args = (_recursively_replace_dict_for_pretty_dict(x_) for x_ in x) is_named_tuple = (isinstance(x, tuple) and hasattr(x, '_asdict') and hasattr(x, '_fields')) return type(x)(*args) if is_named_tuple else type(x)(args) if isinstance(x, collections.abc.Mapping): return type(x)(**{k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) return x def _str_tensorshape(x): def _str(s): if tensorshape_util.rank(s) is None: return '?' return str(tensorshape_util.as_list(s)).replace('None', '?') # Because Python2 `dict`s are unordered, we must replace them with # `PrettyDict`s so __str__, __repr__ are deterministic. x = _recursively_replace_dict_for_pretty_dict(x) return str(tf.nest.map_structure(_str, x)).replace('\'', '') def _str_dtype(x): def _str(s): if s is None: return '?' return dtype_util.name(s) # Because Python2 `dict`s are unordered, we must replace them with # `PrettyDict`s so __str__, __repr__ are deterministic. x = _recursively_replace_dict_for_pretty_dict(x) return str(tf.nest.map_structure(_str, x)).replace('\'', '')
tensorflow/probability
tensorflow_probability/python/distributions/distribution.py
Python
apache-2.0
86,727
[ "Gaussian" ]
9884f926c507ebc9ad0349aaa70470ae6ad640d3d187cd05f01a3d9714ac749b
#!/usr/bin/python3 ''' XYZ2VTK.py - Takes in an XYZ file containing coordinates and vectors then converts them into VTK structured grids (snapshots) for use in ParaView. ''' import argparse import os from os import path parser = argparse.ArgumentParser() parser.add_argument( "-n", help="Number of frames to dump", type=int, default=0 ) parser.add_argument( "-k", "--skip", help="Dump every 'n'th frame", type=int, default=1 ) parser.add_argument( "-t", "--titles", help="Titles of each data column", type=str, default="" ) parser.add_argument( "--vector", help="Column positions of vector data", type=int, nargs=3 ) parser.add_argument( "-s", "--scalars", help="Column positions of scalar data", type=int, nargs="+" ) parser.add_argument( "input", help="Input file name", type=str ) parser.add_argument( "-o", "--output", help="Output folder name/file prefix", type=str ) # Parse arguments args = parser.parse_args() # Definitions frame = 0 # current frame n = args.skip # Dump every "nth" frame titles = args.titles.split() nbegin = 0 # Are we at the beginning of a new frame? fmax = args.n # Maximum number of frames to dump dirout = path.splitext(args.input)[0] # Folder name prefix = "frame" # File prefix vector = args.vector # Vector to write scalars = args.scalars # Scalars to write # Set output directory if needed if args.output is not None: dirout = args.output # Calculate required number of titles ntit = 0 if vector is not None: ntit += len(vector) / 3 if scalars is not None: ntit += len(scalars) if len(titles) is not int(ntit): print("Invalid number of titles. Must specify {0}".format(int(ntit))) exit() # Check that the output directory exists. # If not, make it. if not path.exists(dirout): os.makedirs(dirout) # Containers for frame data. pdata = [] # Positional data vdata = [] # Vector data sdata = [] # Scalar data species = [] # Species data # Open input file with open(args.input, 'r') as f: for line in f: # If split is 1 we are at a new frame. if len(line.split()) is 1: nbegin = 1 fname = path.join(dirout, "{0}{num:04d}.vtk".format(prefix, num=frame)) # Write frame data if available if len(pdata): with open(fname, "w") as fout: fout.write("# vtk DataFile Version 2.0\n") fout.write("VTK from XYZ2VTK\n") fout.write("ASCII\n") fout.write("DATASET STRUCTURED_GRID\n") fout.write("DIMENSIONS 1 {0} 1\n".format(len(pdata))) fout.write("POINTS {0} float\n".format(len(pdata))) for pline in pdata: fout.write("{0} {1} {2}\n".format(pline[0], pline[1], pline[2])) # If there's vector data. if len(vdata): fout.write("POINT_DATA {0}\n".format(len(vdata))) fout.write("VECTORS {0} float\n".format(titles[0])) for vline in vdata: fout.write("{0} {1} {2}\n".format(vline[0], vline[1], vline[2])) # Add species data fout.write("SCALARS species float\n") fout.write("LOOKUP_TABLE default\n") for sline in sdata: fout.write("{0}\n".format(sline[0])) # Clear data lists. pdata = [] vdata = [] sdata = [] # Increment frame counter. frame += 1 continue # If we are at the beginning of a line, skip # this frame since it's the box vecotrs. if nbegin is 1: nbegin = 0 continue # If we are not at a frame we're interested in, # pass. if n and (frame - 1) % n is not 0: continue # If we maxed out the number of frames, quit if fmax and frame > fmax: break # Just in case we check that we're not at frame 0. if not nbegin and frame is not 0: data = line.split() # Append position data to array pdata.append(list(map(float, data[1:4]))) # Append vector data to array if vector is not None: vlist = [] vlist.append(float(data[vector[0]])) vlist.append(float(data[vector[1]])) vlist.append(float(data[vector[2]])) vdata.append(vlist) # Append species data to array if data[0] not in species: species.append(data[0]) slist = [] slist.append(species.index(data[0])) sdata.append(slist)
hsidky/MolSimScripts
XYZ2VTK.py
Python
mit
4,111
[ "ParaView", "VTK" ]
e73f396f6cdd41817b5a956977f264e5dcf50f1b03fb3d06158b7bcf33c6fd76
import time from itertools import chain import pysam import numpy as np from mitty.lib.bedfile import read_bed from mitty.lib.sanitizeseq import sanitize import logging logger = logging.getLogger(__name__) SEED_MAX = (1 << 32) - 1 # Used for seeding rng def main(fp_out, fasta_fname, sample_name, bed_fname, seed, p_het, models): """ :param fp_out: output file pointer :param fasta_fname: :param sample_name: :param bed_fname: :param seed: :param p_het: :param models: :return: """ logger.debug('Starting variant simulation ...') t0 = time.time() v_cnt_tot = 0 fp_out.write(generate_header(fasta_fname, sample_name)) fasta = pysam.FastaFile(fasta_fname) rng = np.random.RandomState(seed=seed) for region in read_bed(bed_fname): t1 = time.time() v_cnt = write_out_variants( fp_out, region, [ model_dispatch[model[0]]( rng, region=region, seq=fasta.fetch(reference=region[0], start=region[1], end=region[2]), p=model[1], p_het=p_het, min_size=model[2], max_size=model[3]) for model in models ]) t2 = time.time() logger.debug('Wrote {} variants in region {} in {:0.2f}s'.format(v_cnt, region, t2 - t1)) v_cnt_tot += v_cnt t2 = time.time() logger.debug('Simulated {} variants in {:0.2f}s'.format(v_cnt_tot, t2 - t0)) def generate_header(fasta_fname, sample_name): fasta = pysam.FastaFile(fasta_fname) return '\n'.join( ['##fileformat=VCFv4.2'] + \ ['##contig=<ID={}, length={}>'.format(i, l) for i, l in zip(fasta.references, fasta.lengths)] + \ ['##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype string">', '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t{}'.format(sample_name)]) + '\n' def place_poisson_seq(rng, p, seq): """Given a random number generator, a probability and an end point, generate poisson distributed events. Skip bases that are 'N'. For short end_p this may, by chance, generate fewer locations that normal""" if p == 0.0: return np.array([], dtype='i4') l = len(seq) return np.array( [loc for loc in rng.geometric(p=p, size=int(l * p * 1.2)).cumsum() if loc < l and seq[loc] != 'N'], dtype='i4') def genotype(p_het, rng, l): """ :param rng: :param l: :return: gt - 0 = 1|0 1 = 0|1 2 = 1|1 """ r1 = rng.rand(l) # For the het/hom determination r2 = rng.rand(l) # For hets, for determining which copy gt = np.zeros(l, dtype=int) gt[r1 > p_het] = 2 gt[(r1 <= p_het) & (r2 < 0.5)] = 1 return gt def snp_model(rng, region, seq, p, p_het, **args): """Places SNPs""" base_sub = { 'A': 'CTG', 'C': 'ATG', 'T': 'ACG', 'G': 'ACT' } pos = place_poisson_seq(rng, p, seq) ref = [seq[x] for x in pos] alt = [base_sub[r][i] for r, i in zip(ref, rng.randint(0, 3, size=pos.shape[0]))] gt = genotype(p_het, rng, pos.shape[0]) return [pos + region[1] + 1, ref, alt, gt] t_mat = { 'A': [0.32654629, 0.17292732, 0.24524503, 0.25528135], 'T': [0.3489394, 0.25942695, 0.04942584, 0.3422078], 'G': [0.28778188, 0.21087004, 0.25963262, 0.24171546], 'C': [0.21644706, 0.20588717, 0.24978216, 0.32788362] } cum_t_mat = { k: np.cumsum(v) for k, v in t_mat.items() } def markov_chain(ref, rng, l): """ :param ref: :param rng: :param l: :return: """ dna = 'ACTG' alt = [ref] * (l + 1) for n, r in enumerate(rng.rand(l)): v = cum_t_mat[alt[n]] for m in range(4): if r <= v[m]: alt[n + 1] = dna[m] break else: alt[n + 1] = dna[3] return ''.join(alt) def ins_model(rng, region, seq, p, p_het, min_size, max_size): """Insertions uniformly spanning minimum and maximum lengths. Sequences are generated using a Markov chain generator""" pos = place_poisson_seq(rng, p, seq) ref = [seq[x] for x in pos] alt = [markov_chain(r, rng, l) for r, l in zip(ref, rng.randint(min_size, max_size, size=pos.shape[0]))] gt = genotype(p_het, rng, pos.shape[0]) return [pos + region[1] + 1, ref, alt, gt] def del_model(rng, region, seq, p, p_het, min_size, max_size): """Deletions uniformly spanning minimum and maximum lengths""" pos = place_poisson_seq(rng, p, seq) ref = [seq[x:x + l + 1] for x, l in zip(pos, rng.randint(min_size, max_size, size=pos.shape[0]))] alt = [seq[x] for x in pos] gt = genotype(p_het, rng, pos.shape[0]) return [pos + region[1] + 1, ref, alt, gt] def copy_ins_model(rng, region, seq, p, p_het, min_size, max_size): """The `CINS` model works just like the `INS` model except the insertion sequences, instead of being novel DNA sequences created with a Markov chain generator, are exact copies of random parts of the input reference genome. This creates insertions that are more challenging to align to and assemble, especially when their lengths start to exceed the template size of the sequencing technology used. """ seq = sanitize(seq) pos = place_poisson_seq(rng, p, seq) ref = [seq[x] for x in pos] alt = [copied_insertion(r, rng, seq, l) for r, l in zip(ref, rng.randint(min_size, max_size, size=pos.shape[0]))] gt = genotype(p_het, rng, pos.shape[0]) try: pos, ref, alt, gt = zip(*filter_none_alt(pos + region[1] + 1, ref, alt, gt)) except ValueError: pos, ref, alt, gt = [[], [], [], []] return pos, ref, alt, gt def copied_insertion(ref, rng, seq, l): if len(seq) <= l: return None n0 = rng.randint(len(seq) - l) n1 = n0 + l if 'N' in seq[n0:n1]: return None return ref + seq[n0:n1] def filter_none_alt(pos, ref, alt, gt): for p, r, a, g in zip(pos, ref, alt, gt): if a is not None: yield p, r, a, g model_dispatch = { 'SNP': snp_model, 'INS': ins_model, 'CINS': copy_ins_model, 'DEL': del_model } def write_out_variants(fp_out, region, v_l): """Given a list of list of variants (as returned from the variant model functions) concatenate them and then write them out in position order :param fp_out: :param region: :param v_l: :return: """ gt_str = ['0|1', '1|0', '1|1'] contig = region[0] pos = list(chain(*(v[0] for v in v_l))) ref = list(chain(*(v[1] for v in v_l))) alt = list(chain(*(v[2] for v in v_l))) gt = list(chain(*(v[3] for v in v_l))) for idx in np.argsort(np.array(pos)): # Sort by position #CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tGT\n fp_out.write('{}\t{}\t.\t{}\t{}\t100\tPASS\t.\tGT\t{}\n'.format(contig, pos[idx], ref[idx], alt[idx], gt_str[gt[idx]])) return len(pos)
sbg/Mitty
mitty/simulation/genome/simulatevariants.py
Python
apache-2.0
6,543
[ "pysam" ]
3c1ee038f2ce6be77909985bd682ec317c69ce3f092eb9b715559e789a1c822f
# # Copyright (c) 2017 Brian J. Kidney # Copyright (c) 2017 Jonathan Anderson # All rights reserved. # # This software was developed by BAE Systems, the University of Cambridge # Computer Laboratory, and Memorial University under DARPA/AFRL contract # FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent Computing # (TC) research program. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import cdg.query class FilterError(Exception): """Raised when an error is encountered filtering a graph. Attributes: filter_spec User-provided filter specification message Explanation """ def __init__(self, filter_spec, message): self.filter_spec = filter_spec self.message = message def apply(filter_spec, graph): ''' Apply a filter like calls-to:read,write or flows-from:main to a graph. ''' tokens = filter_spec.split(':') name = tokens[0] args = tokens[1].split(',') depth_limit = int(tokens[2]) if len(tokens) > 2 else None def get_neighbours(select_fn, **annotations): return cdg.query.transitive_neighbours(graph, args, select_fn, annotations, depth_limit) if name == 'identity': return graph elif name == 'exclude': return exclude(graph, args) elif name == 'calls-from': select_fn = lambda node: cdg.query.succ(graph, node, is_call) nodes = get_neighbours(select_fn, call='root') description = 'successors' elif name == 'calls-to': select_fn = lambda node: cdg.query.pred(graph, node, is_call) nodes = get_neighbours(select_fn, call='target') description = 'predecessors' elif name == 'flows-from': select_fn = lambda node: cdg.query.succ(graph, node, lambda _: True) nodes = get_neighbours(select_fn, flow='source') description = 'successors' elif name == 'flows-to': select_fn = lambda node: cdg.query.pred(graph, node, lambda _: True) nodes = get_neighbours(select_fn, flow='sink') description = 'predecessors' else: raise FilterError(filter_spec, 'Invalid filter') also_keep = set() for n in nodes: node = graph.nodes[n] if 'parent' in node: also_keep.add(node['parent']) print('Keeping %d %s of %d nodes (and %d parents)' % ( len(nodes), description, len(args), len(also_keep))) nodes = nodes.union(also_keep) return cdg.hot_patch(graph.subgraph(nodes)) def exclude(graph, to_exclude): result = graph.full_copy() for n in to_exclude: result.remove_node(n) print('Removed %d nodes, %d edges' % ( len(graph.nodes) - len(result.nodes), len(graph.edges) - len(result.edges), )) return result def is_call(attrs): return attrs['kind'] == cdg.EdgeKind.Call def intersection(G, H): R = G.full_copy() R.remove_nodes_from(n for n in G if n not in H) return R def union(G, H): R = G.full_copy() R.add_edges_from(H.edges()) return R
musec/py-cdg
cdg/filters.py
Python
apache-2.0
3,585
[ "Brian" ]
0ca7f5e117430c625a5350c9e8a5bb3b4ef3d984ad8a63b21f28214617a6e706
import sys import os import gzip import argparse import numpy as np from itertools import product, groupby import pysam import util import snptable import tables MAX_SEQS_DEFAULT = 64 MAX_SNPS_DEFAULT = 6 class DataFiles(object): """Object to hold names and filehandles for all input / output datafiles""" def __init__(self, bam_filename, is_sorted, is_paired, output_dir=None, snp_dir=None, snp_tab_filename=None, snp_index_filename=None, haplotype_filename=None, samples=None): # flag indicating whether reads are paired-end self.is_paired = is_paired # prefix for output files self.prefix = None # name of input BAM filename self.bam_filename = bam_filename # name of sorted input bam_filename # (new file is created if input file is not # already sorted) self.bam_sort_filename = None # pysam file handle for input BAM self.input_bam = None # name of output keep and to.remap BAM files self.keep_filename = None self.remap_filename = None # pysam file handles for output BAM filenames self.keep_bam = None self.remap_bam = None # name of output fastq files self.fastq_single_filename = None self.fastq1_filename = None self.fastq2_filename = None self.fastq1 = None self.fastq2 = None self.fastq_single = None # name of directory to read SNPs from self.snp_dir = snp_dir # paths to HDF5 files to read SNP info from self.snp_tab_filename = snp_tab_filename self.snp_index_filename = snp_index_filename self.haplotype_filename = haplotype_filename if self.snp_tab_filename: self.snp_tab_h5 = tables.open_file(snp_tab_filename, "r") self.snp_index_h5 = tables.open_file(snp_index_filename, "r") self.hap_h5 = tables.open_file(haplotype_filename, "r") else: self.snp_tab_h5 = None self.snp_index_h5 = None self.hap_h5 = None # separate input directory and bam filename tokens = self.bam_filename.split("/") bam_dir = "/".join(tokens[:-1]) filename = tokens[-1] if output_dir is None: # if no output dir specified, use same directory as input # bam file output_dir = bam_dir else: if output_dir.endswith("/"): # strip trailing '/' from output dir name output_dir = output_dir[:-1] name_split = filename.split(".") if len(name_split) > 1: self.prefix = output_dir + "/" + ".".join(name_split[:-1]) else: self.prefix = output_dir + "/" + name_split[0] # create output dir if does not exist if not os.path.exists(output_dir): os.makedirs(output_dir) # TODO: could allow names of output files to be specified # on command line rather than appending name to prefix sys.stderr.write("prefix: %s\n" % self.prefix) if not is_sorted: util.sort_bam(self.bam_filename, self.prefix) self.bam_sort_filename = self.prefix + ".sort.bam" else: self.bam_sort_filename = self.bam_filename self.keep_filename = self.prefix + ".keep.bam" self.remap_filename = self.prefix + ".to.remap.bam" sys.stderr.write("reading reads from:\n %s\n" % self.bam_sort_filename) sys.stderr.write("writing output files to:\n") if self.is_paired: self.fastq1_filename = self.prefix + ".remap.fq1.gz" self.fastq2_filename = self.prefix + ".remap.fq2.gz" self.fastq1 = gzip.open(self.fastq1_filename, "wt") self.fastq2 = gzip.open(self.fastq2_filename, "wt") self.fastq_single_filename = self.prefix + ".remap.single.fq.gz" self.fastq_single = gzip.open(self.fastq_single_filename, "wt") sys.stderr.write(" %s\n %s\n %s\n" % (self.fastq1_filename, self.fastq2_filename, self.fastq_single_filename)) else: self.fastq_single_filename = self.prefix + ".remap.fq.gz" self.fastq_single = gzip.open(self.fastq_single_filename, "wt") sys.stderr.write(" %s\n" % (self.fastq_single_filename)) self.input_bam = pysam.Samfile(self.bam_sort_filename, "r") self.keep_bam = pysam.Samfile(self.keep_filename, "w", template=self.input_bam) self.remap_bam = pysam.Samfile(self.remap_filename, "w", template=self.input_bam) sys.stderr.write(" %s\n %s\n" % (self.keep_filename, self.remap_filename)) def close(self): """close open filehandles""" filehandles = [self.keep_bam, self.remap_bam, self.fastq1, self.fastq2, self.fastq_single, self.snp_tab_h5, self.snp_index_h5, self.hap_h5] for fh in filehandles: if fh: fh.close() class ReadStats(object): """Track information about reads and SNPs that they overlap""" def __init__(self): # number of read matches to reference allele self.ref_count = 0 # number of read matches to alternative allele self.alt_count = 0 # number of reads that overlap SNP but match neither allele self.other_count = 0 # number of reads discarded becaused not mapped self.discard_unmapped = 0 # number of reads discarded because not proper pair self.discard_improper_pair = 0 # number of reads discarded because mate unmapped self.discard_mate_unmapped = 0 # paired reads map to different chromosomes self.discard_different_chromosome = 0 # number of reads discarded because overlap an indel self.discard_indel = 0 # number of reads discarded because secondary match self.discard_secondary = 0 # number of chimeric reads discarded self.discard_supplementary = 0 # number of reads discarded because of too many overlapping SNPs self.discard_excess_snps = 0 # number of reads discarded because too many allelic combinations self.discard_excess_reads = 0 # when read pairs share SNP locations but have different alleles there self.discard_discordant_shared_snp = 0 # reads where we expected to see other pair, but it was missing # possibly due to read-pairs with different names self.discard_missing_pair = 0 # number of single reads kept self.keep_single = 0 # number of read pairs kept self.keep_pair = 0 # number of single reads that need remapping self.remap_single = 0 # number of read pairs kept self.remap_pair = 0 def write(self, file_handle): sys.stderr.write("DISCARD reads:\n" " unmapped: %d\n" " mate unmapped: %d\n" " improper pair: %d\n" " different chromosome: %d\n" " indel: %d\n" " secondary alignment: %d\n" " supplementary alignment: %d\n" " excess overlapping snps: %d\n" " excess allelic combinations: %d\n" " read pairs with discordant shared SNPs: %d\n" " missing pairs (e.g. mismatched read names): %d\n" "KEEP reads:\n" " single-end: %d\n" " pairs: %d\n" "REMAP reads:\n" " single-end: %d\n" " pairs: %d\n" % (self.discard_unmapped, self.discard_mate_unmapped, self.discard_improper_pair, self.discard_different_chromosome, self.discard_indel, self.discard_secondary, self.discard_supplementary, self.discard_excess_snps, self.discard_excess_reads, self.discard_discordant_shared_snp, self.discard_missing_pair, self.keep_single, self.keep_pair, self.remap_single, self.remap_pair)) file_handle.write("read SNP ref matches: %d\n" % self.ref_count) file_handle.write("read SNP alt matches: %d\n" % self.alt_count) file_handle.write("read SNP mismatches: %d\n" % self.other_count) total = self.ref_count + self.alt_count + self.other_count if total > 0: mismatch_pct = 100.0 * float(self.other_count) / total if mismatch_pct > 10.0: sys.stderr.write("WARNING: many read SNP overlaps do not match " "either allele (%.1f%%). SNP coordinates " "in input file may be incorrect.\n" % mismatch_pct) def parse_options(): parser = argparse.ArgumentParser(description="Looks for SNPs and indels " "overlapping reads. If a read overlaps " "SNPs, alternative versions of the read " "containing different alleles are created " "and written to files for remapping. " "Reads that do not overlap SNPs or indels " "are written to a 'keep' BAM file." "Reads that overlap indels are presently " "discarded.") parser.add_argument("--is_paired_end", "-p", action='store_true', dest='is_paired_end', default=False, help=("Indicates that reads are paired-end " "(default is single).")) parser.add_argument("--is_sorted", "-s", action='store_true', dest='is_sorted', default=False, help=('Indicates that the input BAM file' ' is coordinate-sorted (default ' 'is False).')) parser.add_argument("--max_seqs", type=int, default=MAX_SEQS_DEFAULT, help="The maximum number of sequences with different " "allelic combinations to consider remapping " "(default=%d). Read pairs with more allelic " "combinations than MAX_SEQs are discarded" % MAX_SEQS_DEFAULT) parser.add_argument("--max_snps", type=int, default=MAX_SNPS_DEFAULT, help="The maximum number of SNPs allowed to overlap " "a read before discarding the read. Allowing higher " "numbers will decrease speed and increase memory " "usage (default=%d)." % MAX_SNPS_DEFAULT) parser.add_argument("--output_dir", default=None, help="Directory to write output files to. If not " "specified, output files are written to the " "same directory as the input BAM file.") parser.add_argument("--snp_dir", action='store', help="Directory containing SNP text files " "This directory should contain one file per " "chromosome named like chr<#>.snps.txt.gz. " "Each file should contain 3 columns: position " "RefAllele AltAllele. This option should " "only be used if --snp_tab, --snp_index, " "and --haplotype arguments are not used." " If this argument is provided, all possible " "allelic combinations are used (rather " "than set of observed haplotypes).", default=None) parser.add_argument("--snp_tab", help="Path to HDF5 file to read SNP information " "from. Each row of SNP table contains SNP name " "(rs_id), position, allele1, allele2.", metavar="SNP_TABLE_H5_FILE", default=None) parser.add_argument("--snp_index", help="Path to HDF5 file containing SNP index. The " "SNP index is used to convert the genomic position " "of a SNP to its corresponding row in the haplotype " "and snp_tab HDF5 files.", metavar="SNP_INDEX_H5_FILE", default=None) parser.add_argument("--haplotype", help="Path to HDF5 file to read phased haplotypes " "from. When generating alternative reads " "use known haplotypes from this file rather " "than all possible allelic combinations.", metavar="HAPLOTYPE_H5_FILE", default=None) parser.add_argument("--samples", help="Use only haplotypes and SNPs that are " "polymorphic in these samples. " "SAMPLES can either be a comma-delimited string " "of sample names or a path to a file with one sample " "name per line (file is assumed to be whitespace-" "delimited and first column is assumed to be sample " "name). Sample names should match those present in the " "--haplotype file. Samples are ignored if no haplotype " "file is provided.", metavar="SAMPLES") parser.add_argument("bam_filename", action='store', help="Coordinate-sorted input BAM file " "containing mapped reads.") options = parser.parse_args() if options.snp_dir: if(options.snp_tab or options.snp_index or options.haplotype): parser.error("expected --snp_dir OR (--snp_tab, --snp_index and " "--haplotype) arguments but not both") else: if not (options.snp_tab and options.snp_index and options.haplotype): parser.error("either --snp_dir OR (--snp_tab, " "--snp_index AND --haplotype) arguments must be " "provided") if options.samples and not options.haplotype: # warn because no way to use samples if haplotype file not specified sys.stderr.write("WARNING: ignoring --samples argument " "because --haplotype argument not provided") return options def write_read(read, snp_tab, snp_idx, read_pos): snp_allele1 = [' '] * read.qlen snp_allele2 = [' '] * read.qlen for (s_idx, r_idx) in zip(snp_idx, read_pos): a1 = snp_tab.snp_allele1[s_idx] a2 = snp_tab.snp_allele2[s_idx] snp_allele1[r_pos-1] = a1 snp_allele2[r_pos-1] = a2 sys.stderr.write("READ: %s\n" % read.query_sequence) sys.stderr.write("A1: %s\n" % "".join(snp_allele1)) sys.stderr.write("A2: %s\n" % "".join(snp_allele2)) def count_ref_alt_matches(read, read_stats, snp_tab, snp_idx, read_pos): ref_alleles = snp_tab.snp_allele1[snp_idx] alt_alleles = snp_tab.snp_allele2[snp_idx] for i in range(len(snp_idx)): ref = ref_alleles[i].decode("utf-8") alt = alt_alleles[i].decode("utf-8") if ref == read.query_sequence[read_pos[i]-1]: # read matches reference allele read_stats.ref_count += 1 elif alt == read.query_sequence[read_pos[i]-1]: # read matches non-reference allele read_stats.alt_count += 1 else: # read matches neither ref nor other read_stats.other_count += 1 def get_unique_haplotypes(haplotypes, phasing, snp_idx): """ returns list of vectors of unique haplotypes for this set of SNPs all possible combinations of ref/alt are calculated at unphased sites """ haps = haplotypes[snp_idx,:].T # get phasing of SNPs for each individual as bool array # True = unphased and False = phased if phasing is not None: phasing = np.logical_not(phasing[snp_idx, :].T.astype(bool)) else: # assume all SNPs are unphased phasing = np.full((int(haps.shape[0]/2), haps.shape[1]), True) # if a haplotype has unphased SNPs, generate all possible allelic # combinations and add each combination as a new haplotype new_haps = [] # iterate through each individual for i in range(len(phasing)): # get the haplotype data for this individual hap_pair = haps[i*2:(i*2)+2] # get bool index of cols in hap_pair that contain hets hets = np.not_equal(hap_pair[0], hap_pair[1]) # get bool index of cols in hap_pair that are both unphased and hets phase = np.logical_and(phasing[i], hets) # get all combinations of indices at unphased cols # then, index into hap_pair with each combination for j in product([0, 1], repeat=sum(phase)): # index into hap_pair using all ref genes at genotyped columns ref = np.repeat(0, hap_pair.shape[1]) np.place(ref, phase, j) new_haps.append(hap_pair[ref, range(len(ref))]) # index into hap_pair using all alt genes at genotyped columns alt = np.repeat(1, hap_pair.shape[1]) np.place(alt, phase, j) new_haps.append(hap_pair[alt, range(len(alt))]) # add new haps to old haps haps = np.concatenate((haps, new_haps)) # create view of data that joins all elements of column # into single void datatype h = np.ascontiguousarray(haps).view(np.dtype((np.void, haps.dtype.itemsize * haps.shape[1]))) # get index of unique columns _, idx = np.unique(h, return_index=True) return haps[idx,:] def generate_haplo_reads(read_seq, snp_idx, read_pos, ref_alleles, alt_alleles, haplo_tab, phase_tab): """ read_seq - a string representing the the sequence of the read in question snp_index - a list of indices of SNPs that this read overlaps read_pos - a list of positions in read_seq that overlap SNPs ref_alleles - a np array of reference alleles with indices corresponding to snp_index alt_alleles - a np array of alternate alleles with indices corresponding to snp_index haplo_tab - a pytables node with haplotypes from haplotype.h5 """ haps = get_unique_haplotypes(haplo_tab, phase_tab, snp_idx) # sys.stderr.write("UNIQUE haplotypes: %s\n" # "read_pos: %s\n" # % (repr(haps), read_pos)) read_len = len(read_seq) new_read_list = set() # loop over haplotypes for hap in haps: new_read = [] cur_pos = 1 missing_data = False # loop over the SNPs to get alleles that make up this haplotype for i in range(len(hap)): if read_pos[i] > cur_pos: # add segment of read new_read.append(read_seq[cur_pos-1:read_pos[i]-1]) # add segment for appropriate allele if hap[i] == 0: # reference allele new_read.append(ref_alleles[i].decode("utf-8")) elif hap[i] == 1: # alternate allele new_read.append(alt_alleles[i].decode("utf-8")) else: # haplotype has unknown genotype so skip it... missing_data = True break cur_pos = read_pos[i] + 1 if read_len >= cur_pos: # add final segment new_read.append(read_seq[cur_pos-1:read_len]) if not missing_data: new_seq = "".join(new_read) # sanity check: read should be same length as original if len(new_seq) != read_len: raise ValueError("Expected read len to be %d but " "got %d.\n" "ref_alleles: %s\n" "alt_alleles: %s\n" "read_pos: %s\n" "snp_idx: %s\n" "haps: %s\n" % (read_len, len(new_seq), repr(ref_alleles), repr(alt_alleles), repr(read_pos), repr(snp_idx), repr(haps))) new_read_list.add("".join(new_seq)) return new_read_list def generate_reads(read_seq, read_pos, ref_alleles, alt_alleles): """Generate set of reads with all possible combinations of alleles (i.e. 2^n combinations where n is the number of snps overlapping the reads) """ reads = [read_seq] # iterate through all snp locations for i in range(len(read_pos)): idx = read_pos[i]-1 # for each read we've already created... for j in range(len(reads)): read = reads[j] # create a new version of this read with both reference # and alternative versions of the allele at this index reads.append( read[:idx] + ref_alleles[i].decode("utf-8") + read[idx+1:] ) reads.append( read[:idx] + alt_alleles[i].decode("utf-8") + read[idx+1:] ) return set(reads) def write_fastq(fastq_file, orig_read, new_seqs): n_seq = len(new_seqs) i = 1 for new_seq in new_seqs: # Give each read a new name giving: # 1 - the original name of the read # 2 - the coordinate that it should map to # 3 - the number of the read # 4 - the total number of reads being remapped name = "%s.%d.%d.%d" % (orig_read.qname, orig_read.pos+1, i, n_seq) fastq_file.write("@%s\n%s\n+%s\n%s\n" % (name, new_seq, name, orig_read.qual)) i += 1 def write_pair_fastq(fastq_file1, fastq_file2, orig_read1, orig_read2, new_pairs): n_pair = len(new_pairs) i = 1 for pair in new_pairs: # give each fastq record a new name giving: # 1 - the original name of the read # 2 - the coordinates the two ends of the pair should map to # 3 - the number of the read # 4 - the total number of reads being remapped pos_str = "%d-%d" % (min(orig_read1.pos+1, orig_read2.pos+1), max(orig_read1.pos+1, orig_read2.pos+1)) name = "%s.%s.%d.%d" % (orig_read1.qname, pos_str, i, n_pair) fastq_file1.write("@%s\n%s\n+%s\n%s\n" % (name, pair[0], name, orig_read1.qual)) rev_seq = util.revcomp(pair[1]) fastq_file2.write("@%s\n%s\n+%s\n%s\n" % (name, rev_seq, name, orig_read2.qual)) i += 1 def filter_reads(files, max_seqs=MAX_SEQS_DEFAULT, max_snps=MAX_SNPS_DEFAULT, samples=None): cur_chrom = None cur_tid = None seen_chrom = set([]) snp_tab = snptable.SNPTable() read_stats = ReadStats() read_pair_cache = {} cache_size = 0 read_count = 0 for read in files.input_bam: read_count += 1 # if (read_count % 100000) == 0: # sys.stderr.write("\nread_count: %d\n" % read_count) # sys.stderr.write("cache_size: %d\n" % cache_size) # TODO: need to change this to use new pysam API calls # but need to check pysam version for backward compatibility if read.tid == -1: # unmapped read read_stats.discard_unmapped += 1 continue if (cur_tid is None) or (read.tid != cur_tid): # this is a new chromosome cur_chrom = files.input_bam.getrname(read.tid) if len(read_pair_cache) != 0: sys.stderr.write("WARNING: failed to find pairs for %d " "reads on this chromosome\n" % len(read_pair_cache)) read_stats.discard_missing_pair += len(read_pair_cache) read_pair_cache = {} cache_size = 0 read_count = 0 if cur_chrom in seen_chrom: # sanity check that input bam file is sorted raise ValueError("expected input BAM file to be sorted " "but chromosome %s is repeated\n" % cur_chrom) seen_chrom.add(cur_chrom) cur_tid = read.tid sys.stderr.write("starting chromosome %s\n" % cur_chrom) # use HDF5 files if they are provided, otherwise use text # files from SNP dir if files.snp_tab_h5: sys.stderr.write("reading SNPs from file '%s'\n" % files.snp_tab_h5.filename) snp_tab.read_h5(files.snp_tab_h5, files.snp_index_h5, files.hap_h5, cur_chrom, samples) else: snp_filename = "%s/%s.snps.txt.gz" % (files.snp_dir, cur_chrom) sys.stderr.write("reading SNPs from file '%s'\n" % snp_filename) snp_tab.read_file(snp_filename) sys.stderr.write("processing reads\n") if read.is_secondary: # this is a secondary alignment (i.e. read was aligned more than # once and this has align score that <= best score) read_stats.discard_secondary += 1 continue if read.is_supplementary: # this is a supplementary alignment (ie chimeric and not the representative alignment) read_stats.discard_supplementary += 1 continue if read.is_paired: if read.mate_is_unmapped: # other side of pair not mapped # we could process as single... but these not likely # useful so discard # process_single_read(read, read_stats, files, # snp_tab, max_seqs, max_snps) read_stats.discard_mate_unmapped += 1 elif(read.next_reference_name == cur_chrom or read.next_reference_name == "="): # other pair mapped to same chrom # sys.stderr.write("flag: %s" % read.flag) if not read.is_proper_pair: # sys.stderr.write(' => improper\n') read_stats.discard_improper_pair += 1 continue # sys.stderr.write(' => proper\n') if read.qname in read_pair_cache: # we already saw prev pair, retrieve from cache read1 = read_pair_cache[read.qname] read2 = read del read_pair_cache[read.qname] cache_size -= 1 if read2.next_reference_start != read1.reference_start: sys.stderr.write("WARNING: read pair positions " "do not match for pair %s\n" % read.qname) else: process_paired_read(read1, read2, read_stats, files, snp_tab, max_seqs, max_snps) else: # we need to wait for next pair read_pair_cache[read.qname] = read cache_size += 1 else: # other side of pair mapped to different # chromosome, discard this read read_stats.discard_different_chromosome += 1 else: process_single_read(read, read_stats, files, snp_tab, max_seqs, max_snps) if len(read_pair_cache) != 0: sys.stderr.write("WARNING: failed to find pairs for %d " "reads on this chromosome\n" % len(read_pair_cache)) read_stats.discard_missing_pair += len(read_pair_cache) read_stats.write(sys.stderr) def slice_read(read, indices): """slice a read by an array of indices""" return "".join(np.array(list(read))[indices]) def group_reads_by_snps(reads, snp_read_pos): """ group the reads by strings containing the combinations of ref/alt alleles among the reads at the shared_snps. return a list of sets of reads - one for each group """ # group the reads by the snp string and create a list to hold the groups return [ set(reads) for hap, reads in groupby( # note that groupby needs the data to be sorted by the same key func sorted(reads, key=lambda read: slice_read(read, snp_read_pos)), key=lambda read: slice_read(read, snp_read_pos) ) ] def read_pair_combos(old_reads, new_reads, max_seqs, snp_idx, snp_read_pos): """ Collects all unique combinations of read pairs. Handles the possibility of shared SNPs among the pairs (ie doesn't treat them as independent). Returns False before more than max_seqs pairs are created or None when the original read pair has discordant alleles at shared SNPs. Input: old_reads - a tuple of length 2, containing the pair of original reads new_reads - a list of two sets, each containing the reads generated from old_reads for remapping snp_index - a list of two lists of the indices of SNPs that overlap with old_reads snp_read_pos - a list of two lists of the positions in old_reads where SNPs are located Output: unique_pairs - a set of tuples, each representing a unique pair of new_reads """ # get the indices of the shared SNPs in old_reads for i in range(len(snp_read_pos)): # get the indices of the SNP indices that are in both reads idx_idxs = np.nonzero(np.in1d(snp_idx[i], snp_idx[(i+1) % 2]))[0] # now, use the indices in idx_idxs to get the relevant snp positions # and convert positions to indices snp_read_pos[i] = np.array(snp_read_pos[i], dtype=int)[idx_idxs] - 1 # check: are there discordant alleles at the shared SNPs? # if so, discard these reads if ( slice_read(old_reads[0], snp_read_pos[0]) != slice_read(old_reads[1], snp_read_pos[1]) ): return None # group reads by the alleles they have at shared SNPs for i in range(len(new_reads)): new_reads[i] = group_reads_by_snps( new_reads[i], snp_read_pos[i] ) unique_pairs = set() # calculate unique combinations of read pairs only among reads that # have the same alleles at shared SNPs (ie if they're in the correct group) for group in range(len(new_reads[0])): for pair in product(new_reads[0][group], new_reads[1][group]): if len(unique_pairs) <= max_seqs: unique_pairs.add(pair) else: return False return unique_pairs def process_paired_read(read1, read2, read_stats, files, snp_tab, max_seqs, max_snps): """Checks if either end of read pair overlaps SNPs or indels and writes read pair (or generated read pairs) to appropriate output files""" new_reads = [] pair_snp_idx = [] pair_snp_read_pos = [] for read in (read1, read2): # check if either read overlaps SNPs or indels # check if read overlaps SNPs or indels snp_idx, snp_read_pos, \ indel_idx, indel_read_pos = snp_tab.get_overlapping_snps(read) if len(indel_idx) > 0: # for now discard this read pair, we want to improve this to handle # the indel reads appropriately read_stats.discard_indel += 2 # TODO: add option to handle indels instead of throwing out reads return if len(snp_idx) > 0: ref_alleles = snp_tab.snp_allele1[snp_idx] alt_alleles = snp_tab.snp_allele2[snp_idx] count_ref_alt_matches(read, read_stats, snp_tab, snp_idx, snp_read_pos) # limit recursion here by discarding reads that # overlap too many SNPs if len(snp_read_pos) > max_snps: read_stats.discard_excess_snps += 1 return if files.hap_h5: # generate reads using observed set of haplotypes read_seqs = generate_haplo_reads(read.query_sequence, snp_idx, snp_read_pos, ref_alleles, alt_alleles, snp_tab.haplotypes, snp_tab.phase) else: # generate all possible allelic combinations of reads read_seqs = generate_reads(read.query_sequence, snp_read_pos, ref_alleles, alt_alleles) new_reads.append(read_seqs) pair_snp_idx.append(snp_idx) pair_snp_read_pos.append(snp_read_pos) else: # no SNPs or indels overlap this read new_reads.append(set()) pair_snp_idx.append([]) pair_snp_read_pos.append([]) if len(new_reads[0]) == 0 and len(new_reads[1]) == 0: # neither read overlapped SNPs or indels files.keep_bam.write(read1) files.keep_bam.write(read2) read_stats.keep_pair += 1 else: # add original version of both sides of pair new_reads[0].add(read1.query_sequence) new_reads[1].add(read2.query_sequence) if len(new_reads[0]) + len(new_reads[1]) > max_seqs: # quit now before generating a lot of read pairs read_stats.discard_excess_reads += 2 return # get all unique combinations of read pairs unique_pairs = read_pair_combos( (read1.query_sequence, read2.query_sequence), new_reads, max_seqs, pair_snp_idx, pair_snp_read_pos ) # if unique_pairs is None or False we should discard these reads if unique_pairs is None: read_stats.discard_discordant_shared_snp += 1 return elif not unique_pairs: read_stats.discard_excess_reads += 2 return # remove original read pair, if present unique_pairs.discard((read1.query_sequence, read2.query_sequence)) # write read pair to fastqs for remapping write_pair_fastq(files.fastq1, files.fastq2, read1, read2, unique_pairs) # Write read to 'remap' BAM for consistency with previous # implementation of script. Probably not needed and will result in # BAM that is not coordinate sorted. Possibly remove this... files.remap_bam.write(read1) files.remap_bam.write(read2) read_stats.remap_pair += 1 def process_single_read(read, read_stats, files, snp_tab, max_seqs, max_snps): """Check if a single read overlaps SNPs or indels, and writes this read (or generated read pairs) to appropriate output files""" # check if read overlaps SNPs or indels snp_idx, snp_read_pos, \ indel_idx, indel_read_pos = snp_tab.get_overlapping_snps(read) if len(indel_idx) > 0: # for now discard this read, we want to improve this to handle # the indel reads appropriately read_stats.discard_indel += 1 # TODO: add option to handle indels instead of throwing out reads return if len(snp_idx) > 0: ref_alleles = snp_tab.snp_allele1[snp_idx] alt_alleles = snp_tab.snp_allele2[snp_idx] count_ref_alt_matches(read, read_stats, snp_tab, snp_idx, snp_read_pos) # limit recursion here by discarding reads that # overlap too many SNPs if len(snp_read_pos) > max_snps: read_stats.discard_excess_snps += 1 return if files.hap_h5: read_seqs = generate_haplo_reads(read.query_sequence, snp_idx, snp_read_pos, ref_alleles, alt_alleles, snp_tab.haplotypes, snp_tab.phase) else: read_seqs = generate_reads(read.query_sequence, snp_read_pos, ref_alleles, alt_alleles) # we don't want the read that matches the original read_seqs.discard(read.query_sequence) if len(read_seqs) == 0: # only read generated matches original read, # so keep original files.keep_bam.write(read) read_stats.keep_single += 1 elif len(read_seqs) < max_seqs: # write read to fastq file for remapping write_fastq(files.fastq_single, read, read_seqs) # write read to 'to remap' BAM # this is probably not necessary with new implmentation # but kept for consistency with previous version of script files.remap_bam.write(read) read_stats.remap_single += 1 else: # discard read read_stats.discard_excess_reads += 1 return else: # no SNPs overlap read, write to keep file files.keep_bam.write(read) read_stats.keep_single += 1 def parse_samples(samples_str): """Gets list of samples from --samples argument. This may be a comma-delimited string or a path to a file. If a file is provided then the first column of the file is assumed to be the sample name""" if samples_str is None: return None # first check if this is a path to a file if os.path.exists(samples_str) and not os.path.isdir(samples_str): samples = [] if util.is_gzipped(samples_str): f = gzip.open(samples_str, "rt") else: f = open(samples_str, "rt") for line in f: # assume first token in line is sample name samples.append(line.split()[0]) sys.stderr.write("read %d sample names from file '%s'\n" % (len(samples), samples_str)) f.close() else: # otherwise assume comma-delimited string if ("/" in samples_str or "\\" in samples_str): sys.stderr.write("WARNING: --samples argument (%s) " "does not look like list of sample names " "(contains '/' or '\\') but is not path to " "valid file. Assuming it is list of sample " "names anyway." % samples_str) samples = samples_str.split(",") sys.stderr.write("SAMPLES: %s\n"% repr(samples)) return samples def main(bam_filenames, is_paired_end=False, is_sorted=False, max_seqs=MAX_SEQS_DEFAULT, max_snps=MAX_SNPS_DEFAULT, output_dir=None, snp_dir=None, snp_tab_filename=None, snp_index_filename=None, haplotype_filename=None, samples=None): files = DataFiles(bam_filenames, is_sorted, is_paired_end, output_dir=output_dir, snp_dir=snp_dir, snp_tab_filename=snp_tab_filename, snp_index_filename=snp_index_filename, haplotype_filename=haplotype_filename) filter_reads(files, max_seqs=max_seqs, max_snps=max_snps, samples=samples) files.close() if __name__ == '__main__': sys.stderr.write("command line: %s\n" % " ".join(sys.argv)) sys.stderr.write("python version: %s\n" % sys.version) sys.stderr.write("pysam version: %s\n" % pysam.__version__) sys.stderr.write("pytables version: %s\n" % tables.__version__) util.check_pysam_version() util.check_pytables_version() util.check_python_version() options = parse_options() samples = parse_samples(options.samples) main(options.bam_filename, is_paired_end=options.is_paired_end, is_sorted=options.is_sorted, max_seqs=options.max_seqs, max_snps=options.max_snps, output_dir=options.output_dir, snp_dir=options.snp_dir, snp_tab_filename=options.snp_tab, snp_index_filename=options.snp_index, haplotype_filename=options.haplotype, samples=samples)
bmvdgeijn/WASP
mapping/find_intersecting_snps.py
Python
apache-2.0
42,682
[ "pysam" ]
566d8bad54d9f0a85bbadc21c1edbe27026061500f9512f341657aced8ec7edb
# -*- coding: utf-8 -*- from __future__ import print_function import ast import json import logging from collections import OrderedDict from time import time from lxml import html from lxml import etree from werkzeug import urls from odoo.tools import pycompat from odoo import api, models, tools from odoo.tools.safe_eval import assert_valid_codeobj, _BUILTINS, _SAFE_OPCODES from odoo.http import request from odoo.modules.module import get_resource_path from .qweb import QWeb, Contextifier from .assetsbundle import AssetsBundle _logger = logging.getLogger(__name__) class IrQWeb(models.AbstractModel, QWeb): """ Base QWeb rendering engine * to customize ``t-field`` rendering, subclass ``ir.qweb.field`` and create new models called :samp:`ir.qweb.field.{widget}` Beware that if you need extensions or alterations which could be incompatible with other subsystems, you should create a local object inheriting from ``ir.qweb`` and customize that. """ _name = 'ir.qweb' @api.model def render(self, id_or_xml_id, values=None, **options): """ render(id_or_xml_id, values, **options) Render the template specified by the given name. :param id_or_xml_id: name or etree (see get_template) :param dict values: template values to be used for rendering :param options: used to compile the template (the dict available for the rendering is frozen) * ``load`` (function) overrides the load method * ``profile`` (float) profile the rendering (use astor lib) (filter profile line with time ms >= profile) """ for method in dir(self): if method.startswith('render_'): _logger.warning("Unused method '%s' is found in ir.qweb." % method) context = dict(self.env.context, dev_mode='qweb' in tools.config['dev_mode']) context.update(options) return super(IrQWeb, self).render(id_or_xml_id, values=values, **context) def default_values(self): """ attributes add to the values for each computed template """ default = super(IrQWeb, self).default_values() default.update(request=request, cache_assets=round(time()/180), true=True, false=False) # true and false added for backward compatibility to remove after v10 return default # assume cache will be invalidated by third party on write to ir.ui.view def _get_template_cache_keys(self): """ Return the list of context keys to use for caching ``_get_template``. """ return ['lang', 'inherit_branding', 'editable', 'translatable', 'edit_translations', 'website_id'] # apply ormcache_context decorator unless in dev mode... @tools.conditional( 'xml' not in tools.config['dev_mode'], tools.ormcache('id_or_xml_id', 'tuple(options.get(k) for k in self._get_template_cache_keys())'), ) def compile(self, id_or_xml_id, options): return super(IrQWeb, self).compile(id_or_xml_id, options=options) def load(self, name, options): lang = options.get('lang', 'en_US') env = self.env if lang != env.context.get('lang'): env = env(context=dict(env.context, lang=lang)) template = env['ir.ui.view'].read_template(name) # QWeb's `read_template` will check if one of the first children of # what we send to it has a "t-name" attribute having `name` as value # to consider it has found it. As it'll never be the case when working # with view ids or children view or children primary views, force it here. def is_child_view(view_name): view_id = self.env['ir.ui.view'].get_view_id(view_name) view = self.env['ir.ui.view'].browse(view_id) return view.inherit_id is not None if isinstance(name, pycompat.integer_types) or is_child_view(name): for node in etree.fromstring(template): if node.get('t-name'): node.set('t-name', str(name)) return node.getparent() return None # trigger "template not found" in QWeb else: return template # order def _directives_eval_order(self): directives = super(IrQWeb, self)._directives_eval_order() directives.insert(directives.index('call'), 'lang') directives.insert(directives.index('field'), 'call-assets') return directives # compile directives def _compile_directive_lang(self, el, options): lang = el.attrib.pop('t-lang', 'en_US') if el.get('t-call-options'): el.set('t-call-options', el.get('t-call-options')[0:-1] + u', "lang": %s}' % lang) else: el.set('t-call-options', u'{"lang": %s}' % lang) return self._compile_node(el, options) def _compile_directive_call_assets(self, el, options): """ This special 't-call' tag can be used in order to aggregate/minify javascript and css assets""" if len(el): raise SyntaxError("t-call-assets cannot contain children nodes") # self._get_asset(xmlid, options, css=css, js=js, debug=values.get('debug'), async=async, values=values) return [ self._append(ast.Call( func=ast.Attribute( value=ast.Name(id='self', ctx=ast.Load()), attr='_get_asset', ctx=ast.Load() ), args=[ ast.Str(el.get('t-call-assets')), ast.Name(id='options', ctx=ast.Load()), ], keywords=[ ast.keyword('css', self._get_attr_bool(el.get('t-css', True))), ast.keyword('js', self._get_attr_bool(el.get('t-js', True))), ast.keyword('debug', ast.Call( func=ast.Attribute( value=ast.Name(id='values', ctx=ast.Load()), attr='get', ctx=ast.Load() ), args=[ast.Str('debug')], keywords=[], starargs=None, kwargs=None )), ast.keyword('async', self._get_attr_bool(el.get('async', False))), ast.keyword('values', ast.Name(id='values', ctx=ast.Load())), ], starargs=None, kwargs=None )) ] # for backward compatibility to remove after v10 def _compile_widget_options(self, el, directive_type): field_options = super(IrQWeb, self)._compile_widget_options(el, directive_type) if ('t-%s-options' % directive_type) in el.attrib: if tools.config['dev_mode']: _logger.warning("Use new syntax t-options instead of t-%s-options" % directive_type) if not field_options: field_options = el.attrib.pop('t-%s-options' % directive_type) if field_options and 'monetary' in field_options: try: options = "{'widget': 'monetary'" for k, v in json.loads(field_options).items(): if k in ('display_currency', 'from_currency'): options = "%s, '%s': %s" % (options, k, v) else: options = "%s, '%s': '%s'" % (options, k, v) options = "%s}" % options field_options = options _logger.warning("Use new syntax for '%s' monetary widget t-options (python dict instead of deprecated JSON syntax)." % etree.tostring(el)) except ValueError: pass return field_options # end backward # method called by computing code @tools.conditional( # in non-xml-debug mode we want assets to be cached forever, and the admin can force a cache clear # by restarting the server after updating the source code (or using the "Clear server cache" in debug tools) 'xml' not in tools.config['dev_mode'], tools.ormcache_context('xmlid', 'options.get("lang", "en_US")', 'css', 'js', 'debug', 'async', keys=("website_id",)), ) def _get_asset(self, xmlid, options, css=True, js=True, debug=False, async=False, values=None): files, remains = self._get_asset_content(xmlid, options) asset = AssetsBundle(xmlid, files, remains, env=self.env) return asset.to_html(css=css, js=js, debug=debug, async=async, url_for=(values or {}).get('url_for', lambda url: url)) @tools.ormcache_context('xmlid', 'options.get("lang", "en_US")', keys=("website_id",)) def _get_asset_content(self, xmlid, options): options = dict(options, inherit_branding=False, inherit_branding_auto=False, edit_translations=False, translatable=False, rendering_bundle=True) env = self.env(context=options) # TODO: This helper can be used by any template that wants to embedd the backend. # It is currently necessary because the ir.ui.view bundle inheritance does not # match the module dependency graph. def get_modules_order(): if request: from odoo.addons.web.controllers.main import module_boot return json.dumps(module_boot()) return '[]' template = env['ir.qweb'].render(xmlid, {"get_modules_order": get_modules_order}) files = [] remains = [] for el in html.fragments_fromstring(template): if isinstance(el, pycompat.string_types): remains.append(pycompat.to_text(el)) elif isinstance(el, html.HtmlElement): href = el.get('href', '') src = el.get('src', '') atype = el.get('type') media = el.get('media') can_aggregate = not urls.url_parse(href).netloc and not href.startswith('/web/content') if el.tag == 'style' or (el.tag == 'link' and el.get('rel') == 'stylesheet' and can_aggregate): if href.endswith('.sass'): atype = 'text/sass' elif href.endswith('.less'): atype = 'text/less' if atype not in ('text/less', 'text/sass'): atype = 'text/css' path = [segment for segment in href.split('/') if segment] filename = get_resource_path(*path) if path else None files.append({'atype': atype, 'url': href, 'filename': filename, 'content': el.text, 'media': media}) elif el.tag == 'script': atype = 'text/javascript' path = [segment for segment in src.split('/') if segment] filename = get_resource_path(*path) if path else None files.append({'atype': atype, 'url': src, 'filename': filename, 'content': el.text, 'media': media}) else: remains.append(html.tostring(el, encoding='unicode')) else: try: remains.append(html.tostring(el, encoding='unicode')) except Exception: # notYETimplementederror raise NotImplementedError return (files, remains) def _get_field(self, record, field_name, expression, tagName, field_options, options, values): field = record._fields[field_name] field_options['tagName'] = tagName field_options['expression'] = expression field_options['type'] = field_options.get('widget', field.type) inherit_branding = options.get('inherit_branding', options.get('inherit_branding_auto') and record.check_access_rights('write', False)) field_options['inherit_branding'] = inherit_branding translate = options.get('edit_translations') and options.get('translatable') and field.translate field_options['translate'] = translate # field converter model = 'ir.qweb.field.' + field_options['type'] converter = self.env[model] if model in self.env else self.env['ir.qweb.field'] # get content content = converter.record_to_html(record, field_name, field_options) attributes = converter.attributes(record, field_name, field_options, values) return (attributes, content, inherit_branding or translate) def _get_widget(self, value, expression, tagName, field_options, options, values): field_options['type'] = field_options['widget'] field_options['tagName'] = tagName field_options['expression'] = expression # field converter model = 'ir.qweb.field.' + field_options['type'] converter = self.env[model] if model in self.env else self.env['ir.qweb.field'] # get content content = converter.value_to_html(value, field_options) attributes = OrderedDict() attributes['data-oe-type'] = field_options['type'] attributes['data-oe-expression'] = field_options['expression'] return (attributes, content, None) # compile expression add safe_eval def _compile_expr(self, expr): """ Compiles a purported Python expression to ast, verifies that it's safe (according to safe_eval's semantics) and alter its variable references to access values data instead """ # string must be stripped otherwise whitespace before the start for # formatting purpose are going to break parse/compile st = ast.parse(expr.strip(), mode='eval') assert_valid_codeobj( _SAFE_OPCODES, compile(st, '<>', 'eval'), # could be expr, but eval *should* be fine expr ) # ast.Expression().body -> expr return Contextifier(_BUILTINS).visit(st).body def _get_attr_bool(self, attr, default=False): if attr: if attr is True: return ast.Name(id='True', ctx=ast.Load()) attr = attr.lower() if attr in ('false', '0'): return ast.Name(id='False', ctx=ast.Load()) elif attr in ('true', '1'): return ast.Name(id='True', ctx=ast.Load()) return ast.Name(id=str(attr if attr is False else default), ctx=ast.Load())
Aravinthu/odoo
odoo/addons/base/ir/ir_qweb/ir_qweb.py
Python
agpl-3.0
14,416
[ "VisIt" ]
db24df4a85d98fd3836dc85f1b2c3c57cb3fe217d952d8d143818468d06108c4
#!/usr/bin/env python __author__ = 'waroquiers' import unittest from pymatgen.analysis.chemenv.utils.func_utils import CSMFiniteRatioFunction from pymatgen.analysis.chemenv.utils.func_utils import CSMInfiniteRatioFunction from pymatgen.analysis.chemenv.utils.func_utils import DeltaCSMRatioFunction import numpy as np class FuncUtilsTest(unittest.TestCase): def test_CSMFiniteRatioFunction(self): max_csm = 8.0 alpha = 1.0 csm_finite_ratio = CSMFiniteRatioFunction(function='power2_decreasing_exp', options_dict={'max_csm': max_csm, 'alpha': alpha}) self.assertEqual(csm_finite_ratio.evaluate(0.0), 1.0) self.assertEqual(csm_finite_ratio.evaluate(2.0), 0.43807544047766522) self.assertEqual(csm_finite_ratio.evaluate(4.0), 0.15163266492815836) self.assertEqual(csm_finite_ratio.evaluate(8.0), 0.0) self.assertEqual(csm_finite_ratio.evaluate(9.0), 0.0) max_csm = 8.0 alpha = 2.0 csm_finite_ratio = CSMFiniteRatioFunction(function='power2_decreasing_exp', options_dict={'max_csm': max_csm, 'alpha': alpha}) self.assertEqual(csm_finite_ratio.evaluate(0.0), 1.0) self.assertEqual(csm_finite_ratio.evaluate(4.0), 0.091969860292860584) self.assertEqual(csm_finite_ratio.evaluate(8.0), 0.0) self.assertEqual(csm_finite_ratio.evaluate(9.0), 0.0) max_csm = 4.0 alpha = 1.0 csm_finite_ratio = CSMFiniteRatioFunction(function='power2_decreasing_exp', options_dict={'max_csm': max_csm, 'alpha': alpha}) self.assertEqual(csm_finite_ratio.evaluate(0.0), 1.0) self.assertEqual(csm_finite_ratio.evaluate(1.0), 0.43807544047766522) self.assertEqual(csm_finite_ratio.evaluate(2.0), 0.15163266492815836) self.assertEqual(csm_finite_ratio.evaluate(4.0), 0.0) self.assertEqual(csm_finite_ratio.evaluate(4.5), 0.0) self.assertRaises(ValueError, CSMFiniteRatioFunction, function='powern_decreasing', options_dict={'max_csm': max_csm, 'nn': 2}) def test_CSMInfiniteRatioFunction(self): max_csm = 8.0 self.assertRaises(ValueError, CSMInfiniteRatioFunction, function='power2_inverse_decreasing', options_dict={'max_csm': max_csm, 'nn': 2}) self.assertRaises(ValueError, CSMInfiniteRatioFunction, function='power2_tangent_decreasing', options_dict={'max_csm': max_csm}) csm_infinite_ratio = CSMInfiniteRatioFunction(function='power2_inverse_decreasing', options_dict={'max_csm': max_csm}) # csm_infinite_ratio = CSMInfiniteRatioFunction(function='power2_inverse_decreasing') self.assertEqual(csm_infinite_ratio.evaluate(0.0), np.inf) self.assertEqual(csm_infinite_ratio.evaluate(2.0), 2.25) self.assertEqual(csm_infinite_ratio.evaluate(4.0), 0.5) self.assertEqual(csm_infinite_ratio.evaluate(8.0), 0.0) self.assertEqual(csm_infinite_ratio.evaluate(9.0), 0.0) csm_infinite_ratio = CSMInfiniteRatioFunction(function='power2_inverse_power2_decreasing', options_dict={'max_csm': max_csm}) self.assertEqual(csm_infinite_ratio.evaluate(0.0), np.inf) self.assertEqual(csm_infinite_ratio.evaluate(2.0), 9.0) self.assertEqual(csm_infinite_ratio.evaluate(4.0), 1.0) self.assertEqual(csm_infinite_ratio.evaluate(8.0), 0.0) self.assertEqual(csm_infinite_ratio.evaluate(9.0), 0.0) max_csm = 12.0 csm_infinite_ratio = CSMInfiniteRatioFunction(function='power2_inverse_power2_decreasing', options_dict={'max_csm': max_csm}) self.assertEqual(csm_infinite_ratio.evaluate(0.0), np.inf) self.assertEqual(csm_infinite_ratio.evaluate(3.0), 9.0) self.assertEqual(csm_infinite_ratio.evaluate(6.0), 1.0) self.assertEqual(csm_infinite_ratio.evaluate(12.0), 0.0) self.assertEqual(csm_infinite_ratio.evaluate(20.0), 0.0) def test_DeltaCSMRatioFunction(self): self.assertRaises(ValueError, DeltaCSMRatioFunction, function='smoothstep', options_dict={}) self.assertRaises(ValueError, DeltaCSMRatioFunction, function='smootherstep', options_dict={}) self.assertRaises(ValueError, DeltaCSMRatioFunction, function='smootherstep', options_dict={'delta_csm_min': 1.0}) self.assertRaises(ValueError, DeltaCSMRatioFunction, function='smootherstep', options_dict={'delta_csm_max': 1.0}) delta_csm_ratio_function = DeltaCSMRatioFunction(function='smootherstep', options_dict={'delta_csm_min': 1.0, 'delta_csm_max': 4.0}) self.assertEqual(delta_csm_ratio_function.evaluate(0.0), 0.0) self.assertEqual(delta_csm_ratio_function.evaluate(1.0), 0.0) self.assertEqual(delta_csm_ratio_function.evaluate(2.5), 0.5) self.assertEqual(delta_csm_ratio_function.evaluate(4.0), 1.0) self.assertEqual(delta_csm_ratio_function.evaluate(5.0), 1.0) delta_csm_ratio_function = DeltaCSMRatioFunction(function='smootherstep', options_dict={'delta_csm_min': 2.0, 'delta_csm_max': 8.0}) self.assertEqual(delta_csm_ratio_function.evaluate(0.0), 0.0) self.assertEqual(delta_csm_ratio_function.evaluate(2.0), 0.0) self.assertEqual(delta_csm_ratio_function.evaluate(5.0), 0.5) self.assertEqual(delta_csm_ratio_function.evaluate(8.0), 1.0) self.assertEqual(delta_csm_ratio_function.evaluate(12.0), 1.0) if __name__ == "__main__": unittest.main()
mbkumar/pymatgen
pymatgen/analysis/chemenv/utils/tests/test_func_utils.py
Python
mit
6,455
[ "pymatgen" ]
985f5ed6502fe12f4a80ac9fea117afe54e4bc8d7c677b679212b50e4a4f8651
# Copyright (C) 2017,2018(1H) # Max Planck Institute for Polymer Research # # This file is part of ESPResSo++ -> Powered by HeSpaDDA algorithm developed by [email protected] # # ESPResSo++ is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo++ is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ ************************************************** loadbal - HeSpaDDA load balancing python functions ************************************************** * `qbicity(box_size,rc,skin)`: It's a function to check the system size cubicity, with a tolerance given by the rc+skin `dLnorm` - (Lx,Ly,Lz)/Lmax * `changeIndex(dN,ima,imi)`: It's a function that sorts the nodeGrid, according to the index of the maximum size of the box (ima) and its corresponding minimum (imi) * `nodeGridSizeCheck(node_gridX,node_gridY,node_gridZ)`: It's a function that verifies if it is worthy to take care of special DD for inhomogeneous systems, otherwise the homogenous DD is triggered and returned as a xyz flags nodeGridSizeCheck(node_gridX,node_gridY,node_gridZ) * `halfDecomp(adrCenter1D,rc_skin,eh_size,halfCores1D,cellsX,ratioMS,idealGas)`: It's a function that decomposes half of the box in one Dimension(1D) and it is assuming symmetry in the initial simulation box. Even with irregularities in the DD it will find the half-Box-DD * `addHsymmetry(halfNeilListX,eh_size,rc_skin,node_gridX,cellsX,ratioMS,idealGas)`: Its a function that uses the previously decomposed half-box (from halfDecomp) and unfolds it to match the whole Neighbors List. If it does not match the whole neighbor, due to any asymmetry in the number of cores or the number of cells. It will be redistributed region by region by considering the whole simulation box size. * `adaptNeiList(neiListxin)`: It's a function which adapts the number of cells that go into each core into the data structure of left and right cell lists for example for 4 cores and 8 cells [3,4,5,8] to [0,3,4,5,8] * `reDistCellsHom(node_gridX,sizeX,rc_skin)`: It's a function which distributes the cells into nodes as if they where homogeneous. It also applies to inhomogeneous system whenever there are less than 2 cores per direction: X, Y or Z. * `reDistCells(halfNeilListX,cellsX,eh_size,rc_skin,node_gridX,ratioMS,idealGas)`: It's a function which is matching proportion of cells to the cores on a dual resolution region basis * `redistDeltaRandomly(wholeNeiListX,deltaCells,totNodesEH=0,biased=0)`: It's a function which distributes the remaining DELTA cells into nodes semi-randomly. By default the biase applies to the CG-region and it assumes ther cannot be more than 3 extra cells to redistribute, because this is the total number of regions in the simulation box `|CG|EH|CG|` (by default the cg biased is left this could be updated in the dyn load balancing case! * `findNodesMS(node_gridX,totCellsEH,totCellsCG,ratioMS,idealGas)`: It's a function which normalizes the number of cells to go to the EH and CG regions and find the ideal corresponding number of Nodes EH and CG """ from random import randint __author__ = 'Dr. Horacio V Guzman' __email__ = 'horacio.v.g at gmail dot com' __version__ = '1.0' __all__ = [ 'qbicity', 'changeIndex', 'nodeGridSizeCheck', 'halfDecomp', 'addHsymmetry', 'adaptNeiList', 'reDistCellsHom', 'reDistCells', 'redistDeltaRandomly', 'findNodesMS' ] # This function verifies if the simuation box is of cubic dimensions def qbicity(box_size, rc, skin, cellDomTol=2.0): rc_skin = rc + skin box_aux = [box_size[0], box_size[1], box_size[2]] indMax = box_aux.index(max(box_aux)) indMin = box_aux.index(min(box_aux)) if (box_size[indMax] - box_size[indMin]) < (cellDomTol * rc_skin): qFlag = bool(1) else: qFlag = bool(0) return qFlag # This function sorts the nodeGrid, according to the index of the maximum size of the box (indMax) and its corresponding minimum (indMin) def changeIndex(dN, indMax, indMin): aux = [0, 0, 0] ndN = [0, 0, 0] dIndMax = dN.index(max(dN)) dIndMin = dN.index(min(dN)) ndN[indMax] = dN[dIndMax] ndN[indMin] = dN[dIndMin] listInd = range(3) if indMax > indMin: listInd.pop(indMax) listInd.pop(indMin) else: listInd.pop(indMin) listInd.pop(indMax) aux = dN[:] if dIndMax > dIndMin: aux.pop(dIndMax) aux.pop(dIndMin) else: aux.pop(dIndMin) aux.pop(dIndMax) ndN[listInd[0]] = aux[0] return ndN # This function verifies if it is worthy to take care of special DD for inhomogeneous systems, otherwise the homogenous DD is triggered and returned as a xyz flags def nodeGridSizeCheck(node_gridX, node_gridY, node_gridZ): flx = 0 fly = 0 flz = 0 if node_gridX < 3: flx = node_gridX else: flx = 0 if node_gridY < 3: fly = node_gridY else: fly = 0 if node_gridZ < 3: flz = node_gridZ else: flz = 0 return flx, fly, flz # This function decomposes half of the box in one Dimension(1D) and it is assuming symmetry in the initial simulation box. Even with irregularities in the box dimension and cell-size relation it will find the half-Box-DD def halfDecomp(adrCenter1D, rc_skin, eh_size, halfCores1D, cellsX, ratioMS, sizeX, idealGas): # this value is only in case the Ideal Gas will in reality improve any calculation or communication (i.e. Improve notoriously the sims parallelization, which is not the case yet) pLoadIG = 1 cellSizes = [] usedCores = 0 totCellsEH = round(2. * eh_size / rc_skin - 0.5) totCellsCG = cellsX - totCellsEH totNodesCG, totNodesEH = findNodesMS(halfCores1D * 2, totCellsEH, totCellsCG, ratioMS, sizeX, eh_size, idealGas) for i in xrange(halfCores1D): if idealGas: if i == 0: # 2do: SuperCell stuff cellSizes.append(round((adrCenter1D - eh_size) / rc_skin - 0.5) + pLoadIG) usedCores = 1 # For Ideal Gas purposes only 1 core covers the low-resolution region else: [cellSizes.append(round((eh_size) / rc_skin / (halfCores1D - usedCores) - 0.5)) for i in xrange(usedCores, halfCores1D)] # 2do: SuperCell stuff deltaCells = round((eh_size) / rc_skin - 0.5) - round((eh_size) / rc_skin / (halfCores1D - usedCores) - 0.5) * (halfCores1D - usedCores) # 2do: SuperCell stuff # Both applies a benefit to the usedCores=1 in the sense that will have one cell less loaded to CG-region. But also a penalty to the usedCores=1 that will have to manage any cells non distributed before cellSizes[usedCores] = cellSizes[usedCores] + deltaCells - pLoadIG return cellSizes else: # Applies to all other systems besides the Ideal Gas if totNodesCG / 2. >= 2.: [cellSizes.append(round((adrCenter1D - eh_size) / rc_skin / totNodesCG / 2. - 0.5)) for j in xrange(int(totNodesCG / 2.))] # 2do: SuperCell stuff else: # 2do: SuperCell stuff cellSizes.append(round((adrCenter1D - eh_size) / rc_skin - 0.5)) if totNodesEH / 2. >= 2.: [cellSizes.append(round((eh_size) / rc_skin / (totNodesEH / 2.) - 0.5)) for i in xrange(int(totNodesEH / 2.))] # 2do: SuperCell stuff else: # 2do: SuperCell stuff cellSizes.append(round((eh_size) / rc_skin - 0.5)) return cellSizes return cellSizes # This function uses the previously decomposed half-box (from halfDecomp) and unfolds it to match the whole Neighbors List. If it does not match the whole neighbor, due to any asymmetry in the number of cores or the number of cells. It will be redistributed region by region by considering the whole simulation box size. def addHsymmetry(halfNeilListX, eh_size, rc_skin, node_gridX, cellsX, ratioMS, sizeX, idealGas): wholeNeilListX = [] aux = halfNeilListX[:] # unfolds halfDecomp and attempts to match the whole neighbor list. aux.reverse() # here half neighbor list X turns into whole neighbor list halfNeilListX.extend(aux) aux2 = 0 if len(halfNeilListX) < node_gridX: if (node_gridX - len(halfNeilListX)) == 1: # Verifies if number of cores are even aux2 = halfNeilListX[len(halfNeilListX) - 1] halfNeilListX.append(round(halfNeilListX[len(halfNeilListX) - 1] / 2. - 0.5)) halfNeilListX[len(halfNeilListX) - 2] = aux2 - halfNeilListX[len(halfNeilListX) - 1] if sum(halfNeilListX) != cellsX: wholeNeilListX = reDistCells(halfNeilListX, cellsX, eh_size, rc_skin, node_gridX, ratioMS, sizeX, idealGas) else: if any([v == 0 for v in halfNeilListX]): # Recently added 138, 139 and 140 wholeNeilListX = reDistCells(halfNeilListX, cellsX, eh_size, rc_skin, node_gridX, ratioMS, sizeX, idealGas) else: print "HeSpaDDA message: addHsymmetry all tests passed although not all cells were used" wholeNeilListX = halfNeilListX[:] else: print "HeSpaDDA message: The distributed cores are not matching the available ones (++ reDistCells())" wholeNeilListX = reDistCells(halfNeilListX, cellsX, eh_size, rc_skin, node_gridX, ratioMS, sizeX, idealGas) # To be determined if additional reDitsCells should be called! elif len(halfNeilListX) == node_gridX and aux2 == 0: if sum(halfNeilListX) != cellsX: print "HeSpaDDA message: The distributed cells are not matching the available ones" wholeNeilListX = reDistCells(halfNeilListX, cellsX, eh_size, rc_skin, node_gridX, ratioMS, sizeX, idealGas) else: # Recently added 152, 153 and 154 if any([v == 0 for v in halfNeilListX]): wholeNeilListX = reDistCells(halfNeilListX, cellsX, eh_size, rc_skin, node_gridX, ratioMS, sizeX, idealGas) else: print "HeSpaDDA message: addHsymmetry all tests passed although not all cells are used" wholeNeilListX = halfNeilListX[:] else: print "HeSpaDDA message: The distributed cores are not matching the available ones", halfNeilListX halfNeilListX[len(halfNeilListX) - 2] = halfNeilListX[len(halfNeilListX) - 1] + halfNeilListX[len(halfNeilListX) - 2] halfNeilListX.pop(len(halfNeilListX) - 1) print "HeSpaDDA message: During DD a core has been reduced" wholeNeilListX = reDistCells(halfNeilListX, cellsX, eh_size, rc_skin, node_gridX, ratioMS, sizeX, idealGas) return wholeNeilListX # This function adapts the number of cells that go into each core into the data structure of left and right cell lists for example for 4 core and 8 cells [3,4,5,8] to [0,3,4,5,8] def adaptNeiList(neiListxin): neiListx = [] neiListx.append(0) [neiListx.append(neiListxin[i] + neiListx[i]) for i in xrange(len(neiListxin) - 1)] neiListx.append(neiListxin[len(neiListxin) - 1] + neiListx[len(neiListx) - 1]) print "HeSpaDDA message: Your Cells Neighbor Lists is:", neiListx return neiListx # This function distributes the cells into nodes as if they where homogeneous. It also applies to inhomogeneous system whenever there are less than 2 cores per direction: X, Y or Z. def reDistCellsHom(node_gridX, sizeX, rc_skin): wholeNeiListX = [] cellsX = round(sizeX / rc_skin - 0.5) if node_gridX % 2 == 0 and cellsX % 2 == 0: [wholeNeiListX.append(cellsX / node_gridX) for i in xrange(node_gridX)] elif node_gridX % 2 != 0 and cellsX % 2 != 0: [wholeNeiListX.append(round((cellsX) / node_gridX - 0.5)) for i in xrange(node_gridX)] if int(cellsX - sum(wholeNeiListX)) != 0: # passing Delta as cellsX-sum(wholeNeiListX) wholeNeiListX = redistDeltaRandomly(wholeNeiListX, cellsX - sum(wholeNeiListX), 0) else: print "HeSpaDDA message: PASS appears...here, take a look at this value Px/Cx", round((cellsX) / node_gridX - 0.5) pass else: if node_gridX % 2 == 0 and cellsX % 2 != 0: [wholeNeiListX.append((cellsX - 1) / node_gridX) for i in xrange(node_gridX)] # Punishing the last one wholeNeiListX[node_gridX - 1] = wholeNeiListX[node_gridX - 1] + 1 elif cellsX % 2 == 0 and node_gridX % 2 != 0: [wholeNeiListX.append(round((cellsX) / node_gridX - 0.5)) for i in xrange(node_gridX)] wholeNeiListX = redistDeltaRandomly(wholeNeiListX, cellsX - sum(wholeNeiListX), 0) return wholeNeiListX # This This function is matching proportion of cells to the cores on a dual resolution region basis def reDistCells(halfNeilListX, cellsX, eh_size, rc_skin, node_gridX, ratioMS, sizeX, idealGas): #global preFactCen preFactCen = 1.0 print "HeSpaDDA message: Cells redistribution will improve whenever the Cells1D are at least twice as big as Nodes1D!" wholeNeiListX = [] totCellsEH = round(2. * eh_size / rc_skin - 0.5) totCellsCG = cellsX - totCellsEH totNodesCG, totNodesEH = findNodesMS(node_gridX, totCellsEH, totCellsCG, ratioMS, sizeX, eh_size, idealGas) print "HeSpaDDA message: Cores in Both LR and HR, are:", totNodesCG, totNodesEH if idealGas: # This represents the Ideal Gas (IG)!!! (OJO) wholeNeiListX_EH = [] wholeNeiListX_CG = [] wholeNeiListX = [] # High Resolution region if totNodesEH % 2 == 0 and totCellsEH % 2 == 0: [wholeNeiListX_EH.append(totCellsEH / totNodesEH) for i in xrange(totNodesEH)] print "HeSpaDDA message IG: HR region: P and C are EVEN, given by:" print wholeNeiListX_EH elif totNodesEH % 2 != 0 and totCellsEH % 2 != 0: [wholeNeiListX_EH.append(round(totCellsEH / totNodesEH - 0.5)) for i in xrange(totNodesEH)] if int(totCellsEH - sum(wholeNeiListX_EH)) != 0: wholeNeiListX_EH[0:totNodesEH] = redistDeltaRandomly(wholeNeiListX_EH[0:totNodesEH], totCellsEH - sum(wholeNeiListX_EH[0:totNodesEH]), 0) else: print "HeSpaDDA message IG: HR region: PASS appears...here, take a look at this value Px/Cx", round(totCellsEH / totNodesEH - 0.5) pass else: if totNodesEH % 2 == 0 and totCellsEH % 2 != 0: [wholeNeiListX_EH.append((totCellsEH - 1) / totNodesEH) for i in xrange(totNodesEH)] wholeNeiListX_EH[totNodesEH - 1] = wholeNeiListX_EH[totNodesEH - 1] + 1 print "HeSpaDDA message IG: HR region: P and noC are EVEN" elif totCellsEH % 2 == 0 and totNodesEH % 2 != 0: [wholeNeiListX_EH.append(round((totCellsEH) / totNodesEH - 0.5)) for i in xrange(totNodesEH)] # passing Delta cells to be redistributed semi-randomly (after prioritizying the EH-region, additional cells should go to the CG-region). wholeNeiListX_EH[0:totNodesEH] = redistDeltaRandomly(wholeNeiListX_EH[0:totNodesEH], totCellsEH - sum(wholeNeiListX_EH[0:totNodesEH]), 0) print "HeSpaDDA message IG: HR region: noP and C are EVEN" #@@@ Low Resolution region if totNodesCG % 2 == 0 and totCellsCG % 2 == 0: [wholeNeiListX_CG.append(totCellsCG / totNodesCG) for i in xrange(totNodesCG)] print "HeSpaDDA message IG: LR region: P and C are EVEN, given by:" print wholeNeiListX_CG elif totNodesCG % 2 != 0 and totCellsCG % 2 != 0: [wholeNeiListX_CG.append(round(totCellsCG / totNodesCG - 0.5)) for i in xrange(totNodesCG)] if int(totCellsCG - sum(wholeNeiListX_CG)) != 0: wholeNeiListX_CG[0:totNodesCG] = redistDeltaRandomly(wholeNeiListX_CG[0:totNodesCG], totCellsCG - sum(wholeNeiListX_CG[0:totNodesCG]), 0) else: print "HeSpaDDA message IG: LR region: PASS appears...here, take a look at this value Px/Cx", round(totCellsCG / totNodesCG - 0.5) pass else: if totNodesCG % 2 == 0 and totCellsCG % 2 != 0: [wholeNeiListX_CG.append((totCellsCG - 1) / totNodesCG) for i in xrange(totNodesCG)] wholeNeiListX_CG[totNodesCG - 1] = wholeNeiListX_CG[totNodesCG - 1] + 1 print "HeSpaDDA message IG: LR region: P and noC are EVEN" print wholeNeiListX_CG elif totCellsCG % 2 == 0 and totNodesCG % 2 == 0: [wholeNeiListX_CG.append(round((totCellsCG) / totNodesCG - 0.5)) for i in xrange(totNodesCG)] # passing Delta cells to be redistributed semi-randomly (after prioritizying the EH-region, additional cells may come to the CG-region). wholeNeiListX_CG[0:totNodesCG] = redistDeltaRandomly(wholeNeiListX_CG[0:totNodesCG], totCellsCG - sum(wholeNeiListX_CG[0:totNodesCG]), 0) print "HeSpaDDA message IG: LR region: noP and C are EVEN" # Index of the middle LR region begin of HR indCG1 = int((len(wholeNeiListX_CG)) / 2) print "HeSpaDDA message indexing: The CG first subregion index is:", indCG1 # Index of the start of the second LR region end of HR indEH1 = indCG1 + int(totNodesEH) # Ensembling the array of Cells Neighbors list wholeNeiListX.extend(wholeNeiListX_CG[0:indCG1]) wholeNeiListX.extend(wholeNeiListX_EH) wholeNeiListX.extend(wholeNeiListX_CG[indCG1:len(wholeNeiListX_CG)]) #@ not Ideal Gas else: if (totNodesCG + totNodesEH) > node_gridX: # minimum number of cores(nodes=cores) for the CG region version 1.0 if totNodesCG > 2: # Assign exceeding number of cores to LR totNodesCG = totNodesCG + \ ((totNodesCG + totNodesEH) - node_gridX) totNodesEH = node_gridX - totNodesCG else: totNodesCG = 2 # At least use 2 core for the CG region totNodesEH = node_gridX - totNodesCG else: print "HeSpaDDA message indexing: Nodes CG and Nodes EH are respectively,", totNodesCG, totNodesEH if node_gridX % 2 == 0 and cellsX % 2 == 0: wholeNeiListX_EH = [0] * (node_gridX) wholeNeiListX_CG = [0] * (node_gridX) wholeNeiListX = [0] * (node_gridX) if totNodesCG % 2 == 0: indCG1 = int(totNodesCG / 2) indEH1 = indCG1 + int(totNodesEH) au1 = range(int(indCG1)) # au1 contains the index of CG cells in the whole neighbor list au1.extend(range(indEH1, indEH1 + indCG1)) # internal parameter which in case of dynamic LB, if more weight of DD goes to the center by defaults (EH -region Flag =1) and hence DD focus on any CG-region (default value decomposes cells to CG). preFactCen=ratioMS per default(OLD) centralFlagEH = 1 # new stuff TO BE CHECKED if centralFlagEH > 0: # H's WL as well #NHEW for i in xrange(int(ratioMS), int(cellsX + 1)): tempWNL = [0] * (node_gridX) ratioMS2t = round(1. * (cellsX / (1. * pow(i, 1. / 3.))) - 0.5) print "HeSpaDDA message indexing: the Ratio MS2Cellslot 'cells weight' in the CG region is:", ratioMS2t for j in au1: # This loop goes over the CG-regions tempWNL[j] = round(ratioMS2t * totCellsCG / totNodesCG - 0.5) totCellsEHtemp = cellsX - sum(tempWNL) if totCellsEHtemp < totNodesEH and totCellsEHtemp > 0: print "HeSpaDDA message indexing: Error with pass Factor MS-2-Cells, no worries HeSpaDDA will find another for you!", totCellsEHtemp else: # i was not the cubic root... yet preFactCen = pow(i, 1. / 3.) # if int(totCellsEHtemp)-1==int(totNodesEH): # totCellsCG=totCellsCG+1 print "HeSpaDDA message indexing: The rescaling preFactor for the Cells distribution is...an optimized value, like this:", preFactCen break break # the first value found for preFactCen takes you out of the for # Now redistributing the cells to nodes with a proper dimension factor as a f(dimensions,ratioMS, coresEH, coresCG) for i in au1: numRegBox = 3. # 3. it is a region based parameter |CG|EH|CG| =3 fixed param, number of regions in the box if cellsX > numRegBox * pow(ratioMS, 1. / 3.) and totNodesEH < cellsX - (pow(ratioMS, 1. / 3.) * totCellsCG): wholeNeiListX_CG[i] = round(pow(ratioMS, 1. / 3.) * totCellsCG / totNodesCG - 0.5) print "HeSpaDDA message LR: cells dist No IG if cells fit in 3 subregions..." else: ratioMS2 = round(pow(1. * (cellsX / (1. * preFactCen)), 1. / 3.) - 0.5) volRatioX = (sizeX - 2. * eh_size) / sizeX # Check eh_size or 2*eh_size wholeNeiListX_CG[i] = round(ratioMS2 * volRatioX * totCellsCG / totNodesCG - 0.5) print "HeSpaDDA message LR: cells dist No IG if cells fit volRatio used..." totCellsEH = cellsX - sum(wholeNeiListX_CG) print "HeSpaDDA message LR: wholeNeiListX_CG is, ", wholeNeiListX_CG # Now the redist in the EH-region occurs | NHEW-> We still need to check if the cells are enough for the EH cores if totNodesEH % 2 == 0 and totCellsEH >= totNodesEH: for i in xrange(indCG1, indEH1): wholeNeiListX_EH[i] = round(1.0 * totCellsEH / totNodesEH - 0.5) elif totNodesEH % 2 != 0 and totCellsEH % 2 == 0: for i in xrange(indCG1, indEH1): wholeNeiListX_EH[i] = round(1.0 * (totCellsEH - 1) / totNodesEH - 0.5) # Punishing the last Node with an additional cell wholeNeiListX[indEH1 - 1] = wholeNeiListX_EH[indEH1 - 1] + 1 # print "Whole lists are as:",wholeNeiListX_EH,wholeNeiListX_CG for k in xrange(node_gridX): wholeNeiListX[k] = wholeNeiListX_EH[k] + wholeNeiListX_CG[k] # Superposing both Arrays else: # TO BE IMPROVED (not fullfilling all nodes)!!! not EVEN number of nodes! indCG1 = int(totNodesCG / 2.0) # gives 1 indEH1 = indCG1 + int(totNodesEH) # gives 6 au2 = range(int(indCG1)) # 1 # no assuming odd totNodesCG, before (indEH1,indEH1+indCG1)) au2.extend(range(indEH1, indEH1 + indCG1 + 1)) print "HeSpaDDA message: Cells CG wrong", totCellsCG if int(totCellsCG) % int(totNodesCG) == 0: # NHEW for i in au2: wholeNeiListX_CG[i] = round(1.0 * (totCellsCG) / totNodesCG - 0.5) else: for i in au2: wholeNeiListX_CG[i] = round(1.0 * (totCellsCG - 1) / totNodesCG - 0.5) # Punishing the last Node with an additional cell NHEW (got rid of -1 in the index) wholeNeiListX_CG[indEH1 + indCG1] = wholeNeiListX_CG[indEH1 + indCG1] + 1 if totNodesEH % 2 == 0: for i in xrange(indCG1, indEH1): wholeNeiListX_EH[i] = round(1.0 * totCellsEH / totNodesEH - 0.5) else: for i in xrange(indCG1, indEH1): wholeNeiListX_EH[i] = round(1.0 * (totCellsEH - 1) / totNodesEH - 0.5) # Punishing the last Node with an additional cell wholeNeiListX_EH[indEH1 - 1] = wholeNeiListX_EH[indEH1 - 1] + 1 for k in xrange(node_gridX): wholeNeiListX[k] = wholeNeiListX_EH[k] + wholeNeiListX_CG[k] else: # TO BE IMPROVED if node_gridX % 2 == 0: [wholeNeiListX.append(round((cellsX - 1) / node_gridX - 0.5)) for i in xrange(node_gridX)] # Homogeneously distributed # Punishing the last Node with an additional cell wholeNeiListX[node_gridX - 1] = wholeNeiListX[node_gridX - 1] + 1 elif cellsX % 2 == 0: [wholeNeiListX.append(round((cellsX) / node_gridX - 0.5)) for i in xrange(node_gridX)] wholeNeiListX = redistDeltaRandomly(wholeNeiListX, cellsX - sum(wholeNeiListX), totNodesEH, cellsX - sum(wholeNeiListX) - 1) # print "My Redist WholeNeiList is TODOs !:",wholeNeiListX return wholeNeiListX # This function distributes the remaining DELTA cells into nodes as semi randomly. By default the biase applies to the CG-region and it assumes ther cannot be more than 3 extra cells to redistribute, because this is the total number of regions in the simulation box |CG|EH|CG| (by default the cg biased is left this could be updated in the dyn load balancing case! def redistDeltaRandomly(wholeNeiListX, deltaCells, totNodesEH=0, biased=0): flagBiased = 0 wholeNeiListXcopy = wholeNeiListX[:] index = len(wholeNeiListX) - 1 indexOut = [0] * int(deltaCells) print "HeSpaDDA message: This are the deltaCells", deltaCells if deltaCells > 0.5: indexOut[-1] = 3 # initialization value for the index of the nodes that will get more cells, so that the random number generator is never punishing the same node with more cells else: indexOut = [0] return wholeNeiListXcopy if totNodesEH == 0: for p in xrange(0, int(deltaCells)): aux2 = randint(0, index) while aux2 == indexOut[p - 1]: aux2 = randint(0, index) indexOut[p] = aux2 for i in indexOut: wholeNeiListXcopy[i] = wholeNeiListX[i] + 1 else: for p in xrange(0, int(deltaCells)): index = len(wholeNeiListX) - 1 if biased > 0 and biased < 3: # Left biased! # Left CG region | * | | | aux2 = randint(0, index - totNodesEH - 1) nIndMin = 0 if biased > 1 or flagBiased == 1: nIndMax = index - totNodesEH flagBiased = 1 else: nIndMax = index - totNodesEH - 1 biased = biased - 1 else: # Right CG region | | | * | aux2 = randint(totNodesEH + 1, index) nIndMin = totNodesEH + 1 nIndMax = index while aux2 == indexOut[p - 1]: aux2 = randint(nIndMin, nIndMax) indexOut[p] = aux2 for i in indexOut: wholeNeiListXcopy[i] = wholeNeiListX[i] + 1 return wholeNeiListXcopy # This function normalizes the number of cells to go to the EH and CG regions and find the ideal corresponding number of Nodes EH and CG def findNodesMS(node_gridX, totCellsEH, totCellsCG, ratioMS, sizeX, eh_size, idealGas, procsWEH=1.): fRatioEH = pow(ratioMS, 1. / 3.) * (2.0 * eh_size / (1.0 * (sizeX) + 2.0 * eh_size * (pow(ratioMS, 1. / 3.) - 1.))) # Seems to be wo Bu! # pow(ratioMS,1./3.)*(1.0*totCellsEH/(1.0*(totCellsCG+totCellsEH)+totCellsEH*(pow(ratioMS,1./3.)-1.))) # fRatioCG=(1./1.)*(1.0*totCellsCG/(1.0*(totCellsCG+totCellsEH))) if idealGas: if (node_gridX - 2.) <= totCellsEH and node_gridX > totCellsEH: # 2do: Could be tuned for every case! SuperCell! totNodesEH = round(totCellsEH / procsWEH - 0.5) totNodesCG = node_gridX - totNodesEH elif node_gridX > totCellsEH + 2: totNodesEH = totCellsEH # 2do: Could be tuned for every case! SuperCell! totNodesCG = node_gridX - totNodesEH else: totNodesEH = node_gridX - 2 # 2do: Could be tuned for every case! SuperCell! totNodesCG = node_gridX - totNodesEH if totNodesEH < 1 and node_gridX > 0: print "HeSpaDDA message: You are using the minimum amount of cores!!!" totNodesEH = 1 totNodesCG = 1 else: print "HeSpaDDA message: Are you sure you need to use a Domain Decomposition? Verify that you are not trying to run this simulation on a single core" else: # Applies to all other systems besides the Ideal Gas if node_gridX <= (totCellsEH + totCellsCG): totNodesEH = round(fRatioEH * node_gridX) print "HeSpaDDA message: According to the theory of HV Guzman article P_{HR} is :", totNodesEH totNodesCG = node_gridX - totNodesEH if (totNodesEH + totNodesCG) != node_gridX: # If there are more nodes than cells in EH=> redistribute nodes to EH and CG if totNodesEH > (totCellsEH): diffNodesCells = totNodesEH - totCellsEH # Add some cores to the CG nodes if diffNodesCells <= (totCellsCG - totNodesCG): # more weight in terms of cores in the LR region totNodesCG = totNodesCG + diffNodesCells totNodesEH = totNodesEH - diffNodesCells else: print "HeSpaDDA message: You seem to have more Cores than Cells! Hint(H): reduce the Nr. of Cores or use cherrypickTotalProcs function!" # If there are more nodes than cells in LR=> redistribute nodes to EH and CG elif totNodesCG > (totCellsCG): diffNodesCells = totNodesCG - totCellsCG if diffNodesCells <= (totCellsEH - totNodesEH): totNodesCG = totNodesCG - diffNodesCells # more weight in terms of cores in the HR region totNodesEH = totNodesEH + diffNodesCells if totNodesEH > totCellsEH: print "HeSpaDDA message: Reduce the number of Processors to be used or try with cherrypickTotalProcs function!" else: print "HeSpaDDA message: You seem to have more Cores than Cells! Hint(H): reduce the Nr. of Cores" else: # Everything seems to be fine, now look the size of NodesCG if totNodesCG < 2: # Verify if the CG Nodes could built at least 2 CG regions, one left and one right according to its geometry if totNodesCG == 1: totNodesEH = totNodesEH - 1 totNodesCG = 2 else: totNodesEH = totNodesEH - 2 totNodesCG = 2 else: pass else: print "HeSpaDDA message: You seem to have more Cores than Cells! Hint(H): reduce the Nr. of Cores" return totNodesCG, totNodesEH
MrTheodor/espressopp
src/tools/loadbal.py
Python
gpl-3.0
32,052
[ "ESPResSo" ]
f55a52af8e0df9af7bbdf78a76c1cdd8b569e9d18252303a81493df07e50f5c9
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import unittest import logging from MooseDocs import common, base, tree from MooseDocs.test import MooseDocsTestCase from MooseDocs.extensions import core, command, floats, devel logging.basicConfig() class TestExample(MooseDocsTestCase): EXTENSIONS = [core, command, floats, devel] def testNoFloatAST(self): ast = self.tokenize('!devel example\ntest') self.assertToken(ast(0), 'Example', size=2) self.assertToken(ast(0,0), 'Code', size=0, content='test') self.assertToken(ast(0,1), 'Paragraph', size=1) self.assertToken(ast(0,1,0), 'Word', size=0, content='test') def testFloatAST(self): ast = self.tokenize('!devel example id=foo caption=bar\ntest') self.assertToken(ast(0), 'Float', size=2) self.assertToken(ast(0,0), 'FloatCaption', size=1, prefix='Example', key='foo') self.assertToken(ast(0,0,0), 'Word', size=0, content='bar') self.assertToken(ast(0,1), 'Example', size=2) self.assertToken(ast(0,1,0), 'Code', size=0, content='test') self.assertToken(ast(0,1,1), 'Paragraph', size=1) self.assertToken(ast(0,1,1,0), 'Word', size=0, content='test') class TestSettings(MooseDocsTestCase): EXTENSIONS = [core, command, floats, devel] def testNoFloatAST(self): ast = self.tokenize('!devel settings module=MooseDocs.extensions.devel object=SettingsCommand') self.assertToken(ast(0), 'Table', size=2) self.assertToken(ast(0,0), 'TableHead', size=1) self.assertToken(ast(0,1), 'TableBody', size=7) def testFloatAST(self): ast = self.tokenize('!devel settings id=foo module=MooseDocs.extensions.devel object=SettingsCommand') self.assertToken(ast(0), 'TableFloat', size=2) self.assertToken(ast(0,1), 'Table', size=2) self.assertToken(ast(0,1,0), 'TableHead', size=1) self.assertToken(ast(0,1,1), 'TableBody', size=7) def testErrors(self): ast = self.tokenize('!devel settings object=SettingsCommand') self.assertToken(ast(0), 'ErrorToken', message="The 'module' setting is required.") ast = self.tokenize('!devel settings module=MooseDocs.extensions.devel') self.assertToken(ast(0), 'ErrorToken', message="The 'object' setting is required.") ast = self.tokenize('!devel settings module=wrong object=SettingsCommand') self.assertToken(ast(0), 'ErrorToken', message="Unable to load the 'wrong' module.") ast = self.tokenize('!devel settings module=MooseDocs.extensions.devel object=wrong') self.assertToken(ast(0), 'ErrorToken', message="Unable to load the 'wrong' attribute from the 'MooseDocs.extensions.devel' module.") class TestRenderExample(MooseDocsTestCase): EXTENSIONS = [core, command, floats, devel] def testHTML(self): ast = self.tokenize('!devel example\ntest') res = self.render(ast, renderer=base.HTMLRenderer()) self.assertHTMLTag(res, 'body', size=2) self.assertHTMLTag(res(0), 'pre', size=1, class_='moose-pre') self.assertHTMLTag(res(0,0), 'code', size=1, string='test') self.assertHTMLTag(res(1), 'p', string='test') def testMaterialize(self): ast = self.tokenize('!devel example\ntest') res = self.render(ast, renderer=base.MaterializeRenderer()) self.assertHTMLTag(res(0), 'div', size=3, class_='moose-devel-example') self.assertHTMLTag(res(0,0), 'ul', size=2, class_='tabs') self.assertHTMLTag(res(0,0,0), 'li', size=1, class_='tab') self.assertHTMLTag(res(0,0,0,0), 'a', string='Markdown') self.assertHTMLTag(res(0,0,1), 'li', size=1, class_='tab') self.assertHTMLTag(res(0,0,1,0), 'a', string='HTML') self.assertHTMLTag(res(0,1), 'div', size=1, class_='moose-devel-example-code') self.assertHTMLTag(res(0,1,0), 'pre', string='test') self.assertHTMLTag(res(0,2), 'div', size=1, class_='moose-devel-example-html') self.assertHTMLTag(res(0,2,0), 'p', string='test') def testLatex(self): ast = self.tokenize('!devel example\ntest') res = self.render(ast, renderer=base.LatexRenderer()) self.assertLatex(res(0), 'Environment', 'example') self.assertLatex(res(0,0), 'Environment', 'verbatim', string='test') self.assertLatex(res(0,1), 'Command', 'tcblower') self.assertLatex(res(0,2), 'Command', 'par') self.assertLatexString(res(0,3), content='test') if __name__ == '__main__': unittest.main(verbosity=2)
harterj/moose
python/MooseDocs/test/extensions/test_devel.py
Python
lgpl-2.1
4,858
[ "MOOSE" ]
430c5300e613b3c03936a2b4f3cd79a4bc31b855a0544de50d787b0a5156c6e8
#!/usr/bin/env python # encoding: utf-8 import os import sys import time import pprint import pytest import signal import threading import Queue import traceback from urlparse import urlsplit, parse_qsl, urlunsplit, urljoin from urllib import urlencode from bs4 import BeautifulSoup from testlib import web, var_dir from testlib import CMKWebSession class InvalidUrl(Exception): pass class Url(object): def __init__(self, url, orig_url=None, referer_url=None): self.url = url self.orig_url = orig_url self.referer_url = referer_url def __hash__(self): return hash(self.url) # Strip host and site prefix def neutral_url(self): return "check_mk/" + self.url.split("/check_mk/", 1)[1] # Strip proto and host def url_without_host(self): parsed = list(urlsplit(self.url)) parsed[0] = None parsed[1] = None return urlunsplit(parsed) class Worker(threading.Thread): def __init__(self, num, crawler): super(Worker, self).__init__() self.name = "worker-%d" % num self.crawler = crawler self.daemon = True self.terminate = False self.idle = True self.client = CMKWebSession(self.crawler.site) self.client.login() self.client.set_language("en") def run(self): while not self.terminate: try: while not self.terminate: url = self.crawler.todo.get(block=False) self.idle = False try: self.visit_url(url) except Exception, e: self.error(url, "Failed to visit: %s\n%s" % (e, traceback.format_exc())) self.crawler.todo.task_done() except Queue.Empty: self.idle = True time.sleep(0.5) def stop(self): self.terminate = True def visit_url(self, url): if url.url in self.crawler.visited: print("Already visited: %s" % url.url) return self.crawler.visited.append(url.url) #print("%s - Visiting #%d (todo %d): %s" % # (self.name, len(self.crawler.visited), self.crawler.todo.qsize(), url.url)) started = time.time() try: #print "FETCH", url.url_without_host() response = self.client.get(url.url_without_host()) except AssertionError, e: if "This view can only be used in mobile mode" in "%s" % e: print "Skipping mobile mode view checking" return else: raise duration = time.time() - started self.update_stats(url, duration, len(response.content)) content_type = response.headers.get('content-type') #print self.name, content_type, len(response.text) if content_type.startswith("text/html"): self.check_response(url, response) elif content_type.startswith("text/plain"): pass # no specific test elif content_type.startswith("text/csv"): pass # no specific test elif content_type in [ "image/png", "image/gif" ]: pass # no specific test elif content_type in [ "application/pdf" ]: pass # no specific test elif content_type in [ "application/x-rpm", "application/x-deb", "application/x-debian-package", "application/x-gzip", "application/x-msdos-program", "application/x-msi", "application/x-tgz", "application/x-redhat-package-manager", "application/x-pkg", "text/x-chdr", "text/x-c++src", "text/x-sh", ]: pass # no specific test else: self.error(url, "Unknown content type: %s" % (content_type)) return def update_stats(self, url, duration, content_size): stats = self.crawler.stats.setdefault(url.neutral_url(), { "first_duration" : duration, "first_content_size" : content_size, }) avg_duration = (duration + stats.get("avg_duration", duration)) / 2.0 avg_content_size = (content_size + stats.get("avg_content_size", content_size)) / 2.0 stats.update({ "orig_url" : url.orig_url, "referer_url" : url.referer_url, "num_visited" : stats.get("num_visited", 0) + 1, "last_duration" : duration, "last_content_size" : content_size, "avg_duration" : avg_duration, "avg_content_size" : avg_content_size, }) def error(self, url, s): s = "[%s - found on %s] %s" % (url.url, url.referer_url, s) self.crawler.error(s) def check_response(self, url, response): soup = BeautifulSoup(response.text, "lxml") # The referenced resources (images, stylesheets, javascript files) are checked by # the generic web client handler. This only needs to reaslize the crawling. self.check_content(url, response, soup) self.check_links(url, soup) self.check_frames(url, soup) self.check_iframes(url, soup) def check_content(self, url, response, soup): ignore_texts = [ "This view can only be used in mobile mode.", ] for element in soup.select("div.error"): inner_html = "%s" % element skip = False for ignore_text in ignore_texts: if ignore_text in inner_html: skip = True break if not skip: self.error(url, "Found error: %s" % (element)) def check_frames(self, url, soup): self.check_referenced(url, soup, "frame", "src") def check_iframes(self, url, soup): self.check_referenced(url, soup, "iframe", "src") def check_links(self, url, soup): self.check_referenced(url, soup, "a", "href") def check_referenced(self, referer_url, soup, tag, attr): elements = soup.find_all(tag) for element in elements: orig_url = element.get(attr) url = self.normalize_url(self.crawler.site.internal_url, orig_url) if url is None: continue try: self.verify_is_valid_url(url) except InvalidUrl, e: #print self.name, "skip invalid", url, e self.crawler.skipped.add(url) continue # Ensure that this url has not been crawled yet crawl_it = False with self.crawler.handled_lock: if url not in self.crawler.handled: crawl_it = True self.crawler.handled.add(url) if crawl_it: #file("/tmp/todo", "a").write("%s (%s)\n" % (url, referer_url.url)) self.crawler.todo.put(Url(url, orig_url=orig_url, referer_url=referer_url.url)) def verify_is_valid_url(self, url): parsed = urlsplit(url) if parsed.scheme != "http": raise InvalidUrl("invalid scheme: %r" % (parsed,)) # skip external urls if url.startswith("http://") and not url.startswith(self.crawler.site.internal_url): raise InvalidUrl("Skipping external URL: %s" % url) # skip non check_mk urls if not parsed.path.startswith("/%s/check_mk" % self.crawler.site.id) \ or "../pnp4nagios/" in parsed.path \ or "../nagvis/" in parsed.path \ or "../nagios/" in parsed.path: raise InvalidUrl("Skipping non Check_MK URL: %s %s" % (url, parsed)) # skip current url with link to index if "index.py?start_url=" in url: raise InvalidUrl("Skipping link to index with current URL: %s" % url) if "logout.py" in url: raise InvalidUrl("Skipping logout URL: %s" % url) if "_transid=" in url: raise InvalidUrl("Skipping action URL: %s" % url) if "selection=" in url: raise InvalidUrl("Skipping selection URL: %s" % url) # Don't follow filled in filter form views if "view.py" in url and "filled_in=filter" in url: raise InvalidUrl("Skipping filled in filter URL: %s" % url) # Don't follow the view editor if "edit_view.py" in url: raise InvalidUrl("Skipping view editor URL: %s" % url) # Skip agent download files if parsed.path.startswith("/%s/check_mk/agents/" % self.crawler.site.id): raise InvalidUrl("Skipping agent download file: %s" % url) def normalize_url(self, base_url, url): url = urljoin(base_url, url.rstrip("#")) parsed = list(urlsplit(url)) parsed[3] = urlencode(sorted(parse_qsl(parsed[3], keep_blank_values=True))) return urlunsplit(parsed) class SetQueue(Queue.Queue): def _init(self, maxsize): self.queue = set() def _put(self, item): self.queue.add(item) def _get(self): return self.queue.pop() class TestCrawler(object): @pytest.mark.type("gui_crawl") def test_crawl(self, site): self.stats = {} self.todo = SetQueue() self.started = time.time() self.visited = [] self.skipped = set() # Contains all already seen and somehow handled URLs. Something like the # summary of self.todo and self.handled but todo contains Url() objects. self.handled = set() self.handled_lock = threading.Lock() self.errors = [] self.site = site self.num_workers = 10 self.load_stats() self.todo.put(Url(site.internal_url)) self.handled.add(site.internal_url) self.crawl() self.report() def stats_file(self): return var_dir() + "/crawl.stats" def report_file(self): return var_dir() + "/crawl.report" def web_log_file(self): return var_dir() + "/crawl-web.log" def apache_error_log_file(self): return var_dir() + "/crawl-apache_error_log.log" def load_stats(self): try: self.stats = eval(file(self.stats_file()).read()) except IOError, e: if e.errno == 2: pass # Not existing files are OK else: raise def save_stats(self): if not os.path.exists(var_dir()): os.makedirs(var_dir()) file(self.stats_file()+".tmp", "w").write(pprint.pformat(self.stats) + "\n") os.rename(self.stats_file()+".tmp", self.stats_file()) def update_total_stats(self, finished): stats = self.stats.setdefault("_TOTAL_", {}) stats["last_num_visited"] = len(self.visited) stats["last_duration"] = time.time() - self.started stats["last_errors"] = self.errors stats["last_finished"] = finished if finished: if stats.get("last_finished_num_visited", 0) > 0: perc = float(stats["last_num_visited"]) * 100 / stats["last_finished_num_visited"] if perc < 80.0: self.error("Finished and walked %d URLs, previous run walked %d URLs. That " "is %0.2f %% of the previous run. Something seems to be wrong." % (stats["last_num_visited"], stats["last_finished_num_visited"], perc)) stats["last_finished_num_visited"] = stats["last_num_visited"] stats["last_finished_duration"] = stats["last_duration"] stats["last_finished_errors"] = stats["last_errors"] def report(self): with file(self.report_file()+".tmp", "w") as f: f.write("Skipped URLs:\n") for skipped_url in sorted(self.skipped): f.write(" %s\n" % skipped_url) f.write("\n") f.write("Visited URLs:\n") for visited_url in self.visited: f.write(" %s\n" % visited_url) f.write("\n") if self.errors: f.write("Crawled %d URLs in %d seconds. Failures:\n%s\n" % (len(self.visited), time.time() - self.started, "\n".join(self.errors))) # Copy the previous file for analysis #if os.path.exists(self.report_file()): # open(self.report_file()+".old", "w").write(open(self.report_file()).read()) os.rename(self.report_file()+".tmp", self.report_file()) if self.errors: for site_path, test_path in [ ("var/log/web.log", self.web_log_file()), ("var/log/apache/error_log", self.apache_error_log_file()), ]: if self.site.file_exists(site_path): open(test_path+".tmp", "w").write(self.site.read_file(site_path)) os.rename(test_path+".tmp", test_path) pytest.fail("Crawled %d URLs in %d seconds. Failures:\n%s" % (len(self.visited), time.time() - self.started, "\n".join(self.errors))) def error(self, msg): print(msg) self.errors.append(msg) def crawl(self): finished = False workers = [] try: for i in range(self.num_workers): t = Worker(i, self) t.start() workers.append(t) start = time.time() last_tick, last_num_visited = time.time(), 0 while True: now = time.time() duration = max(now - start, 1) num_visited = len(self.visited) num_idle = len([ w for w in workers if w.idle ]) rate_runtime = num_visited / duration if now > last_tick and num_visited > last_num_visited: rate_tick = (num_visited - last_num_visited) / (now - last_tick) else: rate_tick = 0 last_tick = now last_num_visited = num_visited print("Workers: %d (Idle: %d), Rate: %0.2f/s (1sec: %0.2f/s), Duration: %d sec, " "Visited: %s, Todo: %d" % (self.num_workers, num_idle, rate_runtime, rate_tick, duration, num_visited, self.todo.qsize())) if self.todo.qsize() == 0 and all([ w.idle for w in workers ]): break else: time.sleep(1) finished = True except KeyboardInterrupt: for t in workers: t.stop() print "Waiting for workers to finish..." finally: self.update_total_stats(finished) self.save_stats()
huiyiqun/check_mk
tests/integration/web/test_crawl.py
Python
gpl-2.0
15,021
[ "VisIt" ]
88ef05ab00919d801d3b996b19e9a2a8f028c5e4faf8f3764b4e9945d9cb200c
# -*- coding: utf-8 -*- from collections import OrderedDict, Counter import csv from datetime import datetime, timedelta import hashlib import json import os import platform import plistlib import re import shutil import sqlite3 from subprocess import call import sys import time import urllib import uuid import webbrowser from flask import Flask, render_template, request, flash, url_for, redirect, Response, send_from_directory import pyesedb import vss from werkzeug.utils import secure_filename class BrowsingHistory(object): """A class to load, modify and export a *copy* of the web browsing history. Supported browsers: - Google Chrome - Firefox - Safari - Internet Explorer (>= 10) / Edge """ def __init__(self): self.os = platform.system() self.os_release = platform.release() self.os_full = ' '.join([self.os, self.os_release]) self._upload_dir = self._root_path('uploads') self._file_path = os.path.split(os.path.realpath(__file__))[0] self._browser_name = None self._browser_specs = None self._db = None self._min_date = self._min_date(num_days=60) self.date_range = None self.num_domains = None self.ready = self._state() self._domains = None self._keywords = None self._entries = None def _handle_platform(self): """Helper function to handle platform name. :return str: Platform name """ if self.os in ['Linux', 'Darwin']: return self.os elif self.os == 'Windows': pat = re.compile(r'Windows\s\d{1,2}') match = re.findall(pat, self.os_full) if match: return match[0] def _build_path(self, _os): """Helper function to build and check the path to the browsing history. :param _os: Operation system :return str or boolean: path or False """ if (self._browser_name == 'IE11' and self.os in ['Linux', 'Darwin']) or (self._browser_name == 'Safari' and self.os in ['Linux', 'Windows']): return False else: user = os.getlogin() for p in self._browser_specs['path'][_os]: if self._browser_name == 'Firefox': # checking for profile name pat = re.compile(r'\w+.default([\w\-\_\.]+)?') if os.path.isdir(p.format(user)): for item in os.listdir(p.format(user)): if re.findall(pat, item): profile_name = item path = os.path.join(p.format(user), profile_name, self._browser_specs['file_name'][0]) if os.path.isfile(path): return path else: continue else: if os.path.isdir(p.format(user)): for f in self._browser_specs['file_name']: path = os.path.join(p.format(user), f) if os.path.isfile(path): return path else: continue return False def _create_db(self): """Creates an empty temporary sqlite database in the 'tmp' directory. :return: Database path or None """ try: conn = sqlite3.connect('tmp/browsing_history.db') cur = conn.cursor() with open(self._root_path('data/schema.sql'), 'r') as sql_script: queries = sql_script.read() cur.executescript(queries) conn.commit() except BaseException: return None finally: cur.close() conn.close() return 'tmp/browsing_history.db' def _unique_id_generator(self): """Helper function to generate unique identifiers. :return: integer value """ unique_id = 1 while True: yield unique_id unique_id += 1 def _extract_history_plist(self, pl): """Extracts Safari browsing history (History.plist) file. :param pl: File path (string) :return: Two lists of tuples """ visits = [] urls = [] g = self._unique_id_generator() with open(pl, 'rb') as f: d = plistlib.load(f) for item in d['WebHistoryDates']: date = self._convert_timestamp(float(item['lastVisitedDate']), browser_name=self._browser_name, tz='utc') # Filter by url and minimum date if self._is_url(item['']) and date >= self._min_date: last_visit_date = date visit_date = last_visit_date url = item[''] title = item['title'] visit_count = item['visitCount'] if 'redirectURLs' in item.keys(): redirect_urls = ' '.join(item['redirectURLs']) else: redirect_urls = None url_id = next(g) _id = url_id urls.append((_id, last_visit_date, redirect_urls, title, url, visit_count)) visits.append((url_id, visit_date)) else: continue return urls, visits def _copy_webcachev01_dat(self, file_path): ''' Creates a shadow copy of WebCacheVxx.dat and copies it into the upload folder. :param file_path: The file path of WebCacheVxx.dat :return: Boolean value ''' # Adapted from sblosser's example code: # https://github.com/sblosser/pyshadowcopy # on 2017-07-31 # Create a set that contains the LOCAL disks you want to shadow drv = file_path[0] local_drives = set() local_drives.add(drv) # Initialize the Shadow Copies try: sc = vss.ShadowCopy(local_drives) # An open and locked file we want to read locked_file = file_path shadow_path = sc.shadow_path(locked_file) try: shutil.copy(shadow_path, self._root_path('uploads')) except BaseException as e: print(e) sc.delete() return False finally: sc.delete() return True except BaseException: return False def _extract_webcachev01_dat(self, file_path): """Extracts data from WebCacheVxx.dat. :param str file_path: The file path of WebCacheVxx.dat :return lists urls, visits: Two lists of tuples """ # Adapted from Jon Glass' blog: # http://jon.glass/blog/attempts-to-parse-webcachev01-dat/ # on 2017-07-31 if self._copy_webcachev01_dat(file_path): file_name = os.path.split(file_path)[1] elif 'WebCacheV01.dat' in os.listdir(self._upload_dir): file_name = 'WebCacheV01.dat' elif 'WebCacheV24.dat' in os.listdir(self._upload_dir): file_path = 'WebCacheV24.dat' else: return False visits = [] urls = {} pat = re.compile(r'(?<=@)http[\w:\_\-/.]+') esedb_file = pyesedb.file() try: with open(os.path.join(self._root_path('uploads'), file_name), "rb") as f: esedb_file.open_file_object(f) containers_table = esedb_file.get_table_by_name("Containers") g = self._unique_id_generator() for i in range(0, containers_table.get_number_of_records()): if containers_table.get_record(i).get_value_data_as_string(8) == 'History': container_id = containers_table.get_record(i).get_value_data_as_integer(0) history_table = esedb_file.get_table_by_name("Container_" + str(container_id)) for j in range(0, history_table.get_number_of_records()): if history_table.get_record(j).is_long_value(17): url = history_table.get_record(j).get_value_data_as_long_value(17).get_data_as_string() else: url = history_table.get_record(j).get_value_data_as_string(17) date = self._convert_timestamp(history_table.get_record(j).get_value_data_as_integer(13), browser_name=self._browser_name, tz='utc') # Filter by url and minimum date if re.findall(pat, url) and date >= self._min_date: url = re.findall(pat, url)[0] if url not in urls.keys(): unique_id = next(g) urls[url] = {} urls[url]['unique_id'] = unique_id urls[url]['access_count'] = history_table.get_record(j).get_value_data_as_integer(8) urls[url]['redirect_urls'] = history_table.get_record(j).get_value_data_as_string(22) entry_id = history_table.get_record(j).get_value_data_as_integer(0) accessed_time = date unique_entry_id = int(str(container_id) + str(unique_id)) visits.append((accessed_time, unique_entry_id, urls[url]['unique_id'])) else: access_count = history_table.get_record(j).get_value_data_as_integer(8) if access_count > 0: urls[url]['access_count'] += access_count else: continue esedb_file.close() urls = [(value['access_count'], value['redirect_urls'], value['unique_id'], key) for key, value in urls.items()] return urls, visits except PermissionError: return False def _import_data(self, file_path=None): """Imports data from a file into the database. :param file_path: The file path of the browsing history database file (e.g., sqlite database file or a plist property list file). :return: boolean value """ if file_path: file_path = file_path else: file_path = self._build_path(self._handle_platform()) if file_path: db_tables = tuple(self._browser_specs['tables'].keys()) translate = self._load_json(self._root_path('data'), 'table_names') conn = False if self._browser_name == 'Safari': file_name = os.path.split(file_path)[1] if file_name == 'History.db': safari8_tables = self._browser_specs['tables_s8'] db_tables = tuple(safari8_tables.keys()) if os.path.split(file_path)[0] != self._upload_dir: try: shutil.copy(file_path, self._root_path('uploads')) except shutil.Error as e: print(e) return False file_path = os.path.join(self._root_path('uploads'), file_name) try: conn = sqlite3.connect(file_path) except sqlite3.OperationalError as e: print(e) return False else: urls, visits = self._extract_history_plist(file_path) elif self._browser_name == 'IE11': try: urls, visits = self._extract_webcachev01_dat(file_path) except TypeError: return False elif self._browser_name == 'Chrome': if os.path.split(file_path)[0] != self._upload_dir: try: shutil.copy(file_path, self._root_path('uploads')) except shutil.Error as e: print(e) return False file_path = os.path.join(self._root_path('uploads'), self._browser_specs['file_name'][0]) try: conn = sqlite3.connect(file_path) except sqlite3.OperationalError as e: print(e) return False elif self._browser_name == 'Firefox': try: conn = sqlite3.connect(file_path) except sqlite3.OperationalError as e: print(e) return False new_db = sqlite3.connect(self._db) new_db_cur = new_db.cursor() for table in db_tables: if conn and self._browser_name == 'Safari': od = OrderedDict(sorted(safari8_tables[table].items(), key=lambda t: t[0])) else: od = OrderedDict(sorted(self._browser_specs['tables'][table].items(), key=lambda t: t[0])) if conn: conn.create_function('REGEXP', 2, self._regexp) c = conn.cursor() if translate[table] == 'visits': if self._browser_name == 'Chrome': q = "SELECT {0} FROM visits WHERE ((visits.visit_time/1000000)-11644473600) >= {1};".format(', '.join(od.keys()), self._min_date) elif self._browser_name == 'Firefox': q = "SELECT {0} FROM moz_historyvisits WHERE (visit_date/1000000) >= {1};".format(', '.join(od.keys()), self._min_date) elif self._browser_name == 'Safari': q = "SELECT {0} FROM history_visits WHERE (history_visits.visit_time + 978307200) >= {1};".format(', '.join(od.keys()), self._min_date) else: raise ValueError("Browser name {0} doesn't match.".format(self._browser_name)) else: if self._browser_name == 'Chrome': q = "SELECT {0} FROM urls, visits WHERE urls.id = visits.url AND ((visits.visit_time/1000000)-11644473600) >= {1} AND NOT REGEXP('^file:', urls.url);".format(', '.join(od.keys()), self._min_date) elif self._browser_name == 'Firefox': q = "SELECT {0} FROM moz_places, moz_historyvisits WHERE moz_places.id = moz_historyvisits.place_id AND (moz_historyvisits.visit_date/1000000) >= {1} AND NOT REGEXP('^file:///', moz_places.url);".format(', '.join(od.keys()), self._min_date) elif self._browser_name == 'Safari': q = "SELECT {0} FROM history_items, history_visits WHERE history_items.id = history_visits.history_item AND (history_visits.visit_time + 978307200) >= {1} AND NOT REGEXP('^file:', history_items.url);".format(', '.join(od.keys()), self._min_date) else: raise ValueError("Browser name {0} doesn't match.".format(self._browser_name)) rq = c.execute(q) r = rq.fetchall() else: if translate[table] == 'visits': r = visits else: r = urls # Insert data into new database try: if conn and self._browser_name == 'Safari': placeholders = ', '.join(['?' for x in range(len(safari8_tables[table].values()))]) else: placeholders = ', '.join(['?' for x in range(len(self._browser_specs['tables'][table].values()))]) query = 'INSERT OR IGNORE INTO {0} ({1}) VALUES ({2});'.format(translate[table], ', '.join(od.values()), placeholders) new_db_cur.executemany(query, r) new_db.commit() except sqlite3.OperationalError as e: print('sqlite3.OperationalError: ', e) return False if conn: c.close() conn.close() new_db_cur.close() new_db.close() return True else: return False def _regexp(self, p, s): pat = re.compile(p) if re.match(pat, s): return True else: return False def _load_json(self, path, name): """Helper function to load the json browser spec files. :param path: Path name :param name: File name (without file extension) :return: json object """ with open('{0}.json'.format(os.path.join(path, name)), 'r') as file: return json.load(file) def _save_json(self, data, path, name): """Helper function to write json object to a json file. :param data: json object :param path: path name :param name: file name (without file extension) :return: nothing """ with open('{0}.json'.format(os.path.join(path, name)), 'w') as file: json.dump(data, fp=file) def load(self, file_path=None, browser_name=None, min_date=None): """Loads the browsing history. :param str file_path: The file path of the browsing history :param str browser_name: The browser name :param min_date: The start date of the import :return: boolean value """ self._db = self._create_db() if browser_name == None: self._browser_name = self._load_json('tmp', 'browser_name')['browser_name'] else: self._browser_name = browser_name self._save_json({'browser_name': self._browser_name}, 'tmp', 'browser_name') self._browser_specs = self._load_json(self._root_path('data'), self._browser_name) if min_date: self._min_date = min_date if self._db: if file_path: status = self._import_data(file_path=file_path) else: status = self._import_data() if status: self.date_range = self._date_range() self.num_domains = len(self.visits(date=False, n=None, ascending=False, plot=False)) self.ready = True return True else: return False def _state(self): """Helper function to keep track of the current state of the temporary database. :return: boolean value """ db = 'tmp/browsing_history.db' if os.path.isfile(db): try: self._db = db self._browser_name = self._load_json('tmp', 'browser_name')['browser_name'] self._browser_specs = self._load_json(self._root_path('data'), self._browser_name) self.date_range = self._date_range() self.num_domains = len(self.visits(date=False, n=None, ascending=False, plot=False)) return True except TypeError: return False else: return False def _query(self, q): """Helper function to query the sqlite database. :param str q: Sqlite query :return: List of tuples """ if self._db: with sqlite3.connect(self._db) as conn: # connection to db c = conn.cursor() c.execute(q) return c.fetchall() else: return [] def _update_db(self, x, kind='domains'): """Update function for the sqlite database. :param list x: URL ids :param str kind: What kind of data should be updated. domains (default), keywords, urls :return: nothing """ #self.ready = False try: conn = sqlite3.connect(self._db) c = conn.cursor() if isinstance(x, str): if kind == 'keywords': pat = re.compile(r'(?:\?q=|\?p=|\?query=|search?q=|\?q\d=|\&q\d=|\?k=|\?text=|\&q=|key=|\?search=|\&search=|\&searchTerm=|\?searchTerm=)([a-zA-Z0-9äöüïéàèáÜÄÖ\%\+\-\*\s]+)', re.IGNORECASE) _ids = self._keywords[x]['ids'] else: _ids = self._domains[x]['ids'] elif isinstance(x, list) and kind == 'urls': _ids = x else: raise ValueError('Input type unsupported: expects string or list') for i in _ids: entry = c.execute("SELECT url, rev_host FROM urls WHERE id = ?;", (i,)).fetchall() url = self._is_url(entry[0][0], r=True) if url: hashed_url = self._hash_domain(url) unique_id = '{0}-{1}-{2}'.format('anonymisiert', hashed_url, i) if kind == 'keywords': new_entry = re.sub(pat, unique_id, entry[0][0]) c.execute('UPDATE urls SET url = ?, title = ? WHERE id = ?;', (new_entry, '***', i)) conn.commit() elif kind == 'urls': domain = '{0}/{1}'.format(self._stem_url(entry[0][0]), '***') c.execute('UPDATE urls SET url = ?, title = ?, redirect_urls = ? WHERE id = ?;', (domain, '***', '***', i)) conn.commit() elif kind == 'domains': c.execute('UPDATE urls SET url = ?, title = ?, rev_host = ?, redirect_urls = ? WHERE id = ?;', (unique_id, '***', '***', '***', i)) conn.commit() else: raise ValueError('{0} is not a valid kind.'.format(kind)) else: continue except sqlite3.OperationalError as e: print(e) finally: c.close() conn.close() def _date_conv(self, date): """Helper function to convert the date(s). :param date: string or list in %Y-%m-%d format :return: start (int), end (int), date (string) """ if isinstance(date, list): date_str = 'between {0} and {1}'.format(date[0], date[1]) t = int(time.mktime(datetime.strptime(date[0], "%Y-%m-%d").timetuple()) * 1000000) tk = int(time.mktime(datetime.strptime(date[1], "%Y-%m-%d").timetuple()) * 1000000) elif isinstance(date, str): date_str = 'on {0}'.format(date) t = int(time.mktime(datetime.strptime(date, "%Y-%m-%d").timetuple())) tk = datetime.strptime(date, "%Y-%m-%d") + timedelta(days=1) tk = int(time.mktime(tk.timetuple()) * 1000000) return t, tk, date_str def visits(self, date=False, n=25, ascending=False, plot=False): """Function to load all URLs from the database for a certain date or date range. :param str date: A date (e.g., '2016-10-15') or a date range as list (e.g., ['2016-10-15','2016-10-25']) :param int n: the number of websites that should be plotted, default = top 25; for all websites set n = None :param boolean ascending: order :param plot: boolean value :return: OrderedDict """ if date: t, tk, date_str = self._date_conv(date) else: date_str = 'between {0} and {1}'.format(self.date_range[0], self.date_range[1]) if date: visits = self._query( "SELECT url, visit_count, urls.id FROM urls, visits WHERE urls.id = visits.url_id AND visit_date >= {0} AND visit_date < {1};".format( t, tk)) else: visits = self._query("SELECT url, visit_count, urls.id FROM urls, visits WHERE urls.id = visits.url_id;") d = {} unique_id = set() for visit in visits: domain = self._stem_url(visit[0]) count = visit[1] if domain not in d.keys(): d[domain] = 0 if visit[2] not in unique_id: unique_id.add(visit[2]) d[domain] += count total_n = sum(d.values()) if n == None: n = total_n if ascending == False: title = 'Top {0} visited websites {1} (n={2})'.format(n, date_str, total_n) od = OrderedDict(sorted(d.items(), key=lambda t: t[1])[-n:]) else: title = 'Least {0} visited websites {1} (n={2})'.format(n, date_str, total_n) od = OrderedDict(sorted(d.items(), key=lambda t: t[1])[:n]) source = {'x': list(od.keys()), 'y': list(od.values()), 'perc': [round((v / total_n) * 100, 2) for v in list(od.values())]} if plot == True: self._vbarplot(source, title) else: return od def entries(self, sort_by='date', q=None): """Function to load all entries from the database. :param str sort_by: Order. Domains or frequency :param str q: Search term :param stem_urls: Boolean value. Whether to return domains or urls :return: OrderedDict """ d = {} if q == None: visits = self._query("SELECT urls.id, visit_date, url, visit_count FROM visits, urls WHERE visits.url_id = urls.id;") else: visits = self._query("SELECT urls.id, visit_date, url, visit_count FROM visits, urls WHERE visits.url_id = urls.id AND url LIKE '%{0}%';".format(q)) # Filtering URLs only visits = [(e[0], self._get_date(e[1]), e[2], e[3], e[1]) for e in visits] # Sorting if sort_by == 'domains' or sort_by == None: visits = sorted(visits, key=lambda t: t[2]) elif sort_by == 'frequency': visits = sorted(visits, key=lambda t: t[3], reverse=True) elif sort_by == 'date' or sort_by == None: visits = sorted(visits, key=lambda t: t[4], reverse=True) self._entries = visits return visits def select_domains(self, sort_by='domains', q=None, stem_urls=True): """Function to load all URLs from the database. :param str sort_by: Order. Domains or frequency :param str q: Search term :param boolean stem_urls: Whether to return domains or urls :return: OrderedDict """ d = {} if q == None: visits = self._query("SELECT id, url, visit_count FROM urls;") else: visits = self._query("SELECT id, url, visit_count FROM urls WHERE url LIKE '%{0}%';".format(q)) for visit in visits: if stem_urls: domain = self._stem_url(visit[1]) else: domain = visit[1] count = visit[2] if domain in d.keys(): d[domain]['ids'].append(visit[0]) else: d[domain] = {'ids': [], 'count': 0} d[domain]['ids'].append(visit[0]) d[domain]['count'] += count if sort_by == 'domains' or sort_by == None: od = OrderedDict(sorted(d.items(), key=lambda t: t[0])) elif sort_by == 'frequency': od = OrderedDict(sorted(d.items(), key=lambda t: t[1]['count'], reverse=True)) self._domains = od return od def search_terms(self, sort_by='keywords', q=None): """Extracts search terms from urls in the database. :param str sort_by: specifies how the OrderedDict should be sorted. Default is keywords. :param str q: optional argument for a specific search term :return: OrderedDict """ d = {} pat = re.compile(r'(?:\?q=|\?p=|\?query=|search?q=|\?q\d=|\&q\d=|\?k=|\?text=|\&q=|key=|\?search=|\&search=|\&searchTerm=|\?searchTerm=)([a-zA-Z0-9äöüïéàèáÜÄÖ\%\+\-\*\s\.\,]+)', re.IGNORECASE) if q: entries = self._query("SELECT id, url FROM urls WHERE url LIKE '%{0}%';".format(q)) else: entries = self._query('SELECT id, url FROM urls;') for entry in entries: domain = self._stem_url(entry[1]) matches = re.findall(pat, entry[1]) if matches: for match in matches: term = urllib.parse.unquote_plus(match) if term not in d.keys(): d[term] = {'ids': [], 'count': 1, 'urls': [domain], 'match': match} d[term]['ids'].append(entry[0]) else: d[term]['ids'].append(entry[0]) d[term]['count'] += 1 if domain not in d[term]['urls']: d[term]['urls'].append(domain) if sort_by == 'keywords' or sort_by == None: od = OrderedDict(sorted(d.items(), key=lambda t: t[0])) elif sort_by == 'frequency': od = OrderedDict(sorted(d.items(), key=lambda t: t[1]['count'], reverse=True)) self._keywords = od return od def export(self): """Writes the browsing history to a CSV file. :return: Boolean value """ data = self._query( "SELECT url_id, visits.id, url, title, rev_host, visit_count, typed, last_visit_date, redirect_urls, referrer, visit_date, visit_type FROM visits, urls WHERE visits.url_id = urls.id;") if data: data = [t + (self._browser_name, self.os_full) for t in data] header = ['url_id', 'visits_id', 'url', 'title', 'rev_host', 'visit_count', 'typed', 'last_visit_date', 'redirect_urls', 'referrer', 'visit_date', 'visit_type', 'browser', 'operation system'] with open(os.path.join(self._file_path,'tmp', 'Export_Browserverlauf.csv'), 'w', encoding='utf-8') as f: writer = csv.writer(f, delimiter=';', lineterminator='\n') writer.writerow(header) writer.writerows(data) return True else: return False def _date_range(self): """Helper function. :return: Minimum and maximum date (timestamps) """ min_date, max_date = self._query("SELECT min(visit_date), max(visit_date) FROM visits;")[0] if min_date and max_date: min_date = self._get_date(min_date) max_date = self._get_date(max_date) return (min_date, max_date) else: return (' ', ' ') def _hash_domain(self, domain): """Helper function to hash the domain. :param domain: Domain (string) :return: Hashed domain """ salt = uuid.uuid4().hex return hashlib.sha256(salt.encode() + domain.encode()).hexdigest() + '-' + salt def _get_date(self, timestamp): """Helper function to convert timestamps into date strings. :param timestamp: Timestamp :return: Date string (e.g., '13.05.2014 08:34:45') """ date = datetime.fromtimestamp(timestamp) return date.strftime('%d.%m.%Y %H:%M:%S') def _convert_timestamp(self, timestamp, browser_name=None, tz='utc'): """Helper function to convert different timestamps formats into date strings or POSIX timestamp. :param timestamp: Timestamp :return: POSIX timestamp (UTC) """ if browser_name == 'Chrome': date = datetime(1601, 1, 1) + timedelta(microseconds=timestamp) elif browser_name == 'IE11': date = datetime(1601, 1, 1) + timedelta(microseconds=timestamp * 0.1) elif browser_name == 'Safari': date = datetime(2001, 1, 1) + timedelta(seconds=timestamp) elif browser_name == 'Firefox': date = datetime.fromtimestamp(timestamp / 1000000) else: date = datetime.fromtimestamp(timestamp) return date.timestamp() def _get_dto(self, timestamp): """Helper function to convert a timestamp to a datetime object :param timestamp: Timestamp :return: Datetime object """ return datetime.fromtimestamp(timestamp / 1000000) def _min_date(self, num_days): """Helper function to determine the minimum date :param int num_days: Number days to go back in time :return: timestamp (UTC) """ today = datetime.today() days = timedelta(num_days) min_date = today - days return min_date.timestamp() def _stem_url(self, url): """Helper function to stem URLs. :param str url: URL :return str: Domain """ anonym_pattern = re.compile('anonymisiert-[\w]+\-[\w]+') stemmed_url = self._is_url(url, r=True) if stemmed_url: if stemmed_url[:4] == 'www.': return stemmed_url[4:] else: return stemmed_url else: # checking for domain made anonymous if re.findall(anonym_pattern, url): return re.findall(anonym_pattern, url)[0] else: # check if url is already stemmed if url[:-5:-1] == '***/': return url[:-4] else: return url def _is_url(self, url, r=False): """Helper function to check if a string is an URL. :param url: URL (string) :param r: Whether the URL should be return or not :return: URL (string) or boolean value """ url_pattern = re.compile('(?<=\:\/\/)[a-z0-9\.\-\:]+') match = re.findall(url_pattern, url) if match: if r: return match[0] else: return True else: return False def _root_path(self, relative_path): """Helper function for path handling after bundling with pyinstaller. :param str: relative path """ # Adapted from max' StackOverflow answer: # https://stackoverflow.com/questions/7674790/bundling-data-files-with-pyinstaller-onefile/13790741#13790741 # on 2017-07-31 try: base_path = sys._MEIPASS except Exception: base_path = os.path.abspath('.') return os.path.join(base_path, relative_path) def root_path(relative_path): """Helper function for path handling after app bundling :param str: relative path """ # Adapted from StackOverflow answer: https://stackoverflow.com/questions/7674790/bundling-data-files-with-pyinstaller-onefile/13790741#13790741; 2017-07-31 try: base_path = sys._MEIPASS except Exception: base_path = os.path.abspath('.') return os.path.join(base_path, relative_path) if not os.path.isdir(root_path('uploads')): os.mkdir(root_path('uploads')) ALLOWED_EXTENSIONS = set(['sqlite', 'dat', 'plist', 'History', 'db']) FILE_PATH = os.path.split(os.path.realpath(__file__))[0] bh = BrowsingHistory() app = Flask(__name__, root_path=root_path('.')) app.secret_key = '8927-bdjbj20AWER$_' #app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): # Taken from Flask doc example: http://flask.pocoo.org/docs/0.12/ if '.' in filename: return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS else: return filename in ALLOWED_EXTENSIONS def _os_name(_os_full): pat = re.compile(r'(?<=Darwin\s)\d{1,2}') match = re.findall(pat, _os_full) if match: if match[0] == '10': return 'Mac OS X Snow Leopard' elif match[0] == '11': return 'Mac OS X Lion' elif match[0] == '12': return 'OS X Mountain Lion' elif match[0] == '13': return 'OS X Mavericks' elif match[0] == '14': return 'OS X Yosemite' elif match[0] == '15': return 'OS X El Capitan' elif match[0] == '16': return 'macOS Sierra' elif match[0] == '17': return 'macOS High Sierra' else: return _os_full @app.route('/exit') def shutdown_server(): # Taken from Flask doc example: http://flask.pocoo.org/docs/0.12/ func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('Not running with the Werkzeug Server') func() return 'Das Programm wurde beendet. Sie können das Fenster schliessen.' @app.route('/', methods=['GET', 'POST']) def index(): # Adapted from Flask doc example: http://flask.pocoo.org/docs/0.12/ os_name = _os_name(bh.os_full) if request.method == 'GET': if request.args.get('load'): return render_template('index.html', os=os_name) elif request.args.get('notFound'): flash('Der Browserverlauf wurde nicht gefunden. Bitte wählen Sie die Datei manuell aus.') not_found = True return render_template('index.html', os=os_name) elif request.args.get('fileError'): flash('Die Datei konnte nicht gelesen werden.') not_found = True return render_template('index.html', os=os_name) else: if bh.ready: return redirect(url_for('dashboard')) else: return render_template('index.html', os=os_name) elif request.method == 'POST': browser_name = request.form.get('browser_name') if 'file' in request.files: # check if the post request has the file part if 'file' not in request.files: flash('No file part') return redirect(url_for('index', notFound=True, os=os_name)) file = request.files['file'] # if user does not select file, browser also # submit a empty part without filename if file.filename == '': flash('No selected file') return redirect(url_for('index', notFound=True, os=os_name)) if file and allowed_file(file.filename): if len(os.listdir(root_path('uploads'))) >= 1: for f in os.listdir(root_path('uploads')): os.remove(os.path.join(root_path('uploads'), f)) filename = secure_filename(file.filename) file.save(os.path.join(root_path('uploads'), filename)) state = bh.load(file_path=os.path.join(root_path('uploads'), filename), browser_name=browser_name) else: return redirect(url_for('index', fileError=True, os=os_name)) else: state = bh.load(browser_name=browser_name) if state: return redirect(url_for('dashboard')) else: return redirect(url_for('index', notFound=True, client=browser_name, os=os_name)) @app.route('/load') def load(): return redirect(url_for('index', load=True)) @app.route('/dashboard') def dashboard(): if bh.ready == False: return redirect(url_for('index')) else: date_range = bh.date_range num_domains = bh.num_domains browser_name = bh._browser_name top_10 = bh.visits(date = False, n = 10, ascending = False, plot = False) top_10 = OrderedDict(sorted(top_10.items(), key=lambda t: t[1], reverse=True)) return render_template('dashboard.html', date_range=date_range, num_domains=num_domains, browser_name=browser_name, top_10=top_10) @app.route('/select', methods=['GET', 'POST']) def select(): if request.method == 'POST': selection = request.form.getlist('check') for domain in selection: bh._update_db(domain, kind='domains') domains = bh.select_domains() elif request.method == 'GET': if request.args.get('sort') or request.args.get('q'): domains = bh.select_domains(sort_by=request.args.get('sort'), q=request.args.get('q')) else: domains = bh.select_domains() return render_template('select_domains.html', domains=domains) @app.route('/search-terms', methods=['POST', 'GET']) def search_terms(): if request.method == 'POST': selection = request.form.getlist('check') for search_term in selection: bh._update_db(search_term, kind='keywords') search_terms = bh.search_terms() elif request.method == 'GET': if request.args.get('sort') or request.args.get('q'): search_terms = bh.search_terms(sort_by=request.args.get('sort'), q=request.args.get('q')) else: search_terms = bh.search_terms() return render_template('search_terms.html', search_terms=search_terms) @app.route('/export') def export(): # Adapted from Flask doc example: http://flask.pocoo.org/docs/0.12/ if bh.export(): return send_from_directory(os.path.join(FILE_PATH, 'tmp'), 'Export_Browserverlauf.csv', as_attachment=True) else: flash('Export nicht möglich. Bitte laden Sie zuerst einen Browserverlauf.') return render_template('index.html', os=' '.join([bh.os, bh.os_release])) @app.route('/log') def get_log(): # Adapted from Flask doc example: http://flask.pocoo.org/docs/0.12/ if 'server.log' in os.listdir(os.path.join(FILE_PATH, 'tmp')): return send_from_directory(os.path.join(FILE_PATH, 'tmp'), 'server.log', as_attachment=True) else: flash('Es ist kein Log-File gefunden worden.') return render_template('index.html', os=' '.join([bh.os, bh.os_release])) @app.route('/faqs') def faqs(): return render_template('faqs.html') @app.route('/contact') def contact(): return render_template('contact.html') @app.route('/entries', methods=['POST', 'GET']) def list_entries(): if request.method == 'GET': if request.args.get('sort') or request.args.get('q'): urls = bh.entries(sort_by=request.args.get('sort'), q=request.args.get('q')) else: urls = bh.entries() elif request.method == 'POST': selection = request.form.getlist('check') bh._update_db(selection, kind='urls') urls = bh.entries() return render_template('entries.html', domains=urls) @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404 @app.errorhandler(405) def page_not_found(e): return render_template('405.html'), 405 @app.errorhandler(500) def page_not_found(e): return render_template('500.html'), 500 if __name__ == '__main__': print('STATUS: BrowsingHistoryEditor wird gestartet ...') if not app.debug: import logging from logging import FileHandler file_handler = FileHandler(os.path.join(FILE_PATH, 'tmp', 'server.log')) file_handler.setLevel(logging.WARNING) app.logger.addHandler(file_handler) logging.basicConfig(filename=os.path.join(FILE_PATH, 'tmp', 'server.log'), level=logging.DEBUG) webbrowser.open('http://localhost:5000', new=2) print('STATUS: BrowsingHistoryEditor läuft auf http://localhost:5000 (Drücken Sie CTRL+C, um das Programm zu beenden)') app.run(host='localhost', port=5000, debug=False)
grwllrnc/BrowsingHistoryEditor
main.py
Python
mit
44,796
[ "VisIt" ]
688800071c8bb99be8bbeb30931cea2f2d2f71e4a069f6b525a64d73c699f507
import os, sys, re, inspect, types, errno, pprint, subprocess, io, shutil, time, copy import path_tool path_tool.activate_module('FactorySystem') path_tool.activate_module('argparse') from ParseGetPot import ParseGetPot from socket import gethostname #from options import * from util import * from RunParallel import RunParallel from CSVDiffer import CSVDiffer from XMLDiffer import XMLDiffer from Tester import Tester from PetscJacobianTester import PetscJacobianTester from InputParameters import InputParameters from Factory import Factory from Parser import Parser from Warehouse import Warehouse import argparse from optparse import OptionParser, OptionGroup, Values from timeit import default_timer as clock class TestHarness: @staticmethod def buildAndRun(argv, app_name, moose_dir): if '--store-timing' in argv: harness = TestTimer(argv, app_name, moose_dir) else: harness = TestHarness(argv, app_name, moose_dir) harness.findAndRunTests() sys.exit(harness.error_code) def __init__(self, argv, app_name, moose_dir): self.factory = Factory() # Build a Warehouse to hold the MooseObjects self.warehouse = Warehouse() # Get dependant applications and load dynamic tester plugins # If applications have new testers, we expect to find them in <app_dir>/scripts/TestHarness/testers dirs = [os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))] sys.path.append(os.path.join(moose_dir, 'framework', 'scripts')) # For find_dep_apps.py # Use the find_dep_apps script to get the dependant applications for an app import find_dep_apps depend_app_dirs = find_dep_apps.findDepApps(app_name) dirs.extend([os.path.join(my_dir, 'scripts', 'TestHarness') for my_dir in depend_app_dirs.split('\n')]) # Finally load the plugins! self.factory.loadPlugins(dirs, 'testers', Tester) self.test_table = [] self.num_passed = 0 self.num_failed = 0 self.num_skipped = 0 self.num_pending = 0 self.host_name = gethostname() self.moose_dir = moose_dir self.base_dir = os.getcwd() self.run_tests_dir = os.path.abspath('.') self.code = '2d2d6769726c2d6d6f6465' self.error_code = 0x0 # Assume libmesh is a peer directory to MOOSE if not defined if os.environ.has_key("LIBMESH_DIR"): self.libmesh_dir = os.environ['LIBMESH_DIR'] else: self.libmesh_dir = os.path.join(self.moose_dir, 'libmesh', 'installed') self.file = None # Parse arguments self.parseCLArgs(argv) self.checks = {} self.checks['platform'] = getPlatforms() # The TestHarness doesn't strictly require the existence of libMesh in order to run. Here we allow the user # to select whether they want to probe for libMesh configuration options. if self.options.skip_config_checks: self.checks['compiler'] = set(['ALL']) self.checks['petsc_version'] = 'N/A' self.checks['library_mode'] = set(['ALL']) self.checks['mesh_mode'] = set(['ALL']) self.checks['dtk'] = set(['ALL']) self.checks['unique_ids'] = set(['ALL']) self.checks['vtk'] = set(['ALL']) self.checks['tecplot'] = set(['ALL']) self.checks['dof_id_bytes'] = set(['ALL']) self.checks['petsc_debug'] = set(['ALL']) self.checks['curl'] = set(['ALL']) self.checks['tbb'] = set(['ALL']) self.checks['superlu'] = set(['ALL']) self.checks['unique_id'] = set(['ALL']) self.checks['cxx11'] = set(['ALL']) self.checks['asio'] = set(['ALL']) else: self.checks['compiler'] = getCompilers(self.libmesh_dir) self.checks['petsc_version'] = getPetscVersion(self.libmesh_dir) self.checks['library_mode'] = getSharedOption(self.libmesh_dir) self.checks['mesh_mode'] = getLibMeshConfigOption(self.libmesh_dir, 'mesh_mode') self.checks['dtk'] = getLibMeshConfigOption(self.libmesh_dir, 'dtk') self.checks['unique_ids'] = getLibMeshConfigOption(self.libmesh_dir, 'unique_ids') self.checks['vtk'] = getLibMeshConfigOption(self.libmesh_dir, 'vtk') self.checks['tecplot'] = getLibMeshConfigOption(self.libmesh_dir, 'tecplot') self.checks['dof_id_bytes'] = getLibMeshConfigOption(self.libmesh_dir, 'dof_id_bytes') self.checks['petsc_debug'] = getLibMeshConfigOption(self.libmesh_dir, 'petsc_debug') self.checks['curl'] = getLibMeshConfigOption(self.libmesh_dir, 'curl') self.checks['tbb'] = getLibMeshConfigOption(self.libmesh_dir, 'tbb') self.checks['superlu'] = getLibMeshConfigOption(self.libmesh_dir, 'superlu') self.checks['unique_id'] = getLibMeshConfigOption(self.libmesh_dir, 'unique_id') self.checks['cxx11'] = getLibMeshConfigOption(self.libmesh_dir, 'cxx11') self.checks['asio'] = getIfAsioExists(self.moose_dir) # Override the MESH_MODE option if using '--parallel-mesh' option if self.options.parallel_mesh == True or \ (self.options.cli_args != None and \ self.options.cli_args.find('--parallel-mesh') != -1): option_set = set(['ALL', 'PARALLEL']) self.checks['mesh_mode'] = option_set method = set(['ALL', self.options.method.upper()]) self.checks['method'] = method self.initialize(argv, app_name) """ Recursively walks the current tree looking for tests to run Error codes: 0x0 - Success 0x0* - Parser error 0x1* - TestHarness error """ def findAndRunTests(self, find_only=False): self.error_code = 0x0 self.preRun() self.start_time = clock() try: # PBS STUFF if self.options.pbs: # Check to see if we are using the PBS Emulator. # Its expensive, so it must remain outside of the os.walk for loop. self.options.PBSEmulator = self.checkPBSEmulator() if self.options.pbs and os.path.exists(self.options.pbs): self.options.processingPBS = True self.processPBSResults() else: self.options.processingPBS = False self.base_dir = os.getcwd() for dirpath, dirnames, filenames in os.walk(self.base_dir, followlinks=True): # Prune submdule paths when searching for tests if self.base_dir != dirpath and os.path.exists(os.path.join(dirpath, '.git')): dirnames[:] = [] # walk into directories that aren't contrib directories if "contrib" not in os.path.relpath(dirpath, os.getcwd()): for file in filenames: # set cluster_handle to be None initially (happens for each test) self.options.cluster_handle = None # See if there were other arguments (test names) passed on the command line if file == self.options.input_file_name: #and self.test_match.search(file): saved_cwd = os.getcwd() sys.path.append(os.path.abspath(dirpath)) os.chdir(dirpath) if self.prunePath(file): continue # Build a Parser to parse the objects parser = Parser(self.factory, self.warehouse) # Parse it self.error_code = self.error_code | parser.parse(file) # Retrieve the tests from the warehouse testers = self.warehouse.getActiveObjects() # Augment the Testers with additional information directly from the TestHarness for tester in testers: self.augmentParameters(file, tester) # Short circuit this loop if we've only been asked to parse Testers # Note: The warehouse will accumulate all testers in this mode if find_only: self.warehouse.markAllObjectsInactive() continue # Clear out the testers, we won't need them to stick around in the warehouse self.warehouse.clear() if self.options.enable_recover: testers = self.appendRecoverableTests(testers) # Handle PBS tests.cluster file if self.options.pbs: (tester, command) = self.createClusterLauncher(dirpath, testers) if command is not None: self.runner.run(tester, command) else: # Go through the Testers and run them for tester in testers: # Double the alloted time for tests when running with the valgrind option tester.setValgrindMode(self.options.valgrind_mode) # When running in valgrind mode, we end up with a ton of output for each failed # test. Therefore, we limit the number of fails... if self.options.valgrind_mode and self.num_failed > self.options.valgrind_max_fails: (should_run, reason) = (False, 'Max Fails Exceeded') elif self.num_failed > self.options.max_fails: (should_run, reason) = (False, 'Max Fails Exceeded') elif tester.parameters().isValid('error_code'): (should_run, reason) = (False, 'skipped (Parser Error)') else: (should_run, reason) = tester.checkRunnableBase(self.options, self.checks) if should_run: command = tester.getCommand(self.options) # This method spawns another process and allows this loop to continue looking for tests # RunParallel will call self.testOutputAndFinish when the test has completed running # This method will block when the maximum allowed parallel processes are running self.runner.run(tester, command) else: # This job is skipped - notify the runner if reason != '': if (self.options.report_skipped and reason.find('skipped') != -1) or reason.find('skipped') == -1: self.handleTestResult(tester.parameters(), '', reason) self.runner.jobSkipped(tester.parameters()['test_name']) os.chdir(saved_cwd) sys.path.pop() except KeyboardInterrupt: print '\nExiting due to keyboard interrupt...' sys.exit(0) self.runner.join() # Wait for all tests to finish if self.options.pbs and self.options.processingPBS == False: print '\n< checking batch status >\n' self.options.processingPBS = True self.processPBSResults() self.cleanup() if self.num_failed: self.error_code = self.error_code | 0x10 return def createClusterLauncher(self, dirpath, testers): self.options.test_serial_number = 0 command = None tester = None # Create the tests.cluster input file # Loop through each tester and create a job for tester in testers: (should_run, reason) = tester.checkRunnableBase(self.options, self.checks) if should_run: if self.options.cluster_handle == None: self.options.cluster_handle = open(dirpath + '/' + self.options.pbs + '.cluster', 'w') self.options.cluster_handle.write('[Jobs]\n') # This returns the command to run as well as builds the parameters of the test # The resulting command once this loop has completed is sufficient to launch # all previous jobs command = tester.getCommand(self.options) self.options.cluster_handle.write('[]\n') self.options.test_serial_number += 1 else: # This job is skipped - notify the runner if (reason != ''): self.handleTestResult(tester.parameters(), '', reason) self.runner.jobSkipped(tester.parameters()['test_name']) # Close the tests.cluster file if self.options.cluster_handle is not None: self.options.cluster_handle.close() self.options.cluster_handle = None # Return the final tester/command (sufficient to run all tests) return (tester, command) def prunePath(self, filename): test_dir = os.path.abspath(os.path.dirname(filename)) # Filter tests that we want to run # Under the new format, we will filter based on directory not filename since it is fixed prune = True if len(self.tests) == 0: prune = False # No filter else: for item in self.tests: if test_dir.find(item) > -1: prune = False # Return the inverse of will_run to indicate that this path should be pruned return prune def augmentParameters(self, filename, tester): params = tester.parameters() # We are going to do some formatting of the path that is printed # Case 1. If the test directory (normally matches the input_file_name) comes first, # we will simply remove it from the path # Case 2. If the test directory is somewhere in the middle then we should preserve # the leading part of the path test_dir = os.path.abspath(os.path.dirname(filename)) relative_path = test_dir.replace(self.run_tests_dir, '') relative_path = relative_path.replace('/' + self.options.input_file_name + '/', ':') relative_path = re.sub('^[/:]*', '', relative_path) # Trim slashes and colons formatted_name = relative_path + '.' + tester.name() params['test_name'] = formatted_name params['test_dir'] = test_dir params['relative_path'] = relative_path params['executable'] = self.executable params['hostname'] = self.host_name params['moose_dir'] = self.moose_dir params['base_dir'] = self.base_dir if params.isValid('prereq'): if type(params['prereq']) != list: print "Option 'prereq' needs to be of type list in " + params['test_name'] sys.exit(1) params['prereq'] = [relative_path.replace('/tests/', '') + '.' + item for item in params['prereq']] # This method splits a lists of tests into two pieces each, the first piece will run the test for # approx. half the number of timesteps and will write out a restart file. The second test will # then complete the run using the MOOSE recover option. def appendRecoverableTests(self, testers): new_tests = [] for part1 in testers: if part1.parameters()['recover'] == True: # Clone the test specs part2 = copy.deepcopy(part1) # Part 1: part1_params = part1.parameters() part1_params['test_name'] += '_part1' part1_params['cli_args'].append('--half-transient :Outputs/checkpoint=true') part1_params['skip_checks'] = True # Part 2: part2_params = part2.parameters() part2_params['prereq'].append(part1.parameters()['test_name']) part2_params['delete_output_before_running'] = False part2_params['cli_args'].append('--recover') part2_params.addParam('caveats', ['recover'], "") new_tests.append(part2) testers.extend(new_tests) return testers ## Finish the test by inspecting the raw output def testOutputAndFinish(self, tester, retcode, output, start=0, end=0): caveats = [] test = tester.specs # Need to refactor if test.isValid('caveats'): caveats = test['caveats'] if self.options.pbs and self.options.processingPBS == False: (reason, output) = self.buildPBSBatch(output, tester) elif self.options.dry_run: reason = 'DRY_RUN' output += '\n'.join(tester.processResultsCommand(self.moose_dir, self.options)) else: (reason, output) = tester.processResults(self.moose_dir, retcode, self.options, output) if self.options.scaling and test['scale_refine']: caveats.append('scaled') did_pass = True if reason == '': # It ran OK but is this test set to be skipped on any platform, compiler, so other reason? if self.options.extra_info: checks = ['platform', 'compiler', 'petsc_version', 'mesh_mode', 'method', 'library_mode', 'dtk', 'unique_ids'] for check in checks: if not 'ALL' in test[check]: caveats.append(', '.join(test[check])) if len(caveats): result = '[' + ', '.join(caveats).upper() + '] OK' elif self.options.pbs and self.options.processingPBS == False: result = 'LAUNCHED' else: result = 'OK' elif reason == 'DRY_RUN': result = 'DRY_RUN' else: result = 'FAILED (%s)' % reason did_pass = False if self.options.pbs and self.options.processingPBS == False and did_pass == True: # Handle the launch result, but do not add it to the results table (except if we learned that QSUB failed to launch for some reason) self.handleTestResult(tester.specs, output, result, start, end, False) return did_pass else: self.handleTestResult(tester.specs, output, result, start, end) return did_pass def getTiming(self, output): time = '' m = re.search(r"Active time=(\S+)", output) if m != None: return m.group(1) def getSolveTime(self, output): time = '' m = re.search(r"solve().*", output) if m != None: return m.group().split()[5] def checkExpectError(self, output, expect_error): if re.search(expect_error, output, re.MULTILINE | re.DOTALL) == None: #print "%" * 100, "\nExpect Error Pattern not found:\n", expect_error, "\n", "%" * 100, "\n" return False else: return True # PBS Defs def checkPBSEmulator(self): try: qstat_process = subprocess.Popen(['qstat', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) qstat_output = qstat_process.communicate() except OSError: # qstat binary is not available print 'qstat not available. Perhaps you need to load the PBS module?' sys.exit(1) if len(qstat_output[1]): # The PBS Emulator has no --version argument, and thus returns output to stderr return True else: return False def processPBSResults(self): # If batch file exists, check the contents for pending tests. if os.path.exists(self.options.pbs): # Build a list of launched jobs batch_file = open(self.options.pbs) batch_list = [y.split(':') for y in [x for x in batch_file.read().split('\n')]] batch_file.close() del batch_list[-1:] # Loop through launched jobs and match the TEST_NAME to determin correct stdout (Output_Path) for job in batch_list: file = '/'.join(job[2].split('/')[:-2]) + '/' + job[3] # Build a Warehouse to hold the MooseObjects warehouse = Warehouse() # Build a Parser to parse the objects parser = Parser(self.factory, warehouse) # Parse it parser.parse(file) # Retrieve the tests from the warehouse testers = warehouse.getAllObjects() for tester in testers: self.augmentParameters(file, tester) for tester in testers: # Build the requested Tester object if job[1] == tester.parameters()['test_name']: # Create Test Type # test = self.factory.create(tester.parameters()['type'], tester) # Get job status via qstat qstat = ['qstat', '-f', '-x', str(job[0])] qstat_command = subprocess.Popen(qstat, stdout=subprocess.PIPE, stderr=subprocess.PIPE) qstat_stdout = qstat_command.communicate()[0] if qstat_stdout != None: output_value = re.search(r'job_state = (\w+)', qstat_stdout).group(1) else: return ('QSTAT NOT FOUND', '') # Report the current status of JOB_ID if output_value == 'F': # F = Finished. Get the exit code reported by qstat exit_code = int(re.search(r'Exit_status = (-?\d+)', qstat_stdout).group(1)) # Read the stdout file if os.path.exists(job[2]): output_file = open(job[2], 'r') # Not sure I am doing this right: I have to change the TEST_DIR to match the temporary cluster_launcher TEST_DIR location, thus violating the tester.specs... tester.parameters()['test_dir'] = '/'.join(job[2].split('/')[:-1]) outfile = output_file.read() output_file.close() self.testOutputAndFinish(tester, exit_code, outfile) else: # I ran into this scenario when the cluster went down, but launched/completed my job :) self.handleTestResult(tester.specs, '', 'FAILED (NO STDOUT FILE)', 0, 0, True) elif output_value == 'R': # Job is currently running self.handleTestResult(tester.specs, '', 'RUNNING', 0, 0, True) elif output_value == 'E': # Job is exiting self.handleTestResult(tester.specs, '', 'EXITING', 0, 0, True) elif output_value == 'Q': # Job is currently queued self.handleTestResult(tester.specs, '', 'QUEUED', 0, 0, True) else: return ('BATCH FILE NOT FOUND', '') def buildPBSBatch(self, output, tester): # Create/Update the batch file if 'command not found' in output: return ('QSUB NOT FOUND', '') else: # Get the Job information from the ClusterLauncher results = re.findall(r'JOB_NAME: (\w+) JOB_ID:.* (\d+).*TEST_NAME: (\S+)', output) if len(results) != 0: file_name = self.options.pbs job_list = open(os.path.abspath(os.path.join(tester.specs['executable'], os.pardir)) + '/' + file_name, 'a') for result in results: (test_dir, job_id, test_name) = result qstat_command = subprocess.Popen(['qstat', '-f', '-x', str(job_id)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) qstat_stdout = qstat_command.communicate()[0] # Get the Output_Path from qstat stdout if qstat_stdout != None: output_value = re.search(r'Output_Path(.*?)(^ +)', qstat_stdout, re.S | re.M).group(1) output_value = output_value.split(':')[1].replace('\n', '').replace('\t', '').strip() else: job_list.close() return ('QSTAT NOT FOUND', '') # Write job_id, test['test_name'], and Ouput_Path to the batch file job_list.write(str(job_id) + ':' + test_name + ':' + output_value + ':' + self.options.input_file_name + '\n') # Return to TestHarness and inform we have launched the job job_list.close() return ('', 'LAUNCHED') else: return ('QSTAT INVALID RESULTS', output) def cleanPBSBatch(self): # Open the PBS batch file and assign it to a list if os.path.exists(self.options.pbs_cleanup): batch_file = open(self.options.pbs_cleanup, 'r') batch_list = [y.split(':') for y in [x for x in batch_file.read().split('\n')]] batch_file.close() del batch_list[-1:] else: print 'PBS batch file not found:', self.options.pbs_cleanup sys.exit(1) # Loop through launched jobs and delete whats found. for job in batch_list: if os.path.exists(job[2]): batch_dir = os.path.abspath(os.path.join(job[2], os.pardir)).split('/') if os.path.exists('/'.join(batch_dir)): shutil.rmtree('/'.join(batch_dir)) if os.path.exists('/'.join(batch_dir[:-1]) + '/' + self.options.pbs_cleanup + '.cluster'): os.remove('/'.join(batch_dir[:-1]) + '/' + self.options.pbs_cleanup + '.cluster') os.remove(self.options.pbs_cleanup) # END PBS Defs ## Update global variables and print output based on the test result # Containing OK means it passed, skipped means skipped, anything else means it failed def handleTestResult(self, specs, output, result, start=0, end=0, add_to_table=True): timing = '' if self.options.timing: timing = self.getTiming(output) elif self.options.store_time: timing = self.getSolveTime(output) # Only add to the test_table if told to. We now have enough cases where we wish to print to the screen, but not # in the 'Final Test Results' area. if add_to_table: self.test_table.append( (specs, output, result, timing, start, end) ) if result.find('OK') != -1 or result.find('DRY_RUN') != -1: self.num_passed += 1 elif result.find('skipped') != -1: self.num_skipped += 1 elif result.find('deleted') != -1: self.num_skipped += 1 elif result.find('LAUNCHED') != -1 or result.find('RUNNING') != -1 or result.find('QUEUED') != -1 or result.find('EXITING') != -1: self.num_pending += 1 else: self.num_failed += 1 self.postRun(specs, timing) if self.options.show_directory: print printResult(specs['relative_path'] + '/' + specs['test_name'].split('/')[-1], result, timing, start, end, self.options) else: print printResult(specs['test_name'], result, timing, start, end, self.options) if self.options.verbose or ('FAILED' in result and not self.options.quiet): output = output.replace('\r', '\n') # replace the carriage returns with newlines lines = output.split('\n'); color = '' if 'EXODIFF' in result or 'CSVDIFF' in result: color = 'YELLOW' elif 'FAILED' in result: color = 'RED' else: color = 'GREEN' test_name = colorText(specs['test_name'] + ": ", color, colored=self.options.colored, code=self.options.code) output = test_name + ("\n" + test_name).join(lines) print output # Print result line again at the bottom of the output for failed tests if self.options.show_directory: print printResult(specs['relative_path'] + '/' + specs['test_name'].split('/')[-1], result, timing, start, end, self.options), "(reprint)" else: print printResult(specs['test_name'], result, timing, start, end, self.options), "(reprint)" if not 'skipped' in result: if self.options.file: if self.options.show_directory: self.file.write(printResult( specs['relative_path'] + '/' + specs['test_name'].split('/')[-1], result, timing, start, end, self.options, color=False) + '\n') self.file.write(output) else: self.file.write(printResult( specs['test_name'], result, timing, start, end, self.options, color=False) + '\n') self.file.write(output) if self.options.sep_files or (self.options.fail_files and 'FAILED' in result) or (self.options.ok_files and result.find('OK') != -1): fname = os.path.join(specs['test_dir'], specs['test_name'].split('/')[-1] + '.' + result[:6] + '.txt') f = open(fname, 'w') f.write(printResult( specs['test_name'], result, timing, start, end, self.options, color=False) + '\n') f.write(output) f.close() # Write the app_name to a file, if the tests passed def writeState(self, app_name): # If we encounter bitten_status_moose environment, build a line itemized list of applications which passed their tests if os.environ.has_key("BITTEN_STATUS_MOOSE"): result_file = open(os.path.join(self.moose_dir, 'test_results.log'), 'a') result_file.write(os.path.split(app_name)[1].split('-')[0] + '\n') result_file.close() # Print final results, close open files, and exit with the correct error code def cleanup(self): # Print the results table again if a bunch of output was spewed to the screen between # tests as they were running if self.options.verbose or (self.num_failed != 0 and not self.options.quiet): print '\n\nFinal Test Results:\n' + ('-' * (TERM_COLS-1)) for (test, output, result, timing, start, end) in sorted(self.test_table, key=lambda x: x[2], reverse=True): if self.options.show_directory: print printResult(test['relative_path'] + '/' + specs['test_name'].split('/')[-1], result, timing, start, end, self.options) else: print printResult(test['test_name'], result, timing, start, end, self.options) time = clock() - self.start_time print '-' * (TERM_COLS-1) print 'Ran %d tests in %.1f seconds' % (self.num_passed+self.num_failed, time) if self.num_passed: summary = '<g>%d passed</g>' else: summary = '<b>%d passed</b>' summary += ', <b>%d skipped</b>' if self.num_pending: summary += ', <c>%d pending</c>' else: summary += ', <b>%d pending</b>' if self.num_failed: summary += ', <r>%d FAILED</r>' else: summary += ', <b>%d failed</b>' # Mask off TestHarness error codes to report parser errors if self.error_code & 0x0F: summary += ', <r>FATAL PARSER ERROR</r>' print colorText( summary % (self.num_passed, self.num_skipped, self.num_pending, self.num_failed), "", html = True, \ colored=self.options.colored, code=self.options.code ) if self.options.pbs: print '\nYour PBS batch file:', self.options.pbs if self.file: self.file.close() if self.num_failed == 0: self.writeState(self.executable) def initialize(self, argv, app_name): # Initialize the parallel runner with how many tests to run in parallel self.runner = RunParallel(self, self.options.jobs, self.options.load) ## Save executable-under-test name to self.executable self.executable = os.getcwd() + '/' + app_name + '-' + self.options.method # Save the output dir since the current working directory changes during tests self.output_dir = os.path.join(os.path.abspath(os.path.dirname(sys.argv[0])), self.options.output_dir) # Create the output dir if they ask for it. It is easier to ask for forgiveness than permission if self.options.output_dir: try: os.makedirs(self.output_dir) except OSError, ex: if ex.errno == errno.EEXIST: pass else: raise # Open the file to redirect output to and set the quiet option for file output if self.options.file: self.file = open(os.path.join(self.output_dir, self.options.file), 'w') if self.options.file or self.options.fail_files or self.options.sep_files: self.options.quiet = True ## Parse command line options and assign them to self.options def parseCLArgs(self, argv): parser = argparse.ArgumentParser(description='A tool used to test MOOSE based applications') parser.add_argument('test_name', nargs=argparse.REMAINDER) parser.add_argument('--opt', action='store_const', dest='method', const='opt', help='test the app_name-opt binary') parser.add_argument('--dbg', action='store_const', dest='method', const='dbg', help='test the app_name-dbg binary') parser.add_argument('--devel', action='store_const', dest='method', const='devel', help='test the app_name-devel binary') parser.add_argument('--oprof', action='store_const', dest='method', const='oprof', help='test the app_name-oprof binary') parser.add_argument('--pro', action='store_const', dest='method', const='pro', help='test the app_name-pro binary') parser.add_argument('-j', '--jobs', nargs=1, metavar='int', action='store', type=int, dest='jobs', default=1, help='run test binaries in parallel') parser.add_argument('-e', action='store_true', dest='extra_info', help='Display "extra" information including all caveats and deleted tests') parser.add_argument('-c', '--no-color', action='store_false', dest='colored', help='Do not show colored output') parser.add_argument('--heavy', action='store_true', dest='heavy_tests', help='Run tests marked with HEAVY : True') parser.add_argument('--all-tests', action='store_true', dest='all_tests', help='Run normal tests and tests marked with HEAVY : True') parser.add_argument('-g', '--group', action='store', type=str, dest='group', default='ALL', help='Run only tests in the named group') parser.add_argument('--not_group', action='store', type=str, dest='not_group', help='Run only tests NOT in the named group') # parser.add_argument('--dofs', action='store', dest='dofs', help='This option is for automatic scaling which is not currently implemented in MOOSE 2.0') parser.add_argument('--dbfile', nargs='?', action='store', dest='dbFile', help='Location to timings data base file. If not set, assumes $HOME/timingDB/timing.sqlite') parser.add_argument('-l', '--load-average', action='store', type=float, dest='load', default=64.0, help='Do not run additional tests if the load average is at least LOAD') parser.add_argument('-t', '--timing', action='store_true', dest='timing', help='Report Timing information for passing tests') parser.add_argument('-s', '--scale', action='store_true', dest='scaling', help='Scale problems that have SCALE_REFINE set') parser.add_argument('-i', nargs=1, action='store', type=str, dest='input_file_name', default='tests', help='The default test specification file to look for (default="tests").') parser.add_argument('--libmesh_dir', nargs=1, action='store', type=str, dest='libmesh_dir', help='Currently only needed for bitten code coverage') parser.add_argument('--skip-config-checks', action='store_true', dest='skip_config_checks', help='Skip configuration checks (all tests will run regardless of restrictions)') parser.add_argument('--parallel', '-p', nargs='?', action='store', type=int, dest='parallel', const=1, help='Number of processors to use when running mpiexec') parser.add_argument('--n-threads', nargs=1, action='store', type=int, dest='nthreads', default=1, help='Number of threads to use when running mpiexec') parser.add_argument('-d', action='store_true', dest='debug_harness', help='Turn on Test Harness debugging') parser.add_argument('--recover', action='store_true', dest='enable_recover', help='Run a test in recover mode') parser.add_argument('--valgrind', action='store_const', dest='valgrind_mode', const='NORMAL', help='Run normal valgrind tests') parser.add_argument('--valgrind-heavy', action='store_const', dest='valgrind_mode', const='HEAVY', help='Run heavy valgrind tests') parser.add_argument('--valgrind-max-fails', nargs=1, type=int, dest='valgrind_max_fails', default=5, help='The number of valgrind tests allowed to fail before any additional valgrind tests will run') parser.add_argument('--max-fails', nargs=1, type=int, dest='max_fails', default=50, help='The number of tests allowed to fail before any additional tests will run') parser.add_argument('--pbs', nargs='?', metavar='batch_file', dest='pbs', const='generate', help='Enable launching tests via PBS. If no batch file is specified one will be created for you') parser.add_argument('--pbs-cleanup', nargs=1, metavar='batch_file', help='Clean up the directories/files created by PBS. You must supply the same batch_file used to launch PBS.') parser.add_argument('--re', action='store', type=str, dest='reg_exp', help='Run tests that match --re=regular_expression') # Options that pass straight through to the executable parser.add_argument('--parallel-mesh', action='store_true', dest='parallel_mesh', help='Pass "--parallel-mesh" to executable') parser.add_argument('--error', action='store_true', help='Run the tests with warnings as errors (Pass "--error" to executable)') parser.add_argument('--error-unused', action='store_true', help='Run the tests with errors on unused parameters (Pass "--error-unused" to executable)') # Option to use for passing unwrapped options to the executable parser.add_argument('--cli-args', nargs='?', type=str, dest='cli_args', help='Append the following list of arguments to the command line (Encapsulate the command in quotes)') parser.add_argument('--dry-run', action='store_true', dest='dry_run', help="Pass --dry-run to print commands to run, but don't actually run them") outputgroup = parser.add_argument_group('Output Options', 'These options control the output of the test harness. The sep-files options write output to files named test_name.TEST_RESULT.txt. All file output will overwrite old files') outputgroup.add_argument('-v', '--verbose', action='store_true', dest='verbose', help='show the output of every test') outputgroup.add_argument('-q', '--quiet', action='store_true', dest='quiet', help='only show the result of every test, don\'t show test output even if it fails') outputgroup.add_argument('--no-report', action='store_false', dest='report_skipped', help='do not report skipped tests') outputgroup.add_argument('--show-directory', action='store_true', dest='show_directory', help='Print test directory path in out messages') outputgroup.add_argument('-o', '--output-dir', nargs=1, metavar='directory', dest='output_dir', default='', help='Save all output files in the directory, and create it if necessary') outputgroup.add_argument('-f', '--file', nargs=1, action='store', dest='file', help='Write verbose output of each test to FILE and quiet output to terminal') outputgroup.add_argument('-x', '--sep-files', action='store_true', dest='sep_files', help='Write the output of each test to a separate file. Only quiet output to terminal. This is equivalant to \'--sep-files-fail --sep-files-ok\'') outputgroup.add_argument('--sep-files-ok', action='store_true', dest='ok_files', help='Write the output of each passed test to a separate file') outputgroup.add_argument('-a', '--sep-files-fail', action='store_true', dest='fail_files', help='Write the output of each FAILED test to a separate file. Only quiet output to terminal.') outputgroup.add_argument("--store-timing", action="store_true", dest="store_time", help="Store timing in the SQL database: $HOME/timingDB/timing.sqlite A parent directory (timingDB) must exist.") outputgroup.add_argument("--revision", nargs=1, action="store", type=str, dest="revision", help="The current revision being tested. Required when using --store-timing.") outputgroup.add_argument("--yaml", action="store_true", dest="yaml", help="Dump the parameters for the testers in Yaml Format") outputgroup.add_argument("--dump", action="store_true", dest="dump", help="Dump the parameters for the testers in GetPot Format") code = True if self.code.decode('hex') in argv: del argv[argv.index(self.code.decode('hex'))] code = False self.options = parser.parse_args(argv[1:]) self.tests = self.options.test_name self.options.code = code # Convert all list based options of length one to scalars for key, value in vars(self.options).items(): if type(value) == list and len(value) == 1: tmp_str = getattr(self.options, key) setattr(self.options, key, value[0]) self.checkAndUpdateCLArgs() ## Called after options are parsed from the command line # Exit if options don't make any sense, print warnings if they are merely weird def checkAndUpdateCLArgs(self): opts = self.options if opts.output_dir and not (opts.file or opts.sep_files or opts.fail_files or opts.ok_files): print 'WARNING: --output-dir is specified but no output files will be saved, use -f or a --sep-files option' if opts.group == opts.not_group: print 'ERROR: The group and not_group options cannot specify the same group' sys.exit(1) if opts.store_time and not (opts.revision): print 'ERROR: --store-timing is specified but no revision' sys.exit(1) if opts.store_time: # timing returns Active Time, while store_timing returns Solve Time. # Thus we need to turn off timing. opts.timing = False opts.scaling = True if opts.valgrind_mode and (opts.parallel > 1 or opts.nthreads > 1): print 'ERROR: --parallel and/or --threads can not be used with --valgrind' sys.exit(1) # Update any keys from the environment as necessary if not self.options.method: if os.environ.has_key('METHOD'): self.options.method = os.environ['METHOD'] else: self.options.method = 'opt' if not self.options.valgrind_mode: self.options.valgrind_mode = '' # Update libmesh_dir to reflect arguments if opts.libmesh_dir: self.libmesh_dir = opts.libmesh_dir # Generate a batch file if PBS argument supplied with out a file if opts.pbs == 'generate': largest_serial_num = 0 for name in os.listdir('.'): m = re.search('pbs_(\d{3})', name) if m != None and int(m.group(1)) > largest_serial_num: largest_serial_num = int(m.group(1)) opts.pbs = "pbs_" + str(largest_serial_num+1).zfill(3) # When running heavy tests, we'll make sure we use --no-report if opts.heavy_tests: self.options.report_skipped = False def postRun(self, specs, timing): return def preRun(self): if self.options.yaml: self.factory.printYaml("Tests") sys.exit(0) elif self.options.dump: self.factory.printDump("Tests") sys.exit(0) if self.options.pbs_cleanup: self.cleanPBSBatch() sys.exit(0) def getOptions(self): return self.options ################################################################################################################################# # The TestTimer TestHarness # This method finds and stores timing for individual tests. It is activated with --store-timing ################################################################################################################################# CREATE_TABLE = """create table timing ( app_name text, test_name text, revision text, date int, seconds real, scale int, load real );""" class TestTimer(TestHarness): def __init__(self, argv, app_name, moose_dir): TestHarness.__init__(self, argv, app_name, moose_dir) try: from sqlite3 import dbapi2 as sqlite except: print 'Error: --store-timing requires the sqlite3 python module.' sys.exit(1) self.app_name = app_name self.db_file = self.options.dbFile if not self.db_file: home = os.environ['HOME'] self.db_file = os.path.join(home, 'timingDB/timing.sqlite') if not os.path.exists(self.db_file): print 'Warning: creating new database at default location: ' + str(self.db_file) self.createDB(self.db_file) else: print 'Warning: Assuming database location ' + self.db_file def createDB(self, fname): from sqlite3 import dbapi2 as sqlite print 'Creating empty database at ' + fname con = sqlite.connect(fname) cr = con.cursor() cr.execute(CREATE_TABLE) con.commit() def preRun(self): from sqlite3 import dbapi2 as sqlite # Delete previous data if app_name and repo revision are found con = sqlite.connect(self.db_file) cr = con.cursor() cr.execute('delete from timing where app_name = ? and revision = ?', (self.app_name, self.options.revision)) con.commit() # After the run store the results in the database def postRun(self, test, timing): from sqlite3 import dbapi2 as sqlite con = sqlite.connect(self.db_file) cr = con.cursor() timestamp = int(time.time()) load = os.getloadavg()[0] # accumulate the test results data = [] sum_time = 0 num = 0 parse_failed = False # Were only interested in storing scaled data if timing != None and test['scale_refine'] != 0: sum_time += float(timing) num += 1 data.append( (self.app_name, test['test_name'].split('/').pop(), self.options.revision, timestamp, timing, test['scale_refine'], load) ) # Insert the data into the database cr.executemany('insert into timing values (?,?,?,?,?,?,?)', data) con.commit()
giopastor/moose
python/TestHarness/TestHarness.py
Python
lgpl-2.1
43,648
[ "MOOSE", "VTK" ]
9e927497387b03dcd8a74da6b3d72a63dbc470df04edf88070f34ce1f3d562ed
#!/usr/bin/env python ############################################################################### # # __template__.py - Description! # ############################################################################### # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################### __author__ = "Josh Daly" __copyright__ = "Copyright 2014" __credits__ = ["Josh Daly"] __license__ = "GPL3" __version__ = "0.0.1" __maintainer__ = "Josh Daly" __email__ = "" __status__ = "Development" ############################################################################### import argparse import sys import glob from multiprocessing import Pool from subprocess import Popen, PIPE from Bio import SeqIO from Bio.Seq import Seq #import os #import errno #import numpy as np #np.seterr(all='raise') #import matplotlib as mpl #import matplotlib.pyplot as plt #from mpl_toolkits.mplot3d import axes3d, Axes3D #from pylab import plot,subplot,axis,stem,show,figure ############################################################################### ############################################################################### ############################################################################### ############################################################################### # put classes here ############################################################################### ############################################################################### ############################################################################### ############################################################################### def runCommand(cmd): """Run a command and take care of stdout expects 'cmd' to be a string like "foo -b ar" returns (stdout, stderr) """ p = Popen(cmd.split(' '), stdout=PIPE) return p.communicate() def doWork( args ): """ Main wrapper""" # objects vectorsFasta = {} vectorsBlast = [] # read in fasta file for accession,sequence in SeqIO.to_dict(SeqIO.parse(args.fasta,"fasta")).items(): vectorsFasta[accession] = sequence.seq # read in vector counts file with open(args.vectorCounts, 'r') as fh: for l in fh: tabs = l.rstrip().split("\t") count = int(tabs[0]) pidsqid = tabs[2] if count >= args.threshold: print pidsqid """ # parse fasta file using biopython for accession,sequence in SeqIO.to_dict(SeqIO.parse(c_file,"fasta")).items(): if accession in genomes_dict: pass else: #print accession genomes_dict[accession] = [len(sequence),img_id, sequence.seq """ ############################################################################### ############################################################################### ############################################################################### ############################################################################### if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f','--fasta', help="...") parser.add_argument('-v','--vectorCounts', help="...") parser.add_argument('-t','--threshold', type=int, default=0,help="...") #parser.add_argument('input_file2', help="gut_img_ids") #parser.add_argument('input_file3', help="oral_img_ids") #parser.add_argument('input_file4', help="ids_present_gut_and_oral.csv") #parser.add_argument('output_file', help="output file") #parser.add_argument('positional_arg3', nargs='+', help="Multiple values") #parser.add_argument('-X', '--optional_X', action="store_true", default=False, help="flag") #parser.add_argument('-X', '--optional_X', action="store_true", type=int,default=False, help="flag") # parse the arguments args = parser.parse_args() # do what we came here to do doWork(args) ############################################################################### ############################################################################### ############################################################################### ###############################################################################
JoshDaly/scriptShed
parse_blast_vectors.trackm.py
Python
gpl-2.0
4,899
[ "Biopython" ]
364fb867e91e74750c7b770896e649be285f0ce62778578ca7ec96100bb6b6dd
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Interface with command line GULP. http://projects.ivec.org WARNING: you need to have GULP installed on your system. """ __author__ = "Bharat Medasani, Wenhao Sun" __copyright__ = "Copyright 2013, The Materials Project" __version__ = "1.0" __maintainer__ = "Bharat Medasani" __email__ = "[email protected],[email protected]" __status__ = "Production" __date__ = "$Jun 22, 2013M$" import subprocess import os import re from pymatgen.core.periodic_table import Element from pymatgen.core.lattice import Lattice from pymatgen.core.structure import Structure from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.analysis.bond_valence import BVAnalyzer from monty.tempfile import ScratchDir _anions = set(map(Element, ["O", "S", "F", "Cl", "Br", "N", "P"])) _cations = set(map(Element, [ "Li", "Na", "K", # alkali metals "Be", "Mg", "Ca", # alkaline metals "Al", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn", "Ge", "As", "Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Sb", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg", "Tl", "Pb", "Bi", "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu" ])) _gulp_kw = { # Control of calculation type "angle", "bond", "cosmo", "cosmic", "cost", "defect", "distance", "eem", "efg", "fit", "free_energy", "gasteiger", "genetic", "gradients", "md", "montecarlo", "noautobond", "noenergy", "optimise", "pot", "predict", "preserve_Q", "property", "phonon", "qeq", "qbond", "single", "sm", "static_first", "torsion", "transition_state", # Geometric variable specification "breathe", "bulk_noopt", "cellonly", "conp", "conv", "isotropic", "orthorhombic", "nobreathe", "noflgs", "shell", "unfix", # Algorithm "c6", "dipole", "fbfgs", "fix_molecule", "full", "hill", "kfull", "marvinSE", "madelung", "minimum_image", "molecule", "molmec", "molq", "newda", "noanisotropic_2b", "nod2sym", "nodsymmetry", "noelectrostatics", "noexclude", "nofcentral", "nofirst_point", "noksymmetry", "nolist_md", "nomcediff", "nonanal", "noquicksearch", "noreal", "norecip", "norepulsive", "nosasinitevery", "nosderv", "nozeropt", "numerical", "qiter", "qok", "spatial", "storevectors", "nomolecularinternalke", "voight", "zsisa", # Optimisation method "conjugate", "dfp", "lbfgs", "numdiag", "positive", "rfo", "unit", # Output control "average", "broaden_dos", "cartesian", "compare", "conserved", "dcharge", "dynamical_matrix", "eigenvectors", "global", "hessian", "hexagonal", "intensity", "linmin", "meanke", "nodensity_out", "nodpsym", "nofirst_point", "nofrequency", "nokpoints", "operators", "outcon", "prt_eam", "prt_two", "prt_regi_before", "qsas", "restore", "save", "terse", # Structure control "full", "hexagonal", "lower_symmetry", "nosymmetry", # PDF control "PDF", "PDFcut", "PDFbelow", "PDFkeep", "coreinfo", "nowidth", "nopartial", # Miscellaneous "nomodcoord", "oldunits", "zero_potential" } class GulpIO: """ To generate GULP input and process output """ def keyword_line(self, *args): r""" Checks if the input args are proper gulp keywords and generates the 1st line of gulp input. Full keywords are expected. Args: \\*args: 1st line keywords """ # if len(list(filter(lambda x: x in _gulp_kw, args))) != len(args): # raise GulpError("Wrong keywords given") gin = " ".join(args) gin += "\n" return gin def structure_lines(self, structure, cell_flg=True, frac_flg=True, anion_shell_flg=True, cation_shell_flg=False, symm_flg=True): """ Generates GULP input string corresponding to pymatgen structure. Args: structure: pymatgen Structure object cell_flg (default = True): Option to use lattice parameters. fractional_flg (default = True): If True, fractional coordinates are used. Else, cartesian coodinates in Angstroms are used. ****** GULP convention is to use fractional coordinates for periodic structures and cartesian coordinates for non-periodic structures. ****** anion_shell_flg (default = True): If True, anions are considered polarizable. cation_shell_flg (default = False): If True, cations are considered polarizable. symm_flg (default = True): If True, symmetry information is also written. Returns: string containing structure for GULP input """ gin = "" if cell_flg: gin += "cell\n" l = structure.lattice lat_str = "{0:6f} {1:6f} {2:6f} {3:6f} {4:6f} {5:6f}".format( l.a, l.b, l.c, l.alpha, l.beta, l.gamma ) gin += lat_str + "\n" if frac_flg: gin += "frac\n" coord_attr = "frac_coords" else: gin += "cart\n" coord_attr = "coords" for site in structure.sites: coord = [str(i) for i in getattr(site, coord_attr)] specie = site.specie core_site_desc = specie.symbol + " core " + " ".join(coord) + "\n" gin += core_site_desc if ((specie in _anions and anion_shell_flg) or (specie in _cations and cation_shell_flg)): shel_site_desc = specie.symbol + " shel " + " ".join( coord) + "\n" gin += shel_site_desc else: pass if symm_flg: gin += "space\n" gin += str(SpacegroupAnalyzer(structure).get_space_group_number()) + "\n" return gin def specie_potential_lines(self, structure, potential, **kwargs): r""" Generates GULP input specie and potential string for pymatgen structure. Args: structure: pymatgen.core.structure.Structure object potential: String specifying the type of potential used \\*\\*kwargs: Additional parameters related to potential. For potential == "buckingham", anion_shell_flg (default = False): If True, anions are considered polarizable. anion_core_chrg=float anion_shell_chrg=float cation_shell_flg (default = False): If True, cations are considered polarizable. cation_core_chrg=float cation_shell_chrg=float Returns: string containing specie and potential specification for gulp input. """ raise NotImplementedError("gulp_specie_potential not yet implemented." "\nUse library_line instead") def library_line(self, file_name): """ Specifies GULP library file to read species and potential parameters. If using library don't specify species and potential in the input file and vice versa. Make sure the elements of structure are in the library file. Args: file_name: Name of GULP library file Returns: GULP input string specifying library option """ gulplib_set = 'GULP_LIB' in os.environ.keys() def readable(f): return os.path.isfile(f) and os.access(f, os.R_OK) gin = "" dirpath, fname = os.path.split(file_name) if dirpath and readable(file_name): # Full path specified gin = 'library ' + file_name else: fpath = os.path.join(os.getcwd(), file_name) # Check current dir if readable(fpath): gin = 'library ' + fpath elif gulplib_set: # Check the GULP_LIB path fpath = os.path.join(os.environ['GULP_LIB'], file_name) if readable(fpath): gin = 'library ' + file_name if gin: return gin + "\n" else: raise GulpError('GULP Library not found') def buckingham_input(self, structure, keywords, library=None, uc=True, valence_dict=None): """ Gets a GULP input for an oxide structure and buckingham potential from library. Args: structure: pymatgen.core.structure.Structure keywords: GULP first line keywords. library (Default=None): File containing the species and potential. uc (Default=True): Unit Cell Flag. valence_dict: {El: valence} """ gin = self.keyword_line(*keywords) gin += self.structure_lines(structure, symm_flg=not uc) if not library: gin += self.buckingham_potential(structure, valence_dict) else: gin += self.library_line(library) return gin def buckingham_potential(self, structure, val_dict=None): """ Generate species, buckingham, and spring options for an oxide structure using the parameters in default libraries. Ref: 1. G.V. Lewis and C.R.A. Catlow, J. Phys. C: Solid State Phys., 18, 1149-1161 (1985) 2. T.S.Bush, J.D.Gale, C.R.A.Catlow and P.D. Battle, J. Mater Chem., 4, 831-837 (1994) Args: structure: pymatgen.core.structure.Structure val_dict (Needed if structure is not charge neutral): {El:valence} dict, where El is element. """ if not val_dict: try: # If structure is oxidation state decorated, use that first. el = [site.specie.symbol for site in structure] valences = [site.specie.oxi_state for site in structure] val_dict = dict(zip(el, valences)) except AttributeError: bv = BVAnalyzer() el = [site.specie.symbol for site in structure] valences = bv.get_valences(structure) val_dict = dict(zip(el, valences)) # Try bush library first bpb = BuckinghamPotential('bush') bpl = BuckinghamPotential('lewis') gin = "" for key in val_dict.keys(): use_bush = True el = re.sub(r'[1-9,+,\-]', '', key) if el not in bpb.species_dict.keys(): use_bush = False elif val_dict[key] != bpb.species_dict[el]['oxi']: use_bush = False if use_bush: gin += "species \n" gin += bpb.species_dict[el]['inp_str'] gin += "buckingham \n" gin += bpb.pot_dict[el] gin += "spring \n" gin += bpb.spring_dict[el] continue # Try lewis library next if element is not in bush # use_lewis = True if el != "O": # For metals the key is "Metal_OxiState+" k = el + '_' + str(int(val_dict[key])) + '+' if k not in bpl.species_dict.keys(): # use_lewis = False raise GulpError("Element {} not in library".format(k)) gin += "species\n" gin += bpl.species_dict[k] gin += "buckingham\n" gin += bpl.pot_dict[k] else: gin += "species\n" k = "O_core" gin += bpl.species_dict[k] k = "O_shel" gin += bpl.species_dict[k] gin += "buckingham\n" gin += bpl.pot_dict[key] gin += 'spring\n' gin += bpl.spring_dict[key] return gin def tersoff_input(self, structure, periodic=False, uc=True, *keywords): """ Gets a GULP input with Tersoff potential for an oxide structure Args: structure: pymatgen.core.structure.Structure periodic (Default=False): Flag denoting whether periodic boundary conditions are used library (Default=None): File containing the species and potential. uc (Default=True): Unit Cell Flag. keywords: GULP first line keywords. """ # gin="static noelectrostatics \n " gin = self.keyword_line(*keywords) gin += self.structure_lines( structure, cell_flg=periodic, frac_flg=periodic, anion_shell_flg=False, cation_shell_flg=False, symm_flg=not uc ) gin += self.tersoff_potential(structure) return gin def tersoff_potential(self, structure): """ Generate the species, tersoff potential lines for an oxide structure Args: structure: pymatgen.core.structure.Structure """ bv = BVAnalyzer() el = [site.specie.symbol for site in structure] valences = bv.get_valences(structure) el_val_dict = dict(zip(el, valences)) gin = "species \n" qerfstring = "qerfc\n" for key in el_val_dict.keys(): if key != "O" and el_val_dict[key] % 1 != 0: raise SystemError("Oxide has mixed valence on metal") specie_string = key + " core " + str(el_val_dict[key]) + "\n" gin += specie_string qerfstring += key + " " + key + " 0.6000 10.0000 \n" gin += "# noelectrostatics \n Morse \n" met_oxi_ters = TersoffPotential().data for key in el_val_dict.keys(): if key != "O": metal = key + "(" + str(int(el_val_dict[key])) + ")" ters_pot_str = met_oxi_ters[metal] gin += ters_pot_str gin += qerfstring return gin def get_energy(self, gout): """ Args: gout (): Returns: Energy """ energy = None for line in gout.split("\n"): if "Total lattice energy" in line and "eV" in line: energy = line.split() elif "Non-primitive unit cell" in line and "eV" in line: energy = line.split() if energy: return float(energy[4]) else: raise GulpError("Energy not found in Gulp output") def get_relaxed_structure(self, gout): """ Args: gout (): Returns: (Structure) relaxed structure. """ # Find the structure lines structure_lines = [] cell_param_lines = [] output_lines = gout.split("\n") no_lines = len(output_lines) i = 0 # Compute the input lattice parameters while i < no_lines: line = output_lines[i] if "Full cell parameters" in line: i += 2 line = output_lines[i] a = float(line.split()[8]) alpha = float(line.split()[11]) line = output_lines[i + 1] b = float(line.split()[8]) beta = float(line.split()[11]) line = output_lines[i + 2] c = float(line.split()[8]) gamma = float(line.split()[11]) i += 3 break elif "Cell parameters" in line: i += 2 line = output_lines[i] a = float(line.split()[2]) alpha = float(line.split()[5]) line = output_lines[i + 1] b = float(line.split()[2]) beta = float(line.split()[5]) line = output_lines[i + 2] c = float(line.split()[2]) gamma = float(line.split()[5]) i += 3 break else: i += 1 while i < no_lines: line = output_lines[i] if "Final fractional coordinates of atoms" in line: # read the site coordinates in the following lines i += 6 line = output_lines[i] while line[0:2] != '--': structure_lines.append(line) i += 1 line = output_lines[i] # read the cell parameters i += 9 line = output_lines[i] if "Final cell parameters" in line: i += 3 for del_i in range(6): line = output_lines[i + del_i] cell_param_lines.append(line) break else: i += 1 # Process the structure lines if structure_lines: sp = [] coords = [] for line in structure_lines: fields = line.split() if fields[2] == 'c': sp.append(fields[1]) coords.append(list(float(x) for x in fields[3:6])) else: raise IOError("No structure found") if cell_param_lines: a = float(cell_param_lines[0].split()[1]) b = float(cell_param_lines[1].split()[1]) c = float(cell_param_lines[2].split()[1]) alpha = float(cell_param_lines[3].split()[1]) beta = float(cell_param_lines[4].split()[1]) gamma = float(cell_param_lines[5].split()[1]) latt = Lattice.from_parameters(a, b, c, alpha, beta, gamma) return Structure(latt, sp, coords) class GulpCaller: """ Class to run gulp from commandline """ def __init__(self, cmd='gulp'): """ Initialize with the executable if not in the standard path Args: cmd: Command. Defaults to gulp. """ def is_exe(f): return os.path.isfile(f) and os.access(f, os.X_OK) fpath, fname = os.path.split(cmd) if fpath: if is_exe(cmd): self._gulp_cmd = cmd return else: for path in os.environ['PATH'].split(os.pathsep): path = path.strip('"') file = os.path.join(path, cmd) if is_exe(file): self._gulp_cmd = file return raise GulpError("Executable not found") def run(self, gin): """ Run GULP using the gin as input Args: gin: GULP input string Returns: gout: GULP output string """ with ScratchDir("."): p = subprocess.Popen( self._gulp_cmd, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE ) out, err = p.communicate(bytearray(gin, "utf-8")) out = out.decode("utf-8") err = err.decode("utf-8") if "Error" in err or "error" in err: print(gin) print("----output_0---------") print(out) print("----End of output_0------\n\n\n") print("----output_1--------") print(out) print("----End of output_1------") raise GulpError(err) # We may not need this if "ERROR" in out: raise GulpError(out) # Sometimes optimisation may fail to reach convergence conv_err_string = "Conditions for a minimum have not been satisfied" if conv_err_string in out: raise GulpConvergenceError() gout = "" for line in out.split("\n"): gout = gout + line + "\n" return gout def get_energy_tersoff(structure, gulp_cmd='gulp'): """ Compute the energy of a structure using Tersoff potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place """ gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.tersoff_input(structure) gout = gc.run(gin) return gio.get_energy(gout) def get_energy_buckingham(structure, gulp_cmd='gulp', keywords=('optimise', 'conp', 'qok'), valence_dict=None): """ Compute the energy of a structure using Buckingham potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place keywords: GULP first line keywords valence_dict: {El: valence}. Needed if the structure is not charge neutral. """ gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.buckingham_input( structure, keywords, valence_dict=valence_dict ) gout = gc.run(gin) return gio.get_energy(gout) def get_energy_relax_structure_buckingham(structure, gulp_cmd='gulp', keywords=('optimise', 'conp'), valence_dict=None): """ Relax a structure and compute the energy using Buckingham potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place keywords: GULP first line keywords valence_dict: {El: valence}. Needed if the structure is not charge neutral. """ gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.buckingham_input( structure, keywords, valence_dict=valence_dict ) gout = gc.run(gin) energy = gio.get_energy(gout) relax_structure = gio.get_relaxed_structure(gout) return energy, relax_structure class GulpError(Exception): """ Exception class for GULP. Raised when the GULP gives an error """ def __init__(self, msg): """ Args: msg (str): Message """ self.msg = msg def __str__(self): return "GulpError : " + self.msg class GulpConvergenceError(Exception): """ Exception class for GULP. Raised when proper convergence is not reached in Mott-Littleton defect energy optimisation procedure in GULP """ def __init__(self, msg=""): """ Args: msg (str): Message """ self.msg = msg def __str__(self): return self.msg class BuckinghamPotential: """ Generate the Buckingham Potential Table from the bush.lib and lewis.lib. Ref: T.S.Bush, J.D.Gale, C.R.A.Catlow and P.D. Battle, J. Mater Chem., 4, 831-837 (1994). G.V. Lewis and C.R.A. Catlow, J. Phys. C: Solid State Phys., 18, 1149-1161 (1985) """ def __init__(self, bush_lewis_flag): """ Args: bush_lewis_flag (str): Flag for using Bush or Lewis potential. """ assert bush_lewis_flag in {'bush', 'lewis'} pot_file = "bush.lib" if bush_lewis_flag == "bush" else "lewis.lib" with open(os.path.join(os.environ["GULP_LIB"], pot_file), 'rt') as f: # In lewis.lib there is no shell for cation species_dict, pot_dict, spring_dict = {}, {}, {} sp_flg, pot_flg, spring_flg = False, False, False for row in f: if row[0] == "#": continue if row.split()[0] == "species": sp_flg, pot_flg, spring_flg = True, False, False continue if row.split()[0] == "buckingham": sp_flg, pot_flg, spring_flg = False, True, False continue if row.split()[0] == "spring": sp_flg, pot_flg, spring_flg = False, False, True continue elmnt = row.split()[0] if sp_flg: if bush_lewis_flag == "bush": if elmnt not in species_dict.keys(): species_dict[elmnt] = {'inp_str': '', 'oxi': 0} species_dict[elmnt]['inp_str'] += row species_dict[elmnt]['oxi'] += float(row.split()[2]) elif bush_lewis_flag == "lewis": if elmnt == "O": if row.split()[1] == "core": species_dict["O_core"] = row if row.split()[1] == "shel": species_dict["O_shel"] = row else: metal = elmnt.split('_')[0] # oxi_state = metaloxi.split('_')[1][0] species_dict[elmnt] = metal + " core " + row.split()[2] + "\n" continue if pot_flg: if bush_lewis_flag == "bush": pot_dict[elmnt] = row elif bush_lewis_flag == "lewis": if elmnt == "O": pot_dict["O"] = row else: metal = elmnt.split('_')[0] # oxi_state = metaloxi.split('_')[1][0] pot_dict[elmnt] = metal + " " + " ".join( row.split()[1:]) + "\n" continue if spring_flg: spring_dict[elmnt] = row if bush_lewis_flag == "bush": # Fill the null keys in spring dict with empty strings for key in pot_dict.keys(): if key not in spring_dict.keys(): spring_dict[key] = "" self.species_dict = species_dict self.pot_dict = pot_dict self.spring_dict = spring_dict class TersoffPotential: """ Generate Tersoff Potential Table from "OxideTersoffPotentialentials" file """ def __init__(self): """ Init TersoffPotential """ module_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(module_dir, "OxideTersoffPotentials"), "r") as f: data = dict() for row in f: metaloxi = row.split()[0] line = row.split(")") data[metaloxi] = line[1] self.data = data
gVallverdu/pymatgen
pymatgen/command_line/gulp_caller.py
Python
mit
26,619
[ "GULP", "pymatgen" ]
4c73ae2ab8d53f59079effd37c0ba04fbc6a8e794075e50dc9490fd1a0045be0
"""Support for Ecobee Thermostats.""" import collections from typing import Optional import voluptuous as vol from homeassistant.components.climate import ClimateDevice from homeassistant.components.climate.const import ( ATTR_TARGET_TEMP_HIGH, ATTR_TARGET_TEMP_LOW, CURRENT_HVAC_COOL, CURRENT_HVAC_DRY, CURRENT_HVAC_FAN, CURRENT_HVAC_HEAT, CURRENT_HVAC_IDLE, FAN_AUTO, FAN_ON, HVAC_MODE_AUTO, HVAC_MODE_COOL, HVAC_MODE_HEAT, HVAC_MODE_OFF, PRESET_AWAY, PRESET_NONE, SUPPORT_AUX_HEAT, SUPPORT_FAN_MODE, SUPPORT_PRESET_MODE, SUPPORT_TARGET_TEMPERATURE, SUPPORT_TARGET_TEMPERATURE_RANGE, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_TEMPERATURE, STATE_ON, TEMP_FAHRENHEIT, ) import homeassistant.helpers.config_validation as cv from homeassistant.util.temperature import convert from .const import _LOGGER, DOMAIN, ECOBEE_MODEL_TO_NAME, MANUFACTURER from .util import ecobee_date, ecobee_time ATTR_COOL_TEMP = "cool_temp" ATTR_END_DATE = "end_date" ATTR_END_TIME = "end_time" ATTR_FAN_MIN_ON_TIME = "fan_min_on_time" ATTR_FAN_MODE = "fan_mode" ATTR_HEAT_TEMP = "heat_temp" ATTR_RESUME_ALL = "resume_all" ATTR_START_DATE = "start_date" ATTR_START_TIME = "start_time" ATTR_VACATION_NAME = "vacation_name" DEFAULT_RESUME_ALL = False PRESET_TEMPERATURE = "temp" PRESET_VACATION = "vacation" PRESET_HOLD_NEXT_TRANSITION = "next_transition" PRESET_HOLD_INDEFINITE = "indefinite" AWAY_MODE = "awayMode" PRESET_HOME = "home" PRESET_SLEEP = "sleep" # Order matters, because for reverse mapping we don't want to map HEAT to AUX ECOBEE_HVAC_TO_HASS = collections.OrderedDict( [ ("heat", HVAC_MODE_HEAT), ("cool", HVAC_MODE_COOL), ("auto", HVAC_MODE_AUTO), ("off", HVAC_MODE_OFF), ("auxHeatOnly", HVAC_MODE_HEAT), ] ) ECOBEE_HVAC_ACTION_TO_HASS = { # Map to None if we do not know how to represent. "heatPump": CURRENT_HVAC_HEAT, "heatPump2": CURRENT_HVAC_HEAT, "heatPump3": CURRENT_HVAC_HEAT, "compCool1": CURRENT_HVAC_COOL, "compCool2": CURRENT_HVAC_COOL, "auxHeat1": CURRENT_HVAC_HEAT, "auxHeat2": CURRENT_HVAC_HEAT, "auxHeat3": CURRENT_HVAC_HEAT, "fan": CURRENT_HVAC_FAN, "humidifier": None, "dehumidifier": CURRENT_HVAC_DRY, "ventilator": CURRENT_HVAC_FAN, "economizer": CURRENT_HVAC_FAN, "compHotWater": None, "auxHotWater": None, } PRESET_TO_ECOBEE_HOLD = { PRESET_HOLD_NEXT_TRANSITION: "nextTransition", PRESET_HOLD_INDEFINITE: "indefinite", } SERVICE_CREATE_VACATION = "create_vacation" SERVICE_DELETE_VACATION = "delete_vacation" SERVICE_RESUME_PROGRAM = "resume_program" SERVICE_SET_FAN_MIN_ON_TIME = "set_fan_min_on_time" DTGROUP_INCLUSIVE_MSG = ( f"{ATTR_START_DATE}, {ATTR_START_TIME}, {ATTR_END_DATE}, " f"and {ATTR_END_TIME} must be specified together" ) CREATE_VACATION_SCHEMA = vol.Schema( { vol.Required(ATTR_ENTITY_ID): cv.entity_id, vol.Required(ATTR_VACATION_NAME): vol.All(cv.string, vol.Length(max=12)), vol.Required(ATTR_COOL_TEMP): vol.Coerce(float), vol.Required(ATTR_HEAT_TEMP): vol.Coerce(float), vol.Inclusive( ATTR_START_DATE, "dtgroup", msg=DTGROUP_INCLUSIVE_MSG ): ecobee_date, vol.Inclusive( ATTR_START_TIME, "dtgroup", msg=DTGROUP_INCLUSIVE_MSG ): ecobee_time, vol.Inclusive(ATTR_END_DATE, "dtgroup", msg=DTGROUP_INCLUSIVE_MSG): ecobee_date, vol.Inclusive(ATTR_END_TIME, "dtgroup", msg=DTGROUP_INCLUSIVE_MSG): ecobee_time, vol.Optional(ATTR_FAN_MODE, default="auto"): vol.Any("auto", "on"), vol.Optional(ATTR_FAN_MIN_ON_TIME, default=0): vol.All( int, vol.Range(min=0, max=60) ), } ) DELETE_VACATION_SCHEMA = vol.Schema( { vol.Required(ATTR_ENTITY_ID): cv.entity_id, vol.Required(ATTR_VACATION_NAME): vol.All(cv.string, vol.Length(max=12)), } ) RESUME_PROGRAM_SCHEMA = vol.Schema( { vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Optional(ATTR_RESUME_ALL, default=DEFAULT_RESUME_ALL): cv.boolean, } ) SET_FAN_MIN_ON_TIME_SCHEMA = vol.Schema( { vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_FAN_MIN_ON_TIME): vol.Coerce(int), } ) SUPPORT_FLAGS = ( SUPPORT_TARGET_TEMPERATURE | SUPPORT_PRESET_MODE | SUPPORT_AUX_HEAT | SUPPORT_TARGET_TEMPERATURE_RANGE | SUPPORT_FAN_MODE ) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the ecobee thermostat.""" data = hass.data[DOMAIN] devices = [Thermostat(data, index) for index in range(len(data.ecobee.thermostats))] async_add_entities(devices, True) def create_vacation_service(service): """Create a vacation on the target thermostat.""" entity_id = service.data[ATTR_ENTITY_ID] for thermostat in devices: if thermostat.entity_id == entity_id: thermostat.create_vacation(service.data) thermostat.schedule_update_ha_state(True) break def delete_vacation_service(service): """Delete a vacation on the target thermostat.""" entity_id = service.data[ATTR_ENTITY_ID] vacation_name = service.data[ATTR_VACATION_NAME] for thermostat in devices: if thermostat.entity_id == entity_id: thermostat.delete_vacation(vacation_name) thermostat.schedule_update_ha_state(True) break def fan_min_on_time_set_service(service): """Set the minimum fan on time on the target thermostats.""" entity_id = service.data.get(ATTR_ENTITY_ID) fan_min_on_time = service.data[ATTR_FAN_MIN_ON_TIME] if entity_id: target_thermostats = [ device for device in devices if device.entity_id in entity_id ] else: target_thermostats = devices for thermostat in target_thermostats: thermostat.set_fan_min_on_time(str(fan_min_on_time)) thermostat.schedule_update_ha_state(True) def resume_program_set_service(service): """Resume the program on the target thermostats.""" entity_id = service.data.get(ATTR_ENTITY_ID) resume_all = service.data.get(ATTR_RESUME_ALL) if entity_id: target_thermostats = [ device for device in devices if device.entity_id in entity_id ] else: target_thermostats = devices for thermostat in target_thermostats: thermostat.resume_program(resume_all) thermostat.schedule_update_ha_state(True) hass.services.async_register( DOMAIN, SERVICE_CREATE_VACATION, create_vacation_service, schema=CREATE_VACATION_SCHEMA, ) hass.services.async_register( DOMAIN, SERVICE_DELETE_VACATION, delete_vacation_service, schema=DELETE_VACATION_SCHEMA, ) hass.services.async_register( DOMAIN, SERVICE_SET_FAN_MIN_ON_TIME, fan_min_on_time_set_service, schema=SET_FAN_MIN_ON_TIME_SCHEMA, ) hass.services.async_register( DOMAIN, SERVICE_RESUME_PROGRAM, resume_program_set_service, schema=RESUME_PROGRAM_SCHEMA, ) class Thermostat(ClimateDevice): """A thermostat class for Ecobee.""" def __init__(self, data, thermostat_index): """Initialize the thermostat.""" self.data = data self.thermostat_index = thermostat_index self.thermostat = self.data.ecobee.get_thermostat(self.thermostat_index) self._name = self.thermostat["name"] self.vacation = None self._last_active_hvac_mode = HVAC_MODE_AUTO self._operation_list = [] if ( self.thermostat["settings"]["heatStages"] or self.thermostat["settings"]["hasHeatPump"] ): self._operation_list.append(HVAC_MODE_HEAT) if self.thermostat["settings"]["coolStages"]: self._operation_list.append(HVAC_MODE_COOL) if len(self._operation_list) == 2: self._operation_list.insert(0, HVAC_MODE_AUTO) self._operation_list.append(HVAC_MODE_OFF) self._preset_modes = { comfort["climateRef"]: comfort["name"] for comfort in self.thermostat["program"]["climates"] } self._fan_modes = [FAN_AUTO, FAN_ON] self.update_without_throttle = False async def async_update(self): """Get the latest state from the thermostat.""" if self.update_without_throttle: await self.data.update(no_throttle=True) self.update_without_throttle = False else: await self.data.update() self.thermostat = self.data.ecobee.get_thermostat(self.thermostat_index) if self.hvac_mode is not HVAC_MODE_OFF: self._last_active_hvac_mode = self.hvac_mode @property def available(self): """Return if device is available.""" return self.thermostat["runtime"]["connected"] @property def supported_features(self): """Return the list of supported features.""" return SUPPORT_FLAGS @property def name(self): """Return the name of the Ecobee Thermostat.""" return self.thermostat["name"] @property def unique_id(self): """Return a unique identifier for this ecobee thermostat.""" return self.thermostat["identifier"] @property def device_info(self): """Return device information for this ecobee thermostat.""" try: model = f"{ECOBEE_MODEL_TO_NAME[self.thermostat['modelNumber']]} Thermostat" except KeyError: _LOGGER.error( "Model number for ecobee thermostat %s not recognized. " "Please visit this link and provide the following information: " "https://github.com/home-assistant/home-assistant/issues/27172 " "Unrecognized model number: %s", self.name, self.thermostat["modelNumber"], ) return None return { "identifiers": {(DOMAIN, self.thermostat["identifier"])}, "name": self.name, "manufacturer": MANUFACTURER, "model": model, } @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_FAHRENHEIT @property def current_temperature(self): """Return the current temperature.""" return self.thermostat["runtime"]["actualTemperature"] / 10.0 @property def target_temperature_low(self): """Return the lower bound temperature we try to reach.""" if self.hvac_mode == HVAC_MODE_AUTO: return self.thermostat["runtime"]["desiredHeat"] / 10.0 return None @property def target_temperature_high(self): """Return the upper bound temperature we try to reach.""" if self.hvac_mode == HVAC_MODE_AUTO: return self.thermostat["runtime"]["desiredCool"] / 10.0 return None @property def target_temperature(self): """Return the temperature we try to reach.""" if self.hvac_mode == HVAC_MODE_AUTO: return None if self.hvac_mode == HVAC_MODE_HEAT: return self.thermostat["runtime"]["desiredHeat"] / 10.0 if self.hvac_mode == HVAC_MODE_COOL: return self.thermostat["runtime"]["desiredCool"] / 10.0 return None @property def fan(self): """Return the current fan status.""" if "fan" in self.thermostat["equipmentStatus"]: return STATE_ON return HVAC_MODE_OFF @property def fan_mode(self): """Return the fan setting.""" return self.thermostat["runtime"]["desiredFanMode"] @property def fan_modes(self): """Return the available fan modes.""" return self._fan_modes @property def preset_mode(self): """Return current preset mode.""" events = self.thermostat["events"] for event in events: if not event["running"]: continue if event["type"] == "hold": if event["holdClimateRef"] in self._preset_modes: return self._preset_modes[event["holdClimateRef"]] # Any hold not based on a climate is a temp hold return PRESET_TEMPERATURE if event["type"].startswith("auto"): # All auto modes are treated as holds return event["type"][4:].lower() if event["type"] == "vacation": self.vacation = event["name"] return PRESET_VACATION return self._preset_modes[self.thermostat["program"]["currentClimateRef"]] @property def hvac_mode(self): """Return current operation.""" return ECOBEE_HVAC_TO_HASS[self.thermostat["settings"]["hvacMode"]] @property def hvac_modes(self): """Return the operation modes list.""" return self._operation_list @property def current_humidity(self) -> Optional[int]: """Return the current humidity.""" return self.thermostat["runtime"]["actualHumidity"] @property def hvac_action(self): """Return current HVAC action. Ecobee returns a CSV string with different equipment that is active. We are prioritizing any heating/cooling equipment, otherwase look at drying/fanning. Idle if nothing going on. We are unable to map all actions to HA equivalents. """ if self.thermostat["equipmentStatus"] == "": return CURRENT_HVAC_IDLE actions = [ ECOBEE_HVAC_ACTION_TO_HASS[status] for status in self.thermostat["equipmentStatus"].split(",") if ECOBEE_HVAC_ACTION_TO_HASS[status] is not None ] for action in ( CURRENT_HVAC_HEAT, CURRENT_HVAC_COOL, CURRENT_HVAC_DRY, CURRENT_HVAC_FAN, ): if action in actions: return action return CURRENT_HVAC_IDLE @property def device_state_attributes(self): """Return device specific state attributes.""" status = self.thermostat["equipmentStatus"] return { "fan": self.fan, "climate_mode": self._preset_modes[ self.thermostat["program"]["currentClimateRef"] ], "equipment_running": status, "fan_min_on_time": self.thermostat["settings"]["fanMinOnTime"], } @property def is_aux_heat(self): """Return true if aux heater.""" return "auxHeat" in self.thermostat["equipmentStatus"] def set_preset_mode(self, preset_mode): """Activate a preset.""" if preset_mode == self.preset_mode: return self.update_without_throttle = True # If we are currently in vacation mode, cancel it. if self.preset_mode == PRESET_VACATION: self.data.ecobee.delete_vacation(self.thermostat_index, self.vacation) if preset_mode == PRESET_AWAY: self.data.ecobee.set_climate_hold( self.thermostat_index, "away", "indefinite" ) elif preset_mode == PRESET_TEMPERATURE: self.set_temp_hold(self.current_temperature) elif preset_mode in (PRESET_HOLD_NEXT_TRANSITION, PRESET_HOLD_INDEFINITE): self.data.ecobee.set_climate_hold( self.thermostat_index, PRESET_TO_ECOBEE_HOLD[preset_mode], self.hold_preference(), ) elif preset_mode == PRESET_NONE: self.data.ecobee.resume_program(self.thermostat_index) elif preset_mode in self.preset_modes: climate_ref = None for comfort in self.thermostat["program"]["climates"]: if comfort["name"] == preset_mode: climate_ref = comfort["climateRef"] break if climate_ref is not None: self.data.ecobee.set_climate_hold( self.thermostat_index, climate_ref, self.hold_preference() ) else: _LOGGER.warning("Received unknown preset mode: %s", preset_mode) else: self.data.ecobee.set_climate_hold( self.thermostat_index, preset_mode, self.hold_preference() ) @property def preset_modes(self): """Return available preset modes.""" return list(self._preset_modes.values()) def set_auto_temp_hold(self, heat_temp, cool_temp): """Set temperature hold in auto mode.""" if cool_temp is not None: cool_temp_setpoint = cool_temp else: cool_temp_setpoint = self.thermostat["runtime"]["desiredCool"] / 10.0 if heat_temp is not None: heat_temp_setpoint = heat_temp else: heat_temp_setpoint = self.thermostat["runtime"]["desiredCool"] / 10.0 self.data.ecobee.set_hold_temp( self.thermostat_index, cool_temp_setpoint, heat_temp_setpoint, self.hold_preference(), ) _LOGGER.debug( "Setting ecobee hold_temp to: heat=%s, is=%s, cool=%s, is=%s", heat_temp, isinstance(heat_temp, (int, float)), cool_temp, isinstance(cool_temp, (int, float)), ) self.update_without_throttle = True def set_fan_mode(self, fan_mode): """Set the fan mode. Valid values are "on" or "auto".""" if fan_mode.lower() != STATE_ON and fan_mode.lower() != HVAC_MODE_AUTO: error = "Invalid fan_mode value: Valid values are 'on' or 'auto'" _LOGGER.error(error) return cool_temp = self.thermostat["runtime"]["desiredCool"] / 10.0 heat_temp = self.thermostat["runtime"]["desiredHeat"] / 10.0 self.data.ecobee.set_fan_mode( self.thermostat_index, fan_mode, cool_temp, heat_temp, self.hold_preference(), ) _LOGGER.info("Setting fan mode to: %s", fan_mode) def set_temp_hold(self, temp): """Set temperature hold in modes other than auto. Ecobee API: It is good practice to set the heat and cool hold temperatures to be the same, if the thermostat is in either heat, cool, auxHeatOnly, or off mode. If the thermostat is in auto mode, an additional rule is required. The cool hold temperature must be greater than the heat hold temperature by at least the amount in the heatCoolMinDelta property. https://www.ecobee.com/home/developer/api/examples/ex5.shtml """ if self.hvac_mode == HVAC_MODE_HEAT or self.hvac_mode == HVAC_MODE_COOL: heat_temp = temp cool_temp = temp else: delta = self.thermostat["settings"]["heatCoolMinDelta"] / 10 heat_temp = temp - delta cool_temp = temp + delta self.set_auto_temp_hold(heat_temp, cool_temp) def set_temperature(self, **kwargs): """Set new target temperature.""" low_temp = kwargs.get(ATTR_TARGET_TEMP_LOW) high_temp = kwargs.get(ATTR_TARGET_TEMP_HIGH) temp = kwargs.get(ATTR_TEMPERATURE) if self.hvac_mode == HVAC_MODE_AUTO and ( low_temp is not None or high_temp is not None ): self.set_auto_temp_hold(low_temp, high_temp) elif temp is not None: self.set_temp_hold(temp) else: _LOGGER.error("Missing valid arguments for set_temperature in %s", kwargs) def set_humidity(self, humidity): """Set the humidity level.""" self.data.ecobee.set_humidity(self.thermostat_index, humidity) def set_hvac_mode(self, hvac_mode): """Set HVAC mode (auto, auxHeatOnly, cool, heat, off).""" ecobee_value = next( (k for k, v in ECOBEE_HVAC_TO_HASS.items() if v == hvac_mode), None ) if ecobee_value is None: _LOGGER.error("Invalid mode for set_hvac_mode: %s", hvac_mode) return self.data.ecobee.set_hvac_mode(self.thermostat_index, ecobee_value) self.update_without_throttle = True def set_fan_min_on_time(self, fan_min_on_time): """Set the minimum fan on time.""" self.data.ecobee.set_fan_min_on_time(self.thermostat_index, fan_min_on_time) self.update_without_throttle = True def resume_program(self, resume_all): """Resume the thermostat schedule program.""" self.data.ecobee.resume_program( self.thermostat_index, "true" if resume_all else "false" ) self.update_without_throttle = True def hold_preference(self): """Return user preference setting for hold time.""" # Values returned from thermostat are 'useEndTime4hour', # 'useEndTime2hour', 'nextTransition', 'indefinite', 'askMe' default = self.thermostat["settings"]["holdAction"] if default == "nextTransition": return default # add further conditions if other hold durations should be # supported; note that this should not include 'indefinite' # as an indefinite away hold is interpreted as away_mode return "nextTransition" def create_vacation(self, service_data): """Create a vacation with user-specified parameters.""" vacation_name = service_data[ATTR_VACATION_NAME] cool_temp = convert( service_data[ATTR_COOL_TEMP], self.hass.config.units.temperature_unit, TEMP_FAHRENHEIT, ) heat_temp = convert( service_data[ATTR_HEAT_TEMP], self.hass.config.units.temperature_unit, TEMP_FAHRENHEIT, ) start_date = service_data.get(ATTR_START_DATE) start_time = service_data.get(ATTR_START_TIME) end_date = service_data.get(ATTR_END_DATE) end_time = service_data.get(ATTR_END_TIME) fan_mode = service_data[ATTR_FAN_MODE] fan_min_on_time = service_data[ATTR_FAN_MIN_ON_TIME] kwargs = { key: value for key, value in { "start_date": start_date, "start_time": start_time, "end_date": end_date, "end_time": end_time, "fan_mode": fan_mode, "fan_min_on_time": fan_min_on_time, }.items() if value is not None } _LOGGER.debug( "Creating a vacation on thermostat %s with name %s, cool temp %s, heat temp %s, " "and the following other parameters: %s", self.name, vacation_name, cool_temp, heat_temp, kwargs, ) self.data.ecobee.create_vacation( self.thermostat_index, vacation_name, cool_temp, heat_temp, **kwargs ) def delete_vacation(self, vacation_name): """Delete a vacation with the specified name.""" _LOGGER.debug( "Deleting a vacation on thermostat %s with name %s", self.name, vacation_name, ) self.data.ecobee.delete_vacation(self.thermostat_index, vacation_name) def turn_on(self): """Set the thermostat to the last active HVAC mode.""" _LOGGER.debug( "Turning on ecobee thermostat %s in %s mode", self.name, self._last_active_hvac_mode, ) self.set_hvac_mode(self._last_active_hvac_mode)
Teagan42/home-assistant
homeassistant/components/ecobee/climate.py
Python
apache-2.0
23,976
[ "VisIt" ]
b093ce9505bc0378c5d0f65b88c2067744a782e9c88e63f309bc499b0c2bb284
# # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2007 Donald N. Allingham # Copyright (C) 2007 Zsolt Foldvari # Copyright (C) 2009 Benny Malengier # Copyright (C) 2009 Brian Matherly # Copyright (C) 2010 Peter Landgren # Copyright (C) 2010 Jakim Friant # Copyright (C) 2011-2017 Paul Franklin # Copyright (C) 2012 Craig Anderson # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """Report output generator based on Cairo. """ #------------------------------------------------------------------------ # # Python modules # #------------------------------------------------------------------------ from gramps.gen.const import GRAMPS_LOCALE as glocale _ = glocale.translation.gettext from math import radians import re #------------------------------------------------------------------------ # # Gramps modules # #------------------------------------------------------------------------ from gramps.gen.plug.docgen import (BaseDoc, TextDoc, DrawDoc, ParagraphStyle, TableCellStyle, SOLID, FONT_SANS_SERIF, FONT_SERIF, FONT_MONOSPACE, PARA_ALIGN_CENTER, PARA_ALIGN_LEFT) from gramps.gen.plug.report import utils from gramps.gen.errors import PluginError from gramps.gen.plug.docbackend import CairoBackend from gramps.gen.utils.image import resize_to_buffer from gramps.gui.utils import SystemFonts #------------------------------------------------------------------------ # # Set up logging # #------------------------------------------------------------------------ import logging log = logging.getLogger(".libcairodoc") #------------------------------------------------------------------------- # # Pango modules # #------------------------------------------------------------------------- from gi.repository import Pango, PangoCairo #------------------------------------------------------------------------ # # Constants # #------------------------------------------------------------------------ # each element draws some extra information useful for debugging DEBUG = False #------------------------------------------------------------------------ # # Font selection # #------------------------------------------------------------------------ _TTF_FREEFONT = { FONT_SERIF: 'FreeSerif', FONT_SANS_SERIF: 'FreeSans', FONT_MONOSPACE: 'FreeMono', } _MS_TTFONT = { FONT_SERIF: 'Times New Roman', FONT_SANS_SERIF: 'Arial', FONT_MONOSPACE: 'Courier New', } _GNOME_FONT = { FONT_SERIF: 'Serif', FONT_SANS_SERIF: 'Sans', FONT_MONOSPACE: 'Monospace', } font_families = _GNOME_FONT # FIXME debug logging does not work here. def set_font_families(): """Set the used font families depending on availability. """ global font_families fonts = SystemFonts() family_names = fonts.get_system_fonts() fam = [f for f in _TTF_FREEFONT.values() if f in family_names] if len(fam) == len(_TTF_FREEFONT): font_families = _TTF_FREEFONT log.debug('Using FreeFonts: %s' % font_families) return fam = [f for f in _MS_TTFONT.values() if f in family_names] if len(fam) == len(_MS_TTFONT): font_families = _MS_TTFONT log.debug('Using MS TrueType fonts: %s' % font_families) return fam = [f for f in _GNOME_FONT.values() if f in family_names] if len(fam) == len(_GNOME_FONT): font_families = _GNOME_FONT log.debug('Using Gnome fonts: %s' % font_families) return log.debug('No fonts found.') set_font_families() #------------------------------------------------------------------------ # # Converter functions # #------------------------------------------------------------------------ def fontstyle_to_fontdescription(font_style): """Convert a FontStyle instance to a Pango.FontDescription one. Font color and underline are not implemented in Pango.FontDescription, and have to be set with Pango.Layout.set_attributes(attrlist) method. """ if font_style.get_bold(): f_weight = Pango.Weight.BOLD else: f_weight = Pango.Weight.NORMAL if font_style.get_italic(): f_style = Pango.Style.ITALIC else: f_style = Pango.Style.NORMAL font_description = Pango.FontDescription(font_families[font_style.face]) font_description.set_size(int(round(font_style.get_size() * Pango.SCALE))) font_description.set_weight(f_weight) font_description.set_style(f_style) return font_description def tabstops_to_tabarray(tab_stops, dpi): """Convert a list of tabs given in cm to a Pango.TabArray. """ tab_array = Pango.TabArray.new(initial_size=len(tab_stops), positions_in_pixels=False) for index, tab_stop in enumerate(tab_stops): location = tab_stop * dpi * Pango.SCALE / 2.54 tab_array.set_tab(index, Pango.TabAlign.LEFT, int(location)) return tab_array def raw_length(s): """ Return the length of the raw string after all pango markup has been removed. """ s = re.sub('<.*?>', '', s) s = s.replace('&amp;', '&') s = s.replace('&lt;', '<') s = s.replace('&gt;', '>') s = s.replace('&quot;', '"') s = s.replace('&apos;', "'") return len(s) ###------------------------------------------------------------------------ ### ### Table row style ### ###------------------------------------------------------------------------ ##class RowStyle(list): ##"""Specifies the format of a table row. ##RowStyle extents the available styles in ##The RowStyle contains the width of each column as a percentage of the ##width of the full row. Note! The width of the row is not known until ##divide() or draw() method is called. ##""" ##def __init__(self): ##self.columns = [] ##def set_columns(self, columns): ##"""Set the number of columns. ##@param columns: number of columns that should be used. ##@param type: int ##""" ##self.columns = columns ##def get_columns(self): ##"""Return the number of columns. ##""" ##return self.columns ##def set_column_widths(self, clist): ##"""Set the width of all the columns at once. ##@param clist: list of width of columns in % of the full row. ##@param tyle: list ##""" ##self.columns = len(clist) ##for i in range(self.columns): ##self.colwid[i] = clist[i] ##def set_column_width(self, index, width): ##""" ##Set the width of a specified column to the specified width. ##@param index: column being set (index starts at 0) ##@param width: percentage of the table width assigned to the column ##""" ##self.colwid[index] = width ##def get_column_width(self, index): ##""" ##Return the column width of the specified column as a percentage of ##the entire table width. ##@param index: column to return (index starts at 0) ##""" ##return self.colwid[index] class FrameStyle: """Define the style properties of a Frame. - width: Width of the frame in cm. - height: Height of the frame in cm. - align: Horizontal position to entire page. Available values: 'left','center', 'right'. - spacing: Tuple of spacing around the frame in cm. Order of values: (left, right, top, bottom). """ def __init__(self, width=0, height=0, align='left', spacing=(0, 0, 0, 0)): self.width = width self.height = height self.align = align self.spacing = spacing #------------------------------------------------------------------------ # # Document element classes # #------------------------------------------------------------------------ class GtkDocBaseElement: """Base of all document elements. Support document element structuring and can render itself onto a Cairo surface. There are two categories of methods: 1. hierarchy building methods (add_child, get_children, set_parent, get_parent); 2. rendering methods (divide, draw). The hierarchy building methods generally don't have to be overridden in the subclass, while the rendering methods (divide, draw) must be implemented in the subclasses. """ _type = 'BASE' _allowed_children = [] def __init__(self, style=None): self._parent = None self._children = [] self._style = style def get_type(self): """Get the type of this element. """ return self._type def set_parent(self, parent): """Set the parent element of this element. """ self._parent = parent def get_parent(self): """Get the parent element of this element. """ return self._parent def add_child(self, element): """Add a child element. Returns False if the child cannot be added (e.g. not an allowed type), or True otherwise. """ # check if it is an allowed child for this type if element.get_type() not in self._allowed_children: log.debug("%r is not an allowed child for %r" % (element.__class__, self.__class__)) return False # append the child and set its parent self._children.append(element) element.set_parent(self) return True def get_children(self): """Get the list of children of this element. """ return self._children def get_marks(self): """Get the list of index marks for this element. """ marks = [] for child in self._children: marks.extend(child.get_marks()) return marks def divide(self, layout, width, height, dpi_x, dpi_y): """Divide the element into two depending on available space. @param layout: pango layout to write on @param type: Pango.Layout @param width: width of available space for this element @param type: device points @param height: height of available space for this element @param type: device points @param dpi_x: the horizontal resolution @param type: dots per inch @param dpi_y: the vertical resolution @param type: dots per inch @return: the divided element, and the height of the first part @rtype: (GtkDocXXX-1, GtkDocXXX-2), device points """ raise NotImplementedError def draw(self, cairo_context, pango_layout, width, dpi_x, dpi_y): """Draw itself onto a cairo surface. @param cairo_context: context to draw on @param type: cairo.Context class @param pango_layout: pango layout to write on @param type: Pango.Layout class @param width: width of available space for this element @param type: device points @param dpi_x: the horizontal resolution @param type: dots per inch @param dpi_y: the vertical resolution @param type: dots per inch @return: height of the element @rtype: device points """ raise NotImplementedError class GtkDocDocument(GtkDocBaseElement): """The whole document or a page. """ _type = 'DOCUMENT' _allowed_children = ['PARAGRAPH', 'PAGEBREAK', 'TABLE', 'IMAGE', 'FRAME', 'TOC', 'INDEX'] def draw(self, cairo_context, pango_layout, width, dpi_x, dpi_y): x = y = elem_height = 0 for elem in self._children: cairo_context.translate(x, elem_height) elem_height = elem.draw(cairo_context, pango_layout, width, dpi_x, dpi_y) y += elem_height return y def has_toc(self): for elem in self._children: if elem.get_type() == 'TOC': return True return False def has_index(self): for elem in self._children: if elem.get_type() == 'INDEX': return True return False class GtkDocPagebreak(GtkDocBaseElement): """Implement a page break. """ _type = 'PAGEBREAK' _allowed_children = [] def divide(self, layout, width, height, dpi_x, dpi_y): return (None, None), 0 class GtkDocTableOfContents(GtkDocBaseElement): """Implement a table of contents. """ _type = 'TOC' _allowed_children = [] def divide(self, layout, width, height, dpi_x, dpi_y): return (self, None), 0 def draw(self, cr, layout, width, dpi_x, dpi_y): return 0 class GtkDocAlphabeticalIndex(GtkDocBaseElement): """Implement an alphabetical index. """ _type = 'INDEX' _allowed_children = [] def divide(self, layout, width, height, dpi_x, dpi_y): return (self, None), 0 def draw(self, cr, layout, width, dpi_x, dpi_y): return 0 class GtkDocParagraph(GtkDocBaseElement): """Paragraph. """ _type = 'PARAGRAPH' _allowed_children = [] # line spacing is not defined in ParagraphStyle spacingfractionfont = 0.2 def __init__(self, style, leader=None): GtkDocBaseElement.__init__(self, style) if leader: self._text = leader + '\t' # FIXME append new tab to the existing tab list self._style.set_tabs([-1 * self._style.get_first_indent()]) else: self._text = '' self._plaintext = None self._attrlist = None self._marklist = [] def add_text(self, text): if self._plaintext is not None: raise PluginError('CairoDoc: text is already parsed.' ' You cannot add text anymore') self._text = self._text + text def add_mark(self, mark): """ Add an index mark to this paragraph """ self._marklist.append((mark, raw_length(self._text))) def get_marks(self): """ Return a list of index marks for this paragraph """ return [elem[0] for elem in self._marklist] def __set_marklist(self, marklist): """ Internal method to allow for splitting of paragraphs """ self._marklist = marklist def __set_plaintext(self, plaintext): """ Internal method to allow for splitting of paragraphs """ if not isinstance(plaintext, str): self._plaintext = plaintext.decode('utf-8') else: self._plaintext = plaintext def __set_attrlist(self, attrlist): """ Internal method to allow for splitting of paragraphs """ self._attrlist = attrlist def __parse_text(self): """ Parse the markup text. This method will only do this if not done already """ if self._plaintext is None: parse_ok, self._attrlist, self._plaintext, accel_char= \ Pango.parse_markup(self._text, -1, '\000') def divide(self, layout, width, height, dpi_x, dpi_y): self.__parse_text() l_margin = self._style.get_left_margin() * dpi_x / 2.54 r_margin = self._style.get_right_margin() * dpi_x / 2.54 t_margin = self._style.get_top_margin() * dpi_y / 2.54 b_margin = self._style.get_bottom_margin() * dpi_y / 2.54 h_padding = self._style.get_padding() * dpi_x / 2.54 v_padding = self._style.get_padding() * dpi_y / 2.54 f_indent = self._style.get_first_indent() * dpi_x / 2.54 # calculate real width available for text text_width = width - l_margin - 2 * h_padding - r_margin if f_indent < 0: text_width -= f_indent layout.set_width(int(text_width * Pango.SCALE)) # set paragraph properties layout.set_wrap(Pango.WrapMode.WORD_CHAR) layout.set_indent(int(f_indent * Pango.SCALE)) layout.set_tabs(tabstops_to_tabarray(self._style.get_tabs(), dpi_x)) # align = self._style.get_alignment_text() if align == 'left': layout.set_justify(False) layout.set_alignment(Pango.Alignment.LEFT) elif align == 'right': layout.set_justify(False) layout.set_alignment(Pango.Alignment.RIGHT) elif align == 'center': layout.set_justify(False) layout.set_alignment(Pango.Alignment.CENTER) elif align == 'justify': #We have a problem, in pango, justify works only on full lines, # and we need an alignment for the partial lines. We don't know # for justify what alignment the user wants however. We assume # here LEFT ... layout.set_alignment(Pango.Alignment.LEFT) layout.set_justify(True) else: raise ValueError # font_style = self._style.get_font() layout.set_font_description(fontstyle_to_fontdescription(font_style)) #set line spacing based on font: spacing = font_style.get_size() * self.spacingfractionfont layout.set_spacing(int(round(spacing * Pango.SCALE))) text_height = height - t_margin - 2 * v_padding # calculate where to cut the paragraph layout.set_text(self._plaintext, -1) layout.set_attributes(self._attrlist) layout_width, layout_height = layout.get_pixel_size() line_count = layout.get_line_count() spacing = layout.get_spacing() / Pango.SCALE # if all paragraph fits we don't need to cut if layout_height - spacing <= text_height: paragraph_height = layout_height + spacing +t_margin + (2 * v_padding) if height - paragraph_height > b_margin: paragraph_height += b_margin return (self, None), paragraph_height # we need to cut paragraph: # 1. if paragraph part of a cell, we do not divide if only small part, # of paragraph can be shown, instead move to next page if line_count < 4 and self._parent._type == 'CELL': return (None, self), 0 lineiter = layout.get_iter() linenr = 0 linerange = lineiter.get_line_yrange() # 2. if nothing fits, move to next page without split # there is a spacing above and under the text if linerange[1] - linerange[0] + 2.*spacing \ > text_height * Pango.SCALE: return (None, self), 0 # 3. split the paragraph startheight = linerange[0] endheight = linerange[1] splitline = -1 if lineiter.at_last_line(): #only one line of text that does not fit return (None, self), 0 while not lineiter.at_last_line(): #go to next line, see if all fits, if not split lineiter.next_line() linenr += 1 linerange = lineiter.get_line_yrange() if linerange[1] - startheight + 2.*spacing \ > text_height * Pango.SCALE: splitline = linenr break endheight = linerange[1] if splitline == -1: print('CairoDoc STRANGE ') return (None, self), 0 #we split at splitline # get index of first character which doesn't fit on available height layout_line = layout.get_line(splitline) index = layout_line.start_index # and divide the text, first create the second part new_style = ParagraphStyle(self._style) new_style.set_top_margin(0) #we split a paragraph, text should begin in correct position: no indent #as if the paragraph just continues from normal text new_style.set_first_indent(0) new_paragraph = GtkDocParagraph(new_style) #index is in bytecode in the text.. new_paragraph.__set_plaintext(self._plaintext.encode('utf-8')[index:]) #now recalculate the attrilist: newattrlist = layout.get_attributes().copy() newattrlist.filter(self.filterattr, index) ## GTK3 PROBLEM: get_iterator no longer available!! ## REFERENCES: ## http://www.gramps-project.org/bugs/view.php?id=6208 ## https://bugzilla.gnome.org/show_bug.cgi?id=646788 ## workaround: https://github.com/matasbbb/pitivit/commit/da815339e5ce3631b122a72158ba9ffcc9ee4372 ## OLD EASY CODE: ## oldattrlist = newattrlist.get_iterator() ## while oldattrlist.next(): ## vals = oldattrlist.get_attrs() ## #print (vals) ## for attr in vals: ## newattr = attr.copy() ## newattr.start_index -= index if newattr.start_index > index \ ## else 0 ## newattr.end_index -= index ## newattrlist.insert(newattr) ## ## START OF WORKAROUND oldtext = self._text pos = 0 realpos = 0 markstarts = [] #index is in bytecode in the text.. !! while pos < index: if realpos >= len(oldtext): break char = oldtext[realpos] if char == '<' and oldtext[realpos+1] != '/': # a markup starts end = realpos + oldtext[realpos:].find('>') + 1 markstarts += [oldtext[realpos:end]] realpos = end elif char == '<': #this is the closing tag, we did not stop yet, so remove tag! realpos = realpos + oldtext[realpos:].find('>') + 1 markstarts.pop() else: pos += len(char.encode('utf-8')) realpos += 1 #now construct the marked up text to use newtext = ''.join(markstarts) newtext += oldtext[realpos:] #have it parsed parse_ok, newattrlist, _plaintext, accel_char= \ Pango.parse_markup(newtext, -1, '\000') ## ##END OF WORKAROUND new_paragraph.__set_attrlist(newattrlist) # then update the first one self.__set_plaintext(self._plaintext.encode('utf-8')[:index]) self._style.set_bottom_margin(0) # split the list of index marks para1 = [] para2 = [] for mark, position in self._marklist: if position < index: para1.append((mark, position)) else: para2.append((mark, position - index)) self.__set_marklist(para1) new_paragraph.__set_marklist(para2) paragraph_height = endheight - startheight + spacing + t_margin + 2 * v_padding return (self, new_paragraph), paragraph_height def filterattr(self, attr, index): """callback to filter out attributes in the removed piece at beginning """ if attr.start_index > index or \ (attr.start_index < index and attr.end_index > index): return False return True def draw(self, cr, layout, width, dpi_x, dpi_y): self.__parse_text() l_margin = self._style.get_left_margin() * dpi_x / 2.54 r_margin = self._style.get_right_margin() * dpi_x / 2.54 t_margin = self._style.get_top_margin() * dpi_y / 2.54 b_margin = self._style.get_bottom_margin() * dpi_y / 2.54 h_padding = self._style.get_padding() * dpi_x / 2.54 v_padding = self._style.get_padding() * dpi_y / 2.54 f_indent = self._style.get_first_indent() * dpi_x / 2.54 # calculate real width available for text text_width = width - l_margin - 2 * h_padding - r_margin if f_indent < 0: text_width -= f_indent layout.set_width(int(text_width * Pango.SCALE)) # set paragraph properties layout.set_wrap(Pango.WrapMode.WORD_CHAR) layout.set_indent(int(f_indent * Pango.SCALE)) layout.set_tabs(tabstops_to_tabarray(self._style.get_tabs(), dpi_x)) # align = self._style.get_alignment_text() if align == 'left': layout.set_justify(False) layout.set_alignment(Pango.Alignment.LEFT) elif align == 'right': layout.set_justify(False) layout.set_alignment(Pango.Alignment.RIGHT) elif align == 'center': layout.set_justify(False) layout.set_alignment(Pango.Alignment.CENTER) elif align == 'justify': #We have a problem, in pango, justify works only on full lines, # and we need an alignment for the partial lines. We don't know # for justify what alignment the user wants however. We assume # here LEFT ... layout.set_alignment(Pango.Alignment.LEFT) layout.set_justify(True) # font_style = self._style.get_font() layout.set_font_description(fontstyle_to_fontdescription(font_style)) #set line spacing based on font: spacing = font_style.get_size() * self.spacingfractionfont layout.set_spacing(int(round(spacing * Pango.SCALE))) # layout the text layout.set_text(self._plaintext, -1) layout.set_attributes(self._attrlist) layout_width, layout_height = layout.get_pixel_size() # render the layout onto the cairo surface x = l_margin + h_padding if f_indent < 0: x += f_indent # 3/4 of the spacing is added above the text, 1/4 is added below cr.move_to(x, t_margin + v_padding + spacing * 0.75) cr.set_source_rgb(*utils.rgb_color(font_style.get_color())) PangoCairo.show_layout(cr, layout) # calculate the full paragraph height height = layout_height + spacing + t_margin + 2*v_padding + b_margin # draw the borders if self._style.get_top_border(): cr.move_to(l_margin, t_margin) cr.rel_line_to(width - l_margin - r_margin, 0) if self._style.get_right_border(): cr.move_to(width - r_margin, t_margin) cr.rel_line_to(0, height - t_margin - b_margin) if self._style.get_bottom_border(): cr.move_to(l_margin, height - b_margin) cr.rel_line_to(width - l_margin - r_margin, 0) if self._style.get_left_border(): cr.move_to(l_margin, t_margin) cr.line_to(0, height - t_margin - b_margin) cr.set_line_width(1) cr.set_source_rgb(0, 0, 0) cr.stroke() if DEBUG: cr.set_line_width(0.1) cr.set_source_rgb(1.0, 0, 0) cr.rectangle(0, 0, width, height) cr.stroke() cr.set_source_rgb(0, 0, 1.0) cr.rectangle(l_margin, t_margin, width-l_margin-r_margin, height-t_margin-b_margin) cr.stroke() return height class GtkDocTable(GtkDocBaseElement): """Implement a table. """ _type = 'TABLE' _allowed_children = ['ROW'] def divide(self, layout, width, height, dpi_x, dpi_y): #calculate real table width table_width = width * self._style.get_width() / 100 # calculate the height of each row table_height = 0 row_index = 0 while row_index < len(self._children): row = self._children[row_index] (r1, r2), row_height = row.divide(layout, table_width, height, dpi_x, dpi_y) if r2 is not None: #break the table in two parts break table_height += row_height row_index += 1 height -= row_height # divide the table if any row did not fit new_table = None if row_index < len(self._children): new_table = GtkDocTable(self._style) #add the split row new_table.add_child(r2) list(map(new_table.add_child, self._children[row_index+1:])) del self._children[row_index+1:] return (self, new_table), table_height def draw(self, cr, layout, width, dpi_x, dpi_y): #calculate real table width table_width = width * self._style.get_width() / 100 # TODO is a table always left aligned?? table_height = 0 # draw all the rows for row in self._children: cr.save() cr.translate(0, table_height) row_height = row.draw(cr, layout, table_width, dpi_x, dpi_y) cr.restore() table_height += row_height if DEBUG: cr.set_line_width(0.1) cr.set_source_rgb(1.0, 0, 0) cr.rectangle(0, 0, table_width, table_height) cr.stroke() return table_height class GtkDocTableRow(GtkDocBaseElement): """Implement a row in a table. """ _type = 'ROW' _allowed_children = ['CELL'] def divide(self, layout, width, height, dpi_x, dpi_y): # the highest cell gives the height of the row cell_heights = [] dividedrow = False cell_width_iter = self._style.__iter__() new_row = GtkDocTableRow(self._style) for cell in self._children: cell_width = 0 for i in range(cell.get_span()): cell_width += next(cell_width_iter) cell_width = cell_width * width / 100 (c1, c2), cell_height = cell.divide(layout, cell_width, height, dpi_x, dpi_y) cell_heights.append(cell_height) if c2 is None: emptycell = GtkDocTableCell(c1._style, c1.get_span()) new_row.add_child(emptycell) else: dividedrow = True new_row.add_child(c2) # save height [inch] of the row to be able to draw exact cell border row_height = max(cell_heights) self.height = row_height / dpi_y # return the new row if dividing was needed if dividedrow: if row_height == 0: for cell in self._children: cell._style.set_top_border(False) cell._style.set_left_border(False) cell._style.set_right_border(False) return (self, new_row), row_height else: return (self, None), row_height def draw(self, cr, layout, width, dpi_x, dpi_y): cr.save() # get the height of this row row_height = self.height * dpi_y # draw all the cells in the row cell_width_iter = self._style.__iter__() for cell in self._children: cell_width = 0 for i in range(cell.get_span()): cell_width += next(cell_width_iter) cell_width = cell_width * width / 100 cell.draw(cr, layout, cell_width, row_height, dpi_x, dpi_y) cr.translate(cell_width, 0) cr.restore() if DEBUG: cr.set_line_width(0.1) cr.set_source_rgb(0, 0, 1.0) cr.rectangle(0, 0, width, row_height) cr.stroke() return row_height class GtkDocTableCell(GtkDocBaseElement): """Implement a cell in a table row. """ _type = 'CELL' _allowed_children = ['PARAGRAPH', 'IMAGE'] def __init__(self, style, span=1): GtkDocBaseElement.__init__(self, style) self._span = span def get_span(self): return self._span def divide(self, layout, width, height, dpi_x, dpi_y): h_padding = self._style.get_padding() * dpi_x / 2.54 v_padding = self._style.get_padding() * dpi_y / 2.54 # calculate real available width width -= 2 * h_padding available_height = height # calculate height of each child cell_height = 0 new_cell = None e2 = None childnr = 0 for child in self._children: if new_cell is None: (e1, e2), child_height = child.divide(layout, width, available_height, dpi_x, dpi_y) cell_height += child_height available_height -= child_height if e2 is not None: #divide the cell new_style = TableCellStyle(self._style) if e1 is not None: new_style.set_top_border(False) new_cell = GtkDocTableCell(new_style, self._span) new_cell.add_child(e2) # then update this cell self._style.set_bottom_border(False) if e1 is not None: childnr += 1 else: #cell has been divided new_cell.add_child(child) self._children = self._children[:childnr] # calculate real height if cell_height != 0: cell_height += 2 * v_padding # a cell can't be divided, return the height return (self, new_cell), cell_height def draw(self, cr, layout, width, cell_height, dpi_x, dpi_y): """Draw a cell. This draw method is a bit different from the others, as common cell height of all cells in a row is also given as parameter. This is needed to be able to draw proper vertical borders around each cell, i.e. the border should be as long as the highest cell in the given row. """ h_padding = self._style.get_padding() * dpi_x / 2.54 v_padding = self._style.get_padding() * dpi_y / 2.54 # calculate real available width i_width = width - 2 * h_padding # draw children cr.save() cr.translate(h_padding, v_padding) for child in self._children: child_height = child.draw(cr, layout, i_width, dpi_x, dpi_y) cr.translate(0, child_height) cr.restore() # draw the borders if self._style.get_top_border(): cr.move_to(0, 0) cr.rel_line_to(width , 0) if self._style.get_right_border(): cr.move_to(width, 0) cr.rel_line_to(0, cell_height) if self._style.get_bottom_border(): cr.move_to(0, cell_height) cr.rel_line_to(width, 0) if self._style.get_left_border(): cr.move_to(0, 0) cr.line_to(0, cell_height) cr.set_line_width(1) cr.set_source_rgb(0, 0, 0) cr.stroke() if DEBUG: cr.set_line_width(0.1) cr.set_source_rgb(0, 1.0, 0) cr.rectangle(0, 0, width, cell_height) cr.stroke() return cell_height class GtkDocPicture(GtkDocBaseElement): """Implement an image. """ _type = 'IMAGE' _allowed_children = [] def __init__(self, style, filename, width, height, crop=None): GtkDocBaseElement.__init__(self, style) self._filename = filename self._width = width self._height = height self._crop = crop def divide(self, layout, width, height, dpi_x, dpi_y): img_width = self._width * dpi_x / 2.54 img_height = self._height * dpi_y / 2.54 # image can't be divided, a new page must begin # if it can't fit on the current one if img_height <= height: return (self, None), img_height else: return (None, self), 0 def draw(self, cr, layout, width, dpi_x, dpi_y): from gi.repository import Gtk, Gdk img_width = self._width * dpi_x / 2.54 img_height = self._height * dpi_y / 2.54 if self._style == 'right': l_margin = width - img_width elif self._style == 'center': l_margin = (width - img_width) / 2.0 else: l_margin = 0 # load the image and get its extents pixbuf = resize_to_buffer(self._filename, [img_width, img_height], self._crop) pixbuf_width = pixbuf.get_width() pixbuf_height = pixbuf.get_height() # calculate the scale to fit image into the set extents scale = min(img_width / pixbuf_width, img_height / pixbuf_height) # draw the image cr.save() cr.translate(l_margin, 0) cr.scale(scale, scale) Gdk.cairo_set_source_pixbuf(cr, pixbuf, (img_width / scale - pixbuf_width) / 2, (img_height / scale - pixbuf_height) / 2) cr.rectangle(0 , 0, img_width / scale, img_height / scale) ##gcr.set_source_pixbuf(pixbuf, ##(img_width - pixbuf_width) / 2, ##(img_height - pixbuf_height) / 2) ##cr.rectangle(0 , 0, img_width, img_height) ##cr.scale(scale, scale) cr.fill() cr.restore() if DEBUG: cr.set_line_width(0.1) cr.set_source_rgb(1.0, 0, 0) cr.rectangle(l_margin, 0, img_width, img_height) cr.stroke() return (img_height) class GtkDocFrame(GtkDocBaseElement): """Implement a frame. """ _type = 'FRAME' _allowed_children = ['LINE', 'POLYGON', 'BOX', 'TEXT'] def divide(self, layout, width, height, dpi_x, dpi_y): frame_width = round(self._style.width * dpi_x / 2.54) frame_height = round(self._style.height * dpi_y / 2.54) t_margin = self._style.spacing[2] * dpi_y / 2.54 b_margin = self._style.spacing[3] * dpi_y / 2.54 # frame can't be divided, a new page must begin # if it can't fit on the current one if frame_height + t_margin + b_margin <= height: return (self, None), frame_height + t_margin + b_margin elif frame_height + t_margin <= height: return (self, None), height else: return (None, self), 0 def draw(self, cr, layout, width, dpi_x, dpi_y): frame_width = self._style.width * dpi_x / 2.54 frame_height = self._style.height * dpi_y / 2.54 l_margin = self._style.spacing[0] * dpi_x / 2.54 r_margin = self._style.spacing[1] * dpi_x / 2.54 t_margin = self._style.spacing[2] * dpi_y / 2.54 b_margin = self._style.spacing[3] * dpi_y / 2.54 if self._style.align == 'left': x_offset = l_margin elif self._style.align == 'right': x_offset = width - r_margin - frame_width elif self._style.align == 'center': x_offset = (width - frame_width) / 2.0 else: raise ValueError # draw each element in the frame cr.save() cr.translate(x_offset, t_margin) cr.rectangle(0, 0, frame_width, frame_height) cr.clip() for elem in self._children: elem.draw(cr, layout, frame_width, dpi_x, dpi_y) cr.restore() if DEBUG: cr.set_line_width(0.1) cr.set_source_rgb(1.0, 0, 0) cr.rectangle(x_offset, t_margin, frame_width, frame_height) cr.stroke() return frame_height + t_margin + b_margin class GtkDocLine(GtkDocBaseElement): """Implement a line. """ _type = 'LINE' _allowed_children = [] def __init__(self, style, x1, y1, x2, y2): GtkDocBaseElement.__init__(self, style) self._start = (x1, y1) self._end = (x2, y2) def draw(self, cr, layout, width, dpi_x, dpi_y): start = (self._start[0] * dpi_x / 2.54, self._start[1] * dpi_y / 2.54) end = (self._end[0] * dpi_x / 2.54, self._end[1] * dpi_y / 2.54) line_color = utils.rgb_color(self._style.get_color()) cr.save() cr.set_source_rgb(*line_color) cr.set_line_width(self._style.get_line_width()) # TODO line style line_style = self._style.get_line_style() if line_style != SOLID: cr.set_dash(self._style.get_dash_style(line_style), 0) cr.move_to(*start) cr.line_to(*end) cr.stroke() cr.restore() return 0 class GtkDocPolygon(GtkDocBaseElement): """Implement a line. """ _type = 'POLYGON' _allowed_children = [] def __init__(self, style, path): GtkDocBaseElement.__init__(self, style) self._path = path def draw(self, cr, layout, width, dpi_x, dpi_y): path = [(x * dpi_x / 2.54, y * dpi_y / 2.54) for (x, y) in self._path] path_start = path.pop(0) path_stroke_color = utils.rgb_color(self._style.get_color()) path_fill_color = utils.rgb_color(self._style.get_fill_color()) cr.save() cr.move_to(*path_start) for (x, y) in path: cr.line_to(x, y) cr.close_path() cr.set_source_rgb(*path_fill_color) cr.fill_preserve() cr.set_source_rgb(*path_stroke_color) cr.set_line_width(self._style.get_line_width()) # TODO line style line_style = self._style.get_line_style() if line_style != SOLID: cr.set_dash(self._style.get_dash_style(line_style), 0) cr.stroke() cr.restore() return 0 class GtkDocBox(GtkDocBaseElement): """Implement a box with optional shadow around it. """ _type = 'BOX' _allowed_children = [] def __init__(self, style, x, y, width, height): GtkDocBaseElement.__init__(self, style) self._x = x self._y = y self._width = width self._height = height def draw(self, cr, layout, width, dpi_x, dpi_y): box_x = self._x * dpi_x / 2.54 box_y = self._y * dpi_y / 2.54 box_width = self._width * dpi_x / 2.54 box_height = self._height * dpi_y / 2.54 box_stroke_color = utils.rgb_color((0, 0, 0)) box_fill_color = utils.rgb_color(self._style.get_fill_color()) shadow_color = utils.rgb_color((192, 192, 192)) cr.save() cr.set_line_width(self._style.get_line_width()) # TODO line style line_style = self._style.get_line_style() if line_style != SOLID: cr.set_dash(self._style.get_dash_style(line_style), 0) if self._style.get_shadow(): shadow_x = box_x + self._style.get_shadow_space() * dpi_x / 2.54 shadow_y = box_y + self._style.get_shadow_space() * dpi_y / 2.54 cr.set_source_rgb(*shadow_color) cr.rectangle(shadow_x, shadow_y, box_width, box_height) cr.fill() cr.rectangle(box_x, box_y, box_width, box_height) cr.set_source_rgb(*box_fill_color) cr.fill_preserve() cr.set_source_rgb(*box_stroke_color) cr.stroke() cr.restore() return 0 class GtkDocText(GtkDocBaseElement): """Implement a text on graphical reports. """ _type = 'TEXT' _allowed_children = [] # line spacing is not defined in ParagraphStyle spacingfractionfont = 0.2 def __init__(self, style, vertical_alignment, text, x, y, angle=0, mark=None): GtkDocBaseElement.__init__(self, style) self._align_y = vertical_alignment self._text = text self._x = x self._y = y self._angle = angle self._marklist = [] if mark: self._marklist = [mark] def draw(self, cr, layout, width, dpi_x, dpi_y): text_x = self._x * dpi_x / 2.54 text_y = self._y * dpi_y / 2.54 # turn off text wrapping layout.set_width(-1) # set paragraph properties align = self._style.get_alignment_text() if align == 'left': layout.set_justify(False) layout.set_alignment(Pango.Alignment.LEFT) elif align == 'right': layout.set_justify(False) layout.set_alignment(Pango.Alignment.RIGHT) elif align == 'center': layout.set_justify(False) layout.set_alignment(Pango.Alignment.CENTER) elif align == 'justify': #We have a problem, in pango, justify works only on full lines, # and we need an alignment for the partial lines. We don't know # for justify what alignment the user wants however. We assume # here CENTER ... layout.set_alignment(Pango.Alignment.CENTER) layout.set_justify(True) else: raise ValueError # font_style = self._style.get_font() layout.set_font_description(fontstyle_to_fontdescription(font_style)) #set line spacing based on font: spacing = font_style.get_size() * self.spacingfractionfont layout.set_spacing(int(round(spacing * Pango.SCALE))) # layout the text layout.set_markup(self._text) layout_width, layout_height = layout.get_pixel_size() # calculate horizontal and vertical alignment shift if align == 'left': align_x = 0 elif align == 'right': align_x = - layout_width elif align == 'center' or align == 'justify': align_x = - layout_width / 2 else: raise ValueError if self._align_y == 'top': align_y = 0 elif self._align_y == 'center': align_y = - layout_height / 2 elif self._align_y == 'bottom': align_y = - layout_height else: raise ValueError # render the layout onto the cairo surface cr.save() cr.translate(text_x, text_y) cr.rotate(radians(self._angle)) cr.move_to(align_x, align_y) cr.set_source_rgb(*utils.rgb_color(font_style.get_color())) PangoCairo.show_layout(cr, layout) cr.restore() return layout_height def get_marks(self): """ Return the index mark for this text """ return self._marklist #------------------------------------------------------------------------ # # CairoDoc class # #------------------------------------------------------------------------ class CairoDoc(BaseDoc, TextDoc, DrawDoc): """Act as an abstract document that can render onto a cairo context. Maintains an abstract model of the document. The root of this abstract document is self._doc. The model is build via the subclassed BaseDoc, and the implemented TextDoc, DrawDoc interface methods. It can render the model onto cairo context pages, according to the received page style. """ # BaseDoc implementation EXT = 'pdf' def open(self, filename): fe = filename.split('.') if len(fe) == 1: filename = filename + '.' + self.EXT elif fe[-1] != self.EXT: # NOTE: the warning will be bogus # if the EXT isn't properly overridden by derived class log.warning(_( """Mismatch between selected extension %(ext)s and actual format. Writing to %(filename)s in format %(impliedext)s.""") % {'ext' : fe[-1], 'filename' : filename, 'impliedext' : self.EXT} ) self._backend = CairoBackend(filename) self._doc = GtkDocDocument() self._active_element = self._doc self._pages = [] self._elements_to_paginate = [] self._links_error = False def close(self): self.run() # TextDoc implementation def page_break(self): self._active_element.add_child(GtkDocPagebreak()) def start_bold(self): self.__write_text('<b>', markup=True) def end_bold(self): self.__write_text('</b>', markup=True) def start_superscript(self): self.__write_text('<small><sup>', markup=True) def end_superscript(self): self.__write_text('</sup></small>', markup=True) def start_paragraph(self, style_name, leader=None): style_sheet = self.get_style_sheet() style = style_sheet.get_paragraph_style(style_name) new_paragraph = GtkDocParagraph(style, leader) self._active_element.add_child(new_paragraph) self._active_element = new_paragraph def end_paragraph(self): self._active_element = self._active_element.get_parent() def start_table(self, name, style_name): style_sheet = self.get_style_sheet() style = style_sheet.get_table_style(style_name) new_table = GtkDocTable(style) self._active_element.add_child(new_table) self._active_element = new_table # we need to remember the column width list from the table style. # this is an ugly hack, but got no better idea. self._active_row_style = list(map(style.get_column_width, list(range(style.get_columns())))) if self.get_rtl_doc(): self._active_row_style.reverse() def end_table(self): self._active_element = self._active_element.get_parent() def start_row(self): new_row = GtkDocTableRow(self._active_row_style) self._active_element.add_child(new_row) self._active_element = new_row def end_row(self): if self.get_rtl_doc(): self._active_element._children.reverse() self._active_element = self._active_element.get_parent() def start_cell(self, style_name, span=1): style_sheet = self.get_style_sheet() style = style_sheet.get_cell_style(style_name) new_cell = GtkDocTableCell(style, span) self._active_element.add_child(new_cell) self._active_element = new_cell def end_cell(self): self._active_element = self._active_element.get_parent() def write_styled_note(self, styledtext, format, style_name, contains_html=False, links=False): """ Convenience function to write a styledtext to the cairo doc. styledtext : assumed a StyledText object to write format : = 0 : Flowed, = 1 : Preformatted style_name : name of the style to use for default presentation contains_html: bool, the backend should not check if html is present. If contains_html=True, then the textdoc is free to handle that in some way. Eg, a textdoc could remove all tags, or could make sure a link is clickable. CairoDoc does nothing different for html notes links: bool, true if URLs should be made clickable """ text = str(styledtext) s_tags = styledtext.get_tags() #FIXME: following split should be regex to match \n\s*\n instead? markuptext = self._backend.add_markup_from_styled(text, s_tags, split='\n\n') if format == 1: #preformatted, retain whitespace. Cairo retains \n automatically, #so use \n\n for paragraph detection #FIXME: following split should be regex to match \n\s*\n instead? for line in markuptext.split('\n\n'): self.start_paragraph(style_name) self.__write_text(line, markup=True, links=links) self.end_paragraph() elif format == 0: #flowed #FIXME: following split should be regex to match \n\s*\n instead? for line in markuptext.split('\n\n'): self.start_paragraph(style_name) #flowed, normal whitespace goes away, but we keep linebreak lines = line.split('\n') newlines = [] for singleline in lines: newlines.append(' '.join(singleline.split())) self.__write_text('\n'.join(newlines), markup=True, links=links) self.end_paragraph() def __markup(self, text, markup=None): if not markup: # We need to escape the text here for later Pango.Layout.set_markup # calls. This way we save the markup created by the report # The markup in the note editor is not in the text so is not # considered. It must be added by pango too text = self._backend.ESCAPE_FUNC()(text) return text def __write_text(self, text, mark=None, markup=False, links=False): """ @param text: text to write. @param mark: IndexMark to use for indexing @param markup: True if text already contains markup info. Then text will no longer be escaped @param links: True if URLs should be made clickable """ if links == True: import cairo if cairo.cairo_version() < 11210 and self._links_error == False: # Cairo v1.12 is suppose to be the first version # that supports clickable links print(""" WARNING: This version of cairo (%s) does NOT support clickable links. The first version that is suppose to is v1.12. See the roadmap: http://www.cairographics.org/roadmap/ The work around is to save to another format that supports clickable links (like ODF) and write PDF from that format. """ % cairo.version) self._links_error = True text = self.__markup(text, markup) if mark: self._active_element.add_mark(mark) self._active_element.add_text(text) def write_text(self, text, mark=None, links=False): """Write a normal piece of text according to the present style @param text: text to write. @param mark: IndexMark to use for indexing @param links: True if URLs should be made clickable """ self.__write_text(text, mark, links=links) def write_markup(self, text, s_tags, mark=None): """ Writes the text in the current paragraph. Should only be used after a start_paragraph and before an end_paragraph. @param text: text to write. The text is assumed to be _not_ escaped @param s_tags: assumed to be list of styledtexttags to apply to the text @param mark: IndexMark to use for indexing """ markuptext = self._backend.add_markup_from_styled(text, s_tags) self.__write_text(markuptext, mark=mark, markup=True) def add_media(self, name, pos, x_cm, y_cm, alt='', style_name=None, crop=None): new_image = GtkDocPicture(pos, name, x_cm, y_cm, crop=crop) self._active_element.add_child(new_image) if len(alt): style_sheet = self.get_style_sheet() style = style_sheet.get_paragraph_style(style_name) style.set_alignment(PARA_ALIGN_CENTER) # Center the caption under the image if pos == "right": style.set_left_margin(self.get_usable_width() - new_image._width) else: style.set_right_margin(self.get_usable_width() - new_image._width) new_paragraph = GtkDocParagraph(style) new_paragraph.add_text('\n'.join(alt)) self._active_element.add_child(new_paragraph) def insert_toc(self): """ Insert a Table of Contents at this point in the document. """ self._doc.add_child(GtkDocTableOfContents()) def insert_index(self): """ Insert an Alphabetical Index at this point in the document. """ self._doc.add_child(GtkDocAlphabeticalIndex()) # DrawDoc implementation def start_page(self): # if this is not the first page we need to "close" the previous one children = self._doc.get_children() if children and children[-1].get_type() != 'PAGEBREAK': self._doc.add_child(GtkDocPagebreak()) new_frame_style = FrameStyle(width=self.get_usable_width(), height=self.get_usable_height()) new_frame = GtkDocFrame(new_frame_style) self._active_element.add_child(new_frame) self._active_element = new_frame def end_page(self): self._active_element = self._active_element.get_parent() def draw_line(self, style_name, x1, y1, x2, y2): style_sheet = self.get_style_sheet() style = style_sheet.get_draw_style(style_name) new_line = GtkDocLine(style, x1, y1, x2, y2) self._active_element.add_child(new_line) def draw_path(self, style_name, path): style_sheet = self.get_style_sheet() style = style_sheet.get_draw_style(style_name) new_polygon = GtkDocPolygon(style, path) self._active_element.add_child(new_polygon) def draw_box(self, style_name, text, x, y, w, h, mark=None): """ @param mark: IndexMark to use for indexing """ # we handle the box and... style_sheet = self.get_style_sheet() style = style_sheet.get_draw_style(style_name) new_box = GtkDocBox(style, x, y, w, h) self._active_element.add_child(new_box) # ...the text separately paragraph_style_name = style.get_paragraph_style() if paragraph_style_name: paragraph_style = style_sheet.get_paragraph_style(paragraph_style_name) paragraph_style.set_alignment(PARA_ALIGN_LEFT) # horizontal position of the text is not included in the style, # we assume that it is the size of the shadow, or 0.2mm if style.get_shadow(): x_offset = style.get_shadow_space() else: x_offset = 0.2 new_text = GtkDocText(paragraph_style, 'center', self.__markup(text), x + x_offset, y + h / 2, angle=0, mark=mark) self._active_element.add_child(new_text) def draw_text(self, style_name, text, x, y, mark=None): """ @param mark: IndexMark to use for indexing """ style_sheet = self.get_style_sheet() style = style_sheet.get_draw_style(style_name) paragraph_style_name = style.get_paragraph_style() paragraph_style = style_sheet.get_paragraph_style(paragraph_style_name) paragraph_style.set_alignment(PARA_ALIGN_LEFT) new_text = GtkDocText(paragraph_style, 'top', self.__markup(text), x, y, angle=0, mark=mark) self._active_element.add_child(new_text) def center_text(self, style_name, text, x, y, mark=None): """ @param mark: IndexMark to use for indexing """ style_sheet = self.get_style_sheet() style = style_sheet.get_draw_style(style_name) paragraph_style_name = style.get_paragraph_style() paragraph_style = style_sheet.get_paragraph_style(paragraph_style_name) paragraph_style.set_alignment(PARA_ALIGN_CENTER) new_text = GtkDocText(paragraph_style, 'top', self.__markup(text), x, y, angle=0, mark=mark) self._active_element.add_child(new_text) def rotate_text(self, style_name, text, x, y, angle, mark=None): """ @param mark: IndexMark to use for indexing """ style_sheet = self.get_style_sheet() style = style_sheet.get_draw_style(style_name) paragraph_style_name = style.get_paragraph_style() paragraph_style = style_sheet.get_paragraph_style(paragraph_style_name) paragraph_style.set_alignment(PARA_ALIGN_CENTER) new_text = GtkDocText(paragraph_style, 'center', self.__markup('\n'.join(text)), x, y, angle, mark) self._active_element.add_child(new_text) # paginating and drawing interface def run(self): """Create the physical output from the meta document. It must be implemented in the subclasses. The idea is that with different subclass different output could be generated: e.g. Print, PDF, PS, PNG (which are currently supported by Cairo). """ raise NotImplementedError def paginate_document(self, layout, page_width, page_height, dpi_x, dpi_y): """Paginate the entire document. """ while not self.paginate(layout, page_width, page_height, dpi_x, dpi_y): pass def paginate(self, layout, page_width, page_height, dpi_x, dpi_y): """Paginate the meta document in chunks. Only one document level element is handled at one run. """ # if first time run than initialize the variables if not self._elements_to_paginate: self._elements_to_paginate = self._doc.get_children()[:] self._pages.append(GtkDocDocument()) self._available_height = page_height # try to fit the next element to current page, divide it if needed if not self._elements_to_paginate: #this is a self._doc where nothing has been added. Empty page. return True elem = self._elements_to_paginate.pop(0) (e1, e2), e1_h = elem.divide(layout, page_width, self._available_height, dpi_x, dpi_y) # if (part of) it fits on current page add it if e1 is not None: self._pages[len(self._pages) - 1].add_child(e1) # if elem was divided remember the second half to be processed if e2 is not None: self._elements_to_paginate.insert(0, e2) # calculate how much space left on current page self._available_height -= e1_h # start new page if needed if (e1 is None) or (e2 is not None): self._pages.append(GtkDocDocument()) self._available_height = page_height return len(self._elements_to_paginate) == 0 def draw_page(self, page_nr, cr, layout, width, height, dpi_x, dpi_y): """Draw a page on a Cairo context. """ if DEBUG: cr.set_line_width(0.1) cr.set_source_rgb(0, 1.0, 0) cr.rectangle(0, 0, width, height) cr.stroke() self._pages[page_nr].draw(cr, layout, width, dpi_x, dpi_y)
gramps-project/gramps
gramps/plugins/lib/libcairodoc.py
Python
gpl-2.0
62,883
[ "Brian" ]
6990571cb14bc9c7cbf85f7e5c17d49f9fcfbaee272ebeb1dabf420b904ba8d1
#!/usr/bin/env python from math import sqrt import gtk from ase.gui.languages import translate as _ from ase.gui.widgets import pack, help class Graphs(gtk.Window): def __init__(self, gui): gtk.Window.__init__(self) #self.window.set_position(gtk.WIN_POS_CENTER) #self.window.connect("destroy", lambda w: gtk.main_quit()) #self.window.connect('delete_event', self.exit) self.set_title('Graphs') vbox = gtk.VBox() self.expr = pack(vbox, [gtk.Entry(40), help('Help for plot ...')])[0] self.expr.connect('activate', self.plot) completion = gtk.EntryCompletion() self.liststore = gtk.ListStore(str) for s in ['fmax', 's, e-E[0]', 'i, d(0,1)']: self.liststore.append([s]) completion.set_model(self.liststore) self.expr.set_completion(completion) completion.set_text_column(0) button = pack(vbox, [gtk.Button('Plot'), gtk.Label(' x, y1, y2, ...')])[0] button.connect('clicked', self.plot, 'xy') button = pack(vbox, [gtk.Button('Plot'), gtk.Label(' y1, y2, ...')])[0] button.connect('clicked', self.plot, 'y') button = pack(vbox, gtk.Button(_('clear'))) button.connect('clicked', self.clear) self.add(vbox) vbox.show() self.show() self.gui = gui def plot(self, button=None, type=None, expr=None): if expr is None: expr = self.expr.get_text() else: self.expr.set_text(expr) if expr not in [row[0] for row in self.liststore]: self.liststore.append([expr]) data = self.gui.images.graph(expr) import matplotlib matplotlib.interactive(True) matplotlib.use('GTK') #matplotlib.use('GTK', warn=False)# Not avail. in 0.91 (it is in 0.98) import pylab pylab.ion() x = 2.5 self.gui.graphs.append(pylab.figure(figsize=(x * 2.5**0.5, x))) i = self.gui.frame m = len(data) if type is None: if m == 1: type = 'y' else: type = 'xy' if type == 'y': for j in range(m): pylab.plot(data[j]) pylab.plot([i], [data[j, i]], 'o') else: for j in range(1, m): pylab.plot(data[0], data[j]) pylab.plot([data[0, i]], [data[j, i]], 'o') pylab.title(expr) #pylab.show() python = plot def clear(self, button): import pylab for graph in self.gui.graphs: pylab.close(graph) self.gui.graphs = []
freephys/python_ase
ase/gui/graphs.py
Python
gpl-3.0
2,816
[ "ASE" ]
6ae2a91afc801c1c45f83f5f440a0f2d6fbebc62a06d6a47bd665bb3e157d571
import GalaxyCommunication_data_manager import ProtonCommunication_data_manager from bioblend.galaxy import GalaxyInstance import logging def grou(): return ("this is the init.py script")
CARPEM/GalaxyDocker
data-manager-hegp/datamanagerpkg/datamanagerpkg/__init__.py
Python
mit
193
[ "Galaxy" ]
76a0632f9abcd9839dca792ac18c75cb910a803c9e32f33cb1596d3e1fa5aa91
''' ================================================================================================= R Cipher Suite Includes all variants of the R cipher ================================================================================================= Developed by: ProgramRandom, a division of RandomCorporations A Page For This Project Will Be Created Soon On lakewood999.github.io Visit my webpage at: https://lakewood999.github.io -- Note that this is my personal page, not the RandomCorporations page ================================================================================================= What is the R cipher: This is just a random dipher that I came up with. I will not say this is a good cipher, or perfect cipher, but it's just something I decided to make. The R cipher is an improved version of the Caesar cipher Root of the name: R cipher -Well, cipher is just what it is, and R stands for random, or things being randomly generated ================================================================================================= License: You are free to use this script free of charge, however, I am not responsible for any types of problems caused by this script. By using this program, you agree to not hold be liable for any charges related to this programe. You are free to modify, and distribute this software(free of charge), but you are NOT allowed to commercialize this software(sell). Please attribute this program to me if you are sharing it, or re-distributing it ================================================================================================= Status: This project is currently a WIP -Variant "i" of the R cipher comping up Version: Version 1: The X Update R Cipher X - Progress: 100% ================================================================================================= ''' import random def letterout(x): out = "" x = str(x) if x == "1": out = "a" elif x == "2": out = "b" elif x == "3": out = "c" elif x == "4": out = "d" elif x == "5": out = "e" elif x == "6": out = "f" elif x == "7": out = "g" elif x == "8": out = "h" elif x == "9": out = "i" elif x == "10": out = "j" elif x == "11": out = "k" elif x == "12": out = "l" elif x == "13": out = "m" elif x == "14": out = "n" elif x == "15": out = "o" elif x == "16": out = "p" elif x == "17": out = "q" elif x == "18": out = "r" elif x == "19": out = "s" elif x == "20": out = "t" elif x == "21": out = "u" elif x == "22": out = "v" elif x == "23": out = "w" elif x == "24": out = "x" elif x == "25": out = "y" elif x == "26": out = "z" return out #This is script just returns the number depnding on the input--WIP Need to alternate def numberout(x): out = "" if x == "a": out = "1" elif x == "": out = "0" elif x == "b": out = "2" elif x == "c": out = "3" elif x == "d": out = "4" elif x == "e": out = "5" elif x == "f": out = "6" elif x == "g": out = "7" elif x == "h": out = "8" elif x == "i": out = "9" elif x == "j": out = "10" elif x == "k": out = "11" elif x == "l": out = "12" elif x == "m": out = "13" elif x == "n": out = "14" elif x == "o": out = "15" elif x == "p": out = "16" elif x == "q": out = "17" elif x == "r": out = "18" elif x == "s": out = "19" elif x == "t": out = "20" elif x == "u": out = "21" elif x == "v": out = "22" elif x == "w": out = "23" elif x == "x": out = "24" elif x == "y": out = "25" elif x == "z": out = "26" return out def rcipherx(x): #This is script just returns the letter depnding on the input #This is the function that encrypts the text def encrypt(text): encrypted = "" key = "" totalscan = len(text) scan = 0 while scan < totalscan: prekey = random.randint(1, 26) letter = text[scan] letternum = numberout(letter) encryptout = "" if letternum == "": encryptout = " " prekey = "" else: lettersum = prekey+int(letternum) if lettersum > 26: lettersum = lettersum % 26 encryptout = letterout(lettersum) if key != "": if prekey == "": key = key else: key = key + ", " + str(prekey) else: if prekey == "": key = key else: key = key + str(prekey) encrypted += encryptout scan += 1 print("Your encrypted message: "+encrypted) print("Here is your key: "+key) def decrypt(text): decrypted = "" key = input("What is the key(Key Numbers Must Be Separated By Commas With Spaces, e.g. 1, 2, 4): ") keylist = key.split(', ') print("Warning: Your key length must be equal to the number of characters in the text your are trying to decrypt, or this decryption will be unsuccessful") totalscan = len(text) scan = 0 keyscan = 0 while scan < totalscan: letter = text[scan] letternum = numberout(letter) decryptout = "" if letternum == "": decryptout = " " scan = scan +1 else: decryptout = int(letternum) - int(keylist[keyscan]) if decryptout < 0: decryptout = letterout(26-abs(decryptout)) else: decryptout = letterout(decryptout) scan = scan + 1 keyscan = keyscan+1 decrypted += str(decryptout) print("Your decrpyted message is: "+decrypted) print("This message was decrypted with a key of: "+key) if x == "encrypt": encrypt(input("Please type in the text you would like to encrypt: ")) elif x == "decrypt": decrypt(input("Please type in the text you would like to decrypt: ")) #encrypt(input("Please type in the text you would like to encrypt: ")) #decrypt(input("Please type in the text you would like to decrypt: ")) #rcipherx()
lakewood999/Ciphers
rcipherx.py
Python
mit
5,693
[ "VisIt" ]
4fecddce30c1e6ce7319517db521dde1fde99790573597847154bc1fe85e064f
# -*- coding: utf-8 -*- # # Buildbot documentation build configuration file, created by # sphinx-quickstart on Tue Aug 10 15:13:31 2010. # # This file is exec()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import pkg_resources import sys import textwrap # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(1, os.path.dirname(os.path.abspath(__file__))) try: from buildbot.util.raml import RamlSpec from buildbot.reporters.telegram import TelegramContact except ImportError: sys.path.insert(2, os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir)) from buildbot.util.raml import RamlSpec from buildbot.reporters.telegram import TelegramContact # -- General configuration ----------------------------------------------- try: import sphinxcontrib.blockdiag assert sphinxcontrib.blockdiag except ImportError: raise RuntimeError("sphinxcontrib.blockdiag is not installed. " "Please install documentation dependencies with " "`pip install buildbot[docs]`") try: pkg_resources.require('docutils>=0.8') except pkg_resources.ResolutionError: raise RuntimeError("docutils is not installed or has incompatible version. " "Please install documentation dependencies with `pip " "install buildbot[docs]`") # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.extlinks', 'bbdocs.ext', 'bbdocs.api_index', 'sphinxcontrib.blockdiag', 'sphinxcontrib.jinja', 'sphinx_rtd_theme', ] todo_include_todos = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Buildbot' copyright = u'Buildbot Team Members' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. if 'VERSION' in os.environ: version = os.environ['VERSION'] else: gl = {'__file__': '../buildbot/__init__.py'} with open('../buildbot/__init__.py') as f: exec(f.read(), gl) version = gl['version'] # The full version, including alpha/beta/rc tags. release = version # blocksiag/seqdiag blockdiag_html_image_format = 'svg' blocdiag_transparency = True # add a loud note about python 2 rst_prolog = textwrap.dedent("""\ .. caution:: Buildbot no longer supports Python 2.7 on the Buildbot master. """) # add a loud note for anyone looking at the latest docs if release == 'latest': rst_prolog += textwrap.dedent("""\ .. caution:: This page documents the latest, unreleased version of Buildbot. For documentation for released versions, see http://docs.buildbot.net/current/. """) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build', 'release-notes/*.rst'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'trac' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] intersphinx_mapping = { 'python': ('https://python.readthedocs.io/en/latest/', None), 'sqlalchemy': ('https://sqlalchemy.readthedocs.io/en/latest/', None), } extlinks = { 'pull': ('https://github.com/buildbot/buildbot/pull/%s', 'pull request '), 'issue': ('https://github.com/buildbot/buildbot/issues/%s', 'issue # '), # deprecated. Use issue instead, and point to Github 'bug': ('http://trac.buildbot.net/ticket/%s', 'bug #'), # Renders as link with whole url, e.g. # :src-link:`master` # renders as # "https://github.com/buildbot/buildbot/blob/master/master". # Explicit title can be used for customizing how link looks like: # :src-link:`master's directory <master>` 'src-link': ('https://github.com/buildbot/buildbot/tree/master/%s', None), # "pretty" reference that looks like relative path in Buildbot source tree # by default. 'src': ('https://github.com/buildbot/buildbot/tree/master/%s', ''), 'contrib-src': ('https://github.com/buildbot/buildbot-contrib/tree/master/%s', ''), } # Sphinx' link checker. linkcheck_ignore = [ # Local URLs: r'^http://localhost.*', # Available only to logged-in users: r'^https://github\.com/settings/applications$', # Sites which uses SSL that Python 2 can't handle: r'^https://opensource\.org/licenses/gpl-2.0\.php$', r'^https://docs\.docker\.com/engine/installation/$', # Looks like server doesn't like user agent: r'^https://www\.microsoft\.com/en-us/download/details\.aspx\?id=17657$', # Example domain. r'^https?://(.+\.)?example\.org', # Anchor check fails on rendered user files on GitHub, since GitHub uses # custom prefix for anchors in user generated content. r'https://github\.com/buildbot/guanlecoja-ui/tree/master#changelog', r'http://mesosphere.github.io/marathon/docs/rest-api.html#post-v2-apps', ] linkcheck_timeout = 10 linkcheck_retries = 3 linkcheck_workers = 20 # -- Options for HTML output --------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {'stickysidebar': 'true'} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [ '_themes' ] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = os.path.join('_images', 'full_logo.png') # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large or a png. html_favicon = os.path.join('_static', 'icon.png') # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': ['searchbox.html', 'localtoc.html', 'relations.html', 'sourcelink.html'] } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True html_use_index = True html_use_modindex = False # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'Buildbotdoc' # -- Options for LaTeX output -------------------------------------------- latex_elements = {} # The paper size ('letter' or 'a4'). latex_elements['papersize'] = 'a4' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '11pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Buildbot.tex', u'Buildbot Documentation', u'Brian Warner', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = os.path.join('_images', 'header-text-transparent.png') # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # Three possible values for this option (see sphinx config manual) are: # 1. 'no' - do not display URLs (default) # 2. 'footnote' - display URLs in footnotes # 3. 'inline' - display URLs inline in parentheses latex_show_urls = 'inline' # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'buildbot', u'Buildbot Documentation', [u'Brian Warner'], 1) ] jinja_contexts = { "data_api": {'raml': RamlSpec()}, "telegram": {'commands': TelegramContact.describe_commands()}, } raml_spec = RamlSpec() for raml_typename, raml_type in sorted(raml_spec.types.items()): jinja_contexts['data_api_' + raml_typename] = { 'raml': raml_spec, 'name': raml_typename, 'type': raml_type, } doc_path = 'developer/raml/{}.rst'.format(raml_typename) if not os.path.exists(doc_path): raise Exception('File {} for RAML type {} does not exist'.format(doc_path, raml_typename)) # Spell checker. try: import enchant # noqa # pylint: disable=unused-import except ImportError as ex: print("enchant module import failed:\n" "{0}\n" "Spell checking disabled.".format(ex), file=sys.stderr) else: extensions.append('sphinxcontrib.spelling') spelling_show_suggestions = True
anish/buildbot
master/docs/conf.py
Python
gpl-2.0
12,154
[ "Brian" ]
5a4379da1a0dbe5f4b85b6543c310c7886764d1630f776eda354cb77c6cf8ca4
from django.db import IntegrityError from experiments.models import Enrollment from experiments.manager import experiment_manager from experiments.dateutils import now, fix_awareness, datetime_from_timestamp, timestamp_from_datetime from experiments.signals import user_enrolled from experiments.experiment_counters import ExperimentCounter from experiments import conf from collections import namedtuple from datetime import timedelta import collections import numbers import logging import json logger = logging.getLogger('experiments') def participant(request=None, session=None, user=None): # This caches the experiment user on the request object because AuthenticatedUser can involve database lookups that # it caches. Signals are attached to login/logout to clear the cache using clear_participant_cache if request and hasattr(request, '_experiments_user'): return request._experiments_user else: result = _get_participant(request, session, user) if request: request._experiments_user = result return result def clear_participant_cache(request): if hasattr(request, '_experiments_user'): del request._experiments_user def _get_participant(request, session, user): if request and hasattr(request, 'user') and not user: user = request.user if request and hasattr(request, 'session') and not session: session = request.session if request and conf.BOT_REGEX.search(request.META.get("HTTP_USER_AGENT", "")): return DummyUser() elif user and user.is_authenticated(): if getattr(user, 'is_confirmed_human', True): return AuthenticatedUser(user, request) else: return DummyUser() elif session: return SessionUser(session, request) else: return DummyUser() EnrollmentData = namedtuple('EnrollmentData', ['experiment', 'alternative', 'enrollment_date', 'last_seen']) class WebUser(object): """Represents a user (either authenticated or session based) which can take part in experiments""" def __init__(self): self.experiment_counter = ExperimentCounter() def enroll(self, experiment_name, alternatives, force_alternative=None): """ Enroll this user in the experiment if they are not already part of it. Returns the selected alternative force_alternative: Optionally force a user in an alternative at enrollment time """ chosen_alternative = conf.CONTROL_GROUP experiment = experiment_manager.get_experiment(experiment_name) if experiment: if experiment.is_displaying_alternatives(): if isinstance(alternatives, collections.Mapping): if conf.CONTROL_GROUP not in alternatives: experiment.ensure_alternative_exists(conf.CONTROL_GROUP, 1) for alternative, weight in alternatives.items(): experiment.ensure_alternative_exists(alternative, weight) else: alternatives_including_control = alternatives + [conf.CONTROL_GROUP] for alternative in alternatives_including_control: experiment.ensure_alternative_exists(alternative) assigned_alternative = self._get_enrollment(experiment) if assigned_alternative: chosen_alternative = assigned_alternative elif experiment.is_accepting_new_users(): if force_alternative: chosen_alternative = force_alternative else: chosen_alternative = experiment.random_alternative() self._set_enrollment(experiment, chosen_alternative) else: chosen_alternative = experiment.default_alternative return chosen_alternative def get_alternative(self, experiment_name): """ Get the alternative this user is enrolled in. """ experiment = None try: # catching the KeyError instead of using .get so that the experiment is auto created if desired experiment = experiment_manager[experiment_name] except KeyError: pass if experiment: if experiment.is_displaying_alternatives(): alternative = self._get_enrollment(experiment) if alternative is not None: return alternative else: return experiment.default_alternative return conf.CONTROL_GROUP def set_alternative(self, experiment_name, alternative): """Explicitly set the alternative the user is enrolled in for the specified experiment. This allows you to change a user between alternatives. The user and goal counts for the new alternative will be increment, but those for the old one will not be decremented. The user will be enrolled in the experiment even if the experiment would not normally accept this user.""" experiment = experiment_manager.get_experiment(experiment_name) if experiment: self._set_enrollment(experiment, alternative) def goal(self, goal_name, count=1): """Record that this user has performed a particular goal This will update the goal stats for all experiments the user is enrolled in.""" for enrollment in self._get_all_enrollments(): if enrollment.experiment.is_displaying_alternatives(): self._experiment_goal(enrollment.experiment, enrollment.alternative, goal_name, count) def confirm_human(self): """Mark that this is a real human being (not a bot) and thus results should be counted""" pass def incorporate(self, other_user): """Incorporate all enrollments and goals performed by the other user If this user is not enrolled in a given experiment, the results for the other user are incorporated. For experiments this user is already enrolled in the results of the other user are discarded. This takes a relatively large amount of time for each experiment the other user is enrolled in.""" for enrollment in other_user._get_all_enrollments(): if not self._get_enrollment(enrollment.experiment): self._set_enrollment(enrollment.experiment, enrollment.alternative, enrollment.enrollment_date, enrollment.last_seen) goals = self.experiment_counter.participant_goal_frequencies(enrollment.experiment, enrollment.alternative, other_user._participant_identifier()) for goal_name, count in goals: self.experiment_counter.increment_goal_count(enrollment.experiment, enrollment.alternative, goal_name, self._participant_identifier(), count) other_user._cancel_enrollment(enrollment.experiment) def visit(self): """Record that the user has visited the site for the purposes of retention tracking""" for enrollment in self._get_all_enrollments(): if enrollment.experiment.is_displaying_alternatives(): # We have two different goals, VISIT_NOT_PRESENT_COUNT_GOAL and VISIT_PRESENT_COUNT_GOAL. # VISIT_PRESENT_COUNT_GOAL will avoid firing on the first time we set last_seen as it is assumed that the user is # on the page and therefore it would automatically trigger and be valueless. # This should be used for experiments when we enroll the user as part of the pageview, # alternatively we can use the NOT_PRESENT GOAL which will increment on the first pageview, # this is mainly useful for notification actions when the users isn't initially present. if not enrollment.last_seen: self._experiment_goal(enrollment.experiment, enrollment.alternative, conf.VISIT_NOT_PRESENT_COUNT_GOAL, 1) self._set_last_seen(enrollment.experiment, now()) elif now() - enrollment.last_seen >= timedelta(hours=conf.SESSION_LENGTH): self._experiment_goal(enrollment.experiment, enrollment.alternative, conf.VISIT_NOT_PRESENT_COUNT_GOAL, 1) self._experiment_goal(enrollment.experiment, enrollment.alternative, conf.VISIT_PRESENT_COUNT_GOAL, 1) self._set_last_seen(enrollment.experiment, now()) def _get_enrollment(self, experiment): """Get the name of the alternative this user is enrolled in for the specified experiment `experiment` is an instance of Experiment. If the user is not currently enrolled returns None.""" raise NotImplementedError def _set_enrollment(self, experiment, alternative, enrollment_date=None, last_seen=None): """Explicitly set the alternative the user is enrolled in for the specified experiment. This allows you to change a user between alternatives. The user and goal counts for the new alternative will be increment, but those for the old one will not be decremented.""" raise NotImplementedError def is_enrolled(self, experiment_name, alternative): """Enroll this user in the experiment if they are not already part of it. Returns the selected alternative""" """Test if the user is enrolled in the supplied alternative for the given experiment. The supplied alternative will be added to the list of possible alternatives for the experiment if it is not already there. If the user is not yet enrolled in the supplied experiment they will be enrolled, and an alternative chosen at random.""" chosen_alternative = self.enroll(experiment_name, [alternative]) return alternative == chosen_alternative def _participant_identifier(self): "Unique identifier for this user in the counter store" raise NotImplementedError def _get_all_enrollments(self): "Return experiment, alternative tuples for all experiments the user is enrolled in" raise NotImplementedError def _cancel_enrollment(self, experiment): "Remove the enrollment and any goals the user has against this experiment" raise NotImplementedError def _experiment_goal(self, experiment, alternative, goal_name, count): "Record a goal against a particular experiment and alternative" raise NotImplementedError def _set_last_seen(self, experiment, last_seen): "Set the last time the user was seen associated with this experiment" raise NotImplementedError class DummyUser(WebUser): def _get_enrollment(self, experiment): return None def _set_enrollment(self, experiment, alternative, enrollment_date=None, last_seen=None): pass def is_enrolled(self, experiment_name, alternative): return alternative == conf.CONTROL_GROUP def incorporate(self, other_user): for enrollment in other_user._get_all_enrollments(): other_user._cancel_enrollment(enrollment.experiment) def _participant_identifier(self): return "" def _get_all_enrollments(self): return [] def _is_enrolled_in_experiment(self, experiment): return False def _cancel_enrollment(self, experiment): pass def _get_goal_counts(self, experiment, alternative): return {} def _experiment_goal(self, experiment, alternative, goal_name, count): pass def _set_last_seen(self, experiment, last_seen): pass class AuthenticatedUser(WebUser): def __init__(self, user, request=None): self._enrollment_cache = {} self.user = user self.request = request super(AuthenticatedUser, self).__init__() def _get_enrollment(self, experiment): if experiment.name not in self._enrollment_cache: try: self._enrollment_cache[experiment.name] = Enrollment.objects.get(user=self.user, experiment=experiment).alternative except Enrollment.DoesNotExist: self._enrollment_cache[experiment.name] = None return self._enrollment_cache[experiment.name] def _set_enrollment(self, experiment, alternative, enrollment_date=None, last_seen=None): if experiment.name in self._enrollment_cache: del self._enrollment_cache[experiment.name] try: enrollment, _ = Enrollment.objects.get_or_create(user=self.user, experiment=experiment, defaults={'alternative': alternative}) except IntegrityError: # Already registered (db race condition under high load) return # Update alternative if it doesn't match enrollment_changed = False if enrollment.alternative != alternative: enrollment.alternative = alternative enrollment_changed = True if enrollment_date: enrollment.enrollment_date = enrollment_date enrollment_changed = True if last_seen: enrollment.last_seen = last_seen enrollment_changed = True if enrollment_changed: enrollment.save() self.experiment_counter.increment_participant_count(experiment, alternative, self._participant_identifier()) user_enrolled.send(self, experiment=experiment.name, alternative=alternative, user=self.user, session=None) def _participant_identifier(self): return 'user:%d' % (self.user.pk, ) def _get_all_enrollments(self): enrollments = Enrollment.objects.filter(user=self.user).select_related("experiment") if enrollments: for enrollment in enrollments: yield EnrollmentData(enrollment.experiment, enrollment.alternative, enrollment.enrollment_date, enrollment.last_seen) def _cancel_enrollment(self, experiment): try: enrollment = Enrollment.objects.get(user=self.user, experiment=experiment) except Enrollment.DoesNotExist: pass else: self.experiment_counter.remove_participant(experiment, enrollment.alternative, self._participant_identifier()) enrollment.delete() def _experiment_goal(self, experiment, alternative, goal_name, count): self.experiment_counter.increment_goal_count(experiment, alternative, goal_name, self._participant_identifier(), count) def _set_last_seen(self, experiment, last_seen): Enrollment.objects.filter(user=self.user, experiment=experiment).update(last_seen=last_seen) def _session_enrollment_latest_version(data): try: alternative, unused, enrollment_date, last_seen = data if isinstance(enrollment_date, numbers.Number): enrollment_date = datetime_from_timestamp(enrollment_date) if isinstance(last_seen, numbers.Number): last_seen = datetime_from_timestamp(last_seen) if last_seen: last_seen = fix_awareness(last_seen) except ValueError: # Data from previous version alternative, unused = data enrollment_date = None last_seen = None return alternative, unused, enrollment_date, last_seen class SessionUser(WebUser): def __init__(self, session, request=None): self.session = session self.request = request super(SessionUser, self).__init__() def _get_enrollment(self, experiment): enrollments = self.session.get('experiments_enrollments', None) if enrollments and experiment.name in enrollments: alternative, _, _, _ = _session_enrollment_latest_version(enrollments[experiment.name]) return alternative return None def _set_enrollment(self, experiment, alternative, enrollment_date=None, last_seen=None): enrollments = self.session.get('experiments_enrollments', {}) enrollments[experiment.name] = (alternative, None, timestamp_from_datetime(enrollment_date or now()), timestamp_from_datetime(last_seen)) self.session['experiments_enrollments'] = enrollments if self._is_verified_human(): self.experiment_counter.increment_participant_count(experiment, alternative, self._participant_identifier()) else: logger.info(json.dumps({'type':'participant_unconfirmed', 'experiment': experiment.name, 'alternative': alternative, 'participant': self._participant_identifier()})) user_enrolled.send(self, experiment=experiment.name, alternative=alternative, user=None, session=self.session) def confirm_human(self): self.session[conf.CONFIRM_HUMAN_SESSION_KEY] = True logger.info(json.dumps({'type': 'confirm_human', 'participant': self._participant_identifier()})) # Replay enrollments for enrollment in self._get_all_enrollments(): self.experiment_counter.increment_participant_count(enrollment.experiment, enrollment.alternative, self._participant_identifier()) # Replay goals if 'experiments_goals' in self.session: try: for experiment_name, alternative, goal_name, count in self.session['experiments_goals']: experiment = experiment_manager.get_experiment(experiment_name) if experiment: self.experiment_counter.increment_goal_count(experiment, alternative, goal_name, self._participant_identifier(), count) except ValueError: pass # Values from older version finally: del self.session['experiments_goals'] def _participant_identifier(self): if 'experiments_session_key' not in self.session: if not self.session.session_key: self.session.save() # Force session key self.session['experiments_session_key'] = self.session.session_key return 'session:%s' % (self.session['experiments_session_key'], ) def _is_verified_human(self): if conf.VERIFY_HUMAN: return self.session.get(conf.CONFIRM_HUMAN_SESSION_KEY, False) else: return True def _get_all_enrollments(self): enrollments = self.session.get('experiments_enrollments', None) if enrollments: for experiment_name, data in list(enrollments.items()): alternative, _, enrollment_date, last_seen = _session_enrollment_latest_version(data) experiment = experiment_manager.get_experiment(experiment_name) if experiment: yield EnrollmentData(experiment, alternative, enrollment_date, last_seen) def _cancel_enrollment(self, experiment): alternative = self._get_enrollment(experiment) if alternative: self.experiment_counter.remove_participant(experiment, alternative, self._participant_identifier()) enrollments = self.session.get('experiments_enrollments', None) del enrollments[experiment.name] self.session['experiments_enrollments'] = enrollments def _experiment_goal(self, experiment, alternative, goal_name, count): if self._is_verified_human(): self.experiment_counter.increment_goal_count(experiment, alternative, goal_name, self._participant_identifier(), count) else: goals = self.session.get('experiments_goals', []) goals.append((experiment.name, alternative, goal_name, count)) self.session['experiments_goals'] = goals logger.info(json.dumps({'type': 'goal_hit_unconfirmed', 'goal': goal_name, 'goal_count': count, 'experiment': experiment.name, 'alternative': alternative, 'participant': self._participant_identifier()})) def _set_last_seen(self, experiment, last_seen): enrollments = self.session.get('experiments_enrollments', {}) alternative, unused, enrollment_date, _ = _session_enrollment_latest_version(enrollments[experiment.name]) enrollments[experiment.name] = (alternative, unused, timestamp_from_datetime(enrollment_date), timestamp_from_datetime(last_seen)) self.session['experiments_enrollments'] = enrollments __all__ = ['participant']
bjarnoldus/django-experiments
experiments/utils.py
Python
mit
20,243
[ "VisIt" ]
5f07cddd33ca3d8ea99c62b7bc8e41be9a7a1601cb2d7286543a1ee6a558523a
#! /usr/bin/env python3 # Copyright (c) 2014, HashFast Technologies LLC # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of HashFast Technologies LLC nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL HASHFAST TECHNOLOGIES LLC BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse def parse_args(): parser = argparse.ArgumentParser(description='Read and write various settings.') parser.add_argument('-r', '--revision', dest='revision', type=int, default=3, help='HashFast board major revision number') parser.add_argument('-d', '--read-die-settings', dest='read_die_settings', action='store_true', help='read die settings') parser.add_argument('-w', '--write-die-settings', dest='write_die_settings', type=str, nargs=4, metavar=('DIE:mVLT@FRQ'), help='write die settings') return parser.parse_args() if __name__ == '__main__': # parse args before other imports args = parse_args() import sys from hf.usb import usbbulk from hf.load import talkusb from hf.load.routines import settings def main(args): # query device dev = usbbulk.poll_hf_bulk_device() print (dev.info()) print (dev.init()) # Fix: talkusb patch talkusb.epr = dev.epr talkusb.epw = dev.epw #talkusb.talkusb(hf.INIT, None, 0) def printmsg(msg): print(msg) setter = settings.SettingsRoutine(talkusb.talkusb, 1, printmsg) if args.read_die_settings: setter.global_state = 'read' while setter.one_cycle(): pass if args.write_die_settings is not None: if args.revision is 3: setter.set_reference(25) else: setter.set_reference(125) die_settings = args.write_die_settings for die_setting in die_settings: die, setting = die_setting.split(':') vlt, frq = setting.split('@') setter.setup(int(die), int(frq), int(vlt)) while setter.one_cycle(): pass if __name__ == "__main__": main(args)
HashFast/hashfast-tools
hftool.py
Python
bsd-3-clause
3,207
[ "EPW" ]
b636c93029689978dc06451922848ae82b631ca4170f5fdaa2ed440fee0a3139
""" ################################################################################ # # SOAPpy - Cayce Ullman ([email protected]) # Brian Matthews ([email protected]) # Gregory Warnes ([email protected]) # Christopher Blunck ([email protected]) # ################################################################################ # Copyright (c) 2003, Pfizer # Copyright (c) 2001, Cayce Ullman. # Copyright (c) 2001, Brian Matthews. # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # Neither the name of actzero, inc. nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ from __future__ import nested_scopes ident = '$Id: Server.py,v 1.21 2005/02/15 16:32:22 warnes Exp $' from version import __version__ #import xml.sax import re import socket import sys import SocketServer from types import * import BaseHTTPServer import thread # SOAPpy modules from Parser import parseSOAPRPC from Config import Config from Types import faultType, voidType, simplify from NS import NS from SOAPBuilder import buildSOAP from Utilities import debugHeader, debugFooter ident = '$Id: Server.py,v 1.21 2005/02/15 16:32:22 warnes Exp $' from version import __version__ ################################################################################ # Call context dictionary ################################################################################ _contexts = dict() def GetSOAPContext(): global _contexts return _contexts[thread.get_ident()] ################################################################################ # Server ################################################################################ # Method Signature class for adding extra info to registered funcs, right now # used just to indicate it should be called with keywords, instead of ordered # params. class MethodSig: def __init__(self, func, keywords=0, context=0): self.func = func self.keywords = keywords self.context = context self.__name__ = func.__name__ def __call__(self, *args, **kw): return apply(self.func,args,kw) class SOAPContext: def __init__(self, header, body, attrs, xmldata, connection, httpheaders, soapaction): self.header = header self.body = body self.attrs = attrs self.xmldata = xmldata self.connection = connection self.httpheaders= httpheaders self.soapaction = soapaction # A class to describe how header messages are handled class HeaderHandler: # Initially fail out if there are any problems. def __init__(self, header, attrs): for i in header.__dict__.keys(): if i[0] == "_": continue d = getattr(header, i) try: fault = int(attrs[id(d)][(NS.ENV, 'mustUnderstand')]) except: fault = 0 if fault: raise faultType, ("%s:MustUnderstand" % NS.ENV_T, "Required Header Misunderstood", "%s" % i) ################################################################################ # SOAP Server ################################################################################ class SOAPServerBase: def get_request(self): sock, addr = SocketServer.TCPServer.get_request(self) if self.ssl_context: sock = SSL.Connection(self.ssl_context, sock) sock._setup_ssl(addr) if sock.accept_ssl() != 1: raise socket.error, "Couldn't accept SSL connection" return sock, addr def registerObject(self, object, namespace = '', path = ''): if namespace == '' and path == '': namespace = self.namespace if namespace == '' and path != '': namespace = path.replace("/", ":") if namespace[0] == ":": namespace = namespace[1:] self.objmap[namespace] = object def registerFunction(self, function, namespace = '', funcName = None, path = ''): if not funcName : funcName = function.__name__ if namespace == '' and path == '': namespace = self.namespace if namespace == '' and path != '': namespace = path.replace("/", ":") if namespace[0] == ":": namespace = namespace[1:] if self.funcmap.has_key(namespace): self.funcmap[namespace][funcName] = function else: self.funcmap[namespace] = {funcName : function} def registerKWObject(self, object, namespace = '', path = ''): if namespace == '' and path == '': namespace = self.namespace if namespace == '' and path != '': namespace = path.replace("/", ":") if namespace[0] == ":": namespace = namespace[1:] for i in dir(object.__class__): if i[0] != "_" and callable(getattr(object, i)): self.registerKWFunction(getattr(object,i), namespace) # convenience - wraps your func for you. def registerKWFunction(self, function, namespace = '', funcName = None, path = ''): if namespace == '' and path == '': namespace = self.namespace if namespace == '' and path != '': namespace = path.replace("/", ":") if namespace[0] == ":": namespace = namespace[1:] self.registerFunction(MethodSig(function,keywords=1), namespace, funcName) def unregisterObject(self, object, namespace = '', path = ''): if namespace == '' and path == '': namespace = self.namespace if namespace == '' and path != '': namespace = path.replace("/", ":") if namespace[0] == ":": namespace = namespace[1:] del self.objmap[namespace] class SOAPRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): def version_string(self): return '<a href="http://pywebsvcs.sf.net">' + \ 'SOAPpy ' + __version__ + '</a> (Python ' + \ sys.version.split()[0] + ')' def date_time_string(self): self.__last_date_time_string = \ BaseHTTPServer.BaseHTTPRequestHandler.\ date_time_string(self) return self.__last_date_time_string def do_POST(self): global _contexts status = 500 try: if self.server.config.dumpHeadersIn: s = 'Incoming HTTP headers' debugHeader(s) print self.raw_requestline.strip() print "\n".join(map (lambda x: x.strip(), self.headers.headers)) debugFooter(s) data = self.rfile.read(int(self.headers["Content-length"])) if self.server.config.dumpSOAPIn: s = 'Incoming SOAP' debugHeader(s) print data, if data[-1] != '\n': print debugFooter(s) (r, header, body, attrs) = \ parseSOAPRPC(data, header = 1, body = 1, attrs = 1) method = r._name args = r._aslist() kw = r._asdict() if Config.simplify_objects: args = simplify(args) kw = simplify(kw) # Handle mixed named and unnamed arguments by assuming # that all arguments with names of the form "v[0-9]+" # are unnamed and should be passed in numeric order, # other arguments are named and should be passed using # this name. # This is a non-standard exension to the SOAP protocol, # but is supported by Apache AXIS. # It is enabled by default. To disable, set # Config.specialArgs to False. if Config.specialArgs: ordered_args = {} named_args = {} for (k,v) in kw.items(): if k[0]=="v": try: i = int(k[1:]) ordered_args[i] = v except ValueError: named_args[str(k)] = v else: named_args[str(k)] = v # We have to decide namespace precedence # I'm happy with the following scenario # if r._ns is specified use it, if not check for # a path, if it's specified convert it and use it as the # namespace. If both are specified, use r._ns. ns = r._ns if len(self.path) > 1 and not ns: ns = self.path.replace("/", ":") if ns[0] == ":": ns = ns[1:] # authorization method a = None keylist = ordered_args.keys() keylist.sort() # create list in proper order w/o names tmp = map( lambda x: ordered_args[x], keylist) ordered_args = tmp #print '<-> Argument Matching Yielded:' #print '<-> Ordered Arguments:' + str(ordered_args) #print '<-> Named Arguments :' + str(named_args) resp = "" # For fault messages if ns: nsmethod = "%s:%s" % (ns, method) else: nsmethod = method try: # First look for registered functions if self.server.funcmap.has_key(ns) and \ self.server.funcmap[ns].has_key(method): f = self.server.funcmap[ns][method] # look for the authorization method if self.server.config.authMethod != None: authmethod = self.server.config.authMethod if self.server.funcmap.has_key(ns) and \ self.server.funcmap[ns].has_key(authmethod): a = self.server.funcmap[ns][authmethod] else: # Now look at registered objects # Check for nested attributes. This works even if # there are none, because the split will return # [method] f = self.server.objmap[ns] # Look for the authorization method if self.server.config.authMethod != None: authmethod = self.server.config.authMethod if hasattr(f, authmethod): a = getattr(f, authmethod) # then continue looking for the method l = method.split(".") for i in l: f = getattr(f, i) except: info = sys.exc_info() try: resp = buildSOAP(faultType("%s:Client" % NS.ENV_T, "Method Not Found", "%s : %s %s %s" % (nsmethod, info[0], info[1], info[2])), encoding = self.server.encoding, config = self.server.config) finally: del info status = 500 else: try: if header: x = HeaderHandler(header, attrs) fr = 1 # call context book keeping # We're stuffing the method into the soapaction if there # isn't one, someday, we'll set that on the client # and it won't be necessary here # for now we're doing both if "SOAPAction".lower() not in self.headers.keys() or \ self.headers["SOAPAction"] == "\"\"": self.headers["SOAPAction"] = method thread_id = thread.get_ident() _contexts[thread_id] = SOAPContext(header, body, attrs, data, self.connection, self.headers, self.headers["SOAPAction"]) # Do an authorization check if a != None: if not apply(a, (), {"_SOAPContext" : _contexts[thread_id] }): raise faultType("%s:Server" % NS.ENV_T, "Authorization failed.", "%s" % nsmethod) # If it's wrapped, some special action may be needed if isinstance(f, MethodSig): c = None if f.context: # retrieve context object c = _contexts[thread_id] if Config.specialArgs: if c: named_args["_SOAPContext"] = c fr = apply(f, ordered_args, named_args) elif f.keywords: # This is lame, but have to de-unicode # keywords strkw = {} for (k, v) in kw.items(): strkw[str(k)] = v if c: strkw["_SOAPContext"] = c fr = apply(f, (), strkw) elif c: fr = apply(f, args, {'_SOAPContext':c}) else: fr = apply(f, args, {}) else: if Config.specialArgs: fr = apply(f, ordered_args, named_args) else: fr = apply(f, args, {}) if type(fr) == type(self) and \ isinstance(fr, voidType): resp = buildSOAP(kw = {'%sResponse' % method: fr}, encoding = self.server.encoding, config = self.server.config) else: resp = buildSOAP(kw = {'%sResponse' % method: {'Result': fr}}, encoding = self.server.encoding, config = self.server.config) # Clean up _contexts if _contexts.has_key(thread_id): del _contexts[thread_id] except Exception, e: import traceback info = sys.exc_info() try: if self.server.config.dumpFaultInfo: s = 'Method %s exception' % nsmethod debugHeader(s) traceback.print_exception(info[0], info[1], info[2]) debugFooter(s) if isinstance(e, faultType): f = e else: f = faultType("%s:Server" % NS.ENV_T, "Method Failed", "%s" % nsmethod) if self.server.config.returnFaultInfo: f._setDetail("".join(traceback.format_exception( info[0], info[1], info[2]))) elif not hasattr(f, 'detail'): f._setDetail("%s %s" % (info[0], info[1])) finally: del info resp = buildSOAP(f, encoding = self.server.encoding, config = self.server.config) status = 500 else: status = 200 except faultType, e: import traceback info = sys.exc_info() try: if self.server.config.dumpFaultInfo: s = 'Received fault exception' debugHeader(s) traceback.print_exception(info[0], info[1], info[2]) debugFooter(s) if self.server.config.returnFaultInfo: e._setDetail("".join(traceback.format_exception( info[0], info[1], info[2]))) elif not hasattr(e, 'detail'): e._setDetail("%s %s" % (info[0], info[1])) finally: del info resp = buildSOAP(e, encoding = self.server.encoding, config = self.server.config) status = 500 except Exception, e: # internal error, report as HTTP server error if self.server.config.dumpFaultInfo: s = 'Internal exception %s' % e import traceback debugHeader(s) info = sys.exc_info() try: traceback.print_exception(info[0], info[1], info[2]) finally: del info debugFooter(s) self.send_response(500) self.end_headers() if self.server.config.dumpHeadersOut and \ self.request_version != 'HTTP/0.9': s = 'Outgoing HTTP headers' debugHeader(s) if self.responses.has_key(status): s = ' ' + self.responses[status][0] else: s = '' print "%s %d%s" % (self.protocol_version, 500, s) print "Server:", self.version_string() print "Date:", self.__last_date_time_string debugFooter(s) else: # got a valid SOAP response self.send_response(status) t = 'text/xml'; if self.server.encoding != None: t += '; charset="%s"' % self.server.encoding self.send_header("Content-type", t) self.send_header("Content-length", str(len(resp))) self.end_headers() if self.server.config.dumpHeadersOut and \ self.request_version != 'HTTP/0.9': s = 'Outgoing HTTP headers' debugHeader(s) if self.responses.has_key(status): s = ' ' + self.responses[status][0] else: s = '' print "%s %d%s" % (self.protocol_version, status, s) print "Server:", self.version_string() print "Date:", self.__last_date_time_string print "Content-type:", t print "Content-length:", len(resp) debugFooter(s) if self.server.config.dumpSOAPOut: s = 'Outgoing SOAP' debugHeader(s) print resp, if resp[-1] != '\n': print debugFooter(s) self.wfile.write(resp) self.wfile.flush() # We should be able to shut down both a regular and an SSL # connection, but under Python 2.1, calling shutdown on an # SSL connections drops the output, so this work-around. # This should be investigated more someday. if self.server.config.SSLserver and \ isinstance(self.connection, SSL.Connection): self.connection.set_shutdown(SSL.SSL_SENT_SHUTDOWN | SSL.SSL_RECEIVED_SHUTDOWN) else: self.connection.shutdown(1) def do_GET(self): #print 'command ', self.command #print 'path ', self.path #print 'request_version', self.request_version #print 'headers' #print ' type ', self.headers.type #print ' maintype', self.headers.maintype #print ' subtype ', self.headers.subtype #print ' params ', self.headers.plist path = self.path.lower() if path.endswith('wsdl'): method = 'wsdl' function = namespace = None if self.server.funcmap.has_key(namespace) \ and self.server.funcmap[namespace].has_key(method): function = self.server.funcmap[namespace][method] else: if namespace in self.server.objmap.keys(): function = self.server.objmap[namespace] l = method.split(".") for i in l: function = getattr(function, i) if function: self.send_response(200) self.send_header("Content-type", 'text/plain') self.end_headers() response = apply(function, ()) self.wfile.write(str(response)) return # return error self.send_response(200) self.send_header("Content-type", 'text/html') self.end_headers() self.wfile.write('''\ <title> <head>Error!</head> </title> <body> <h1>Oops!</h1> <p> This server supports HTTP GET requests only for the the purpose of obtaining Web Services Description Language (WSDL) for a specific service. Either you requested an URL that does not end in "wsdl" or this server does not implement a wsdl method. </p> </body>''') def log_message(self, format, *args): if self.server.log: BaseHTTPServer.BaseHTTPRequestHandler.\ log_message (self, format, *args) class SOAPServer(SOAPServerBase, SocketServer.TCPServer): def __init__(self, addr = ('localhost', 8000), RequestHandler = SOAPRequestHandler, log = 0, encoding = 'UTF-8', config = Config, namespace = None, ssl_context = None): # Test the encoding, raising an exception if it's not known if encoding != None: ''.encode(encoding) if ssl_context != None and not config.SSLserver: raise AttributeError, \ "SSL server not supported by this Python installation" self.namespace = namespace self.objmap = {} self.funcmap = {} self.ssl_context = ssl_context self.encoding = encoding self.config = config self.log = log self.allow_reuse_address= 1 SocketServer.TCPServer.__init__(self, addr, RequestHandler) class ThreadingSOAPServer(SOAPServerBase, SocketServer.ThreadingTCPServer): def __init__(self, addr = ('localhost', 8000), RequestHandler = SOAPRequestHandler, log = 0, encoding = 'UTF-8', config = Config, namespace = None, ssl_context = None): # Test the encoding, raising an exception if it's not known if encoding != None: ''.encode(encoding) if ssl_context != None and not config.SSLserver: raise AttributeError, \ "SSL server not supported by this Python installation" self.namespace = namespace self.objmap = {} self.funcmap = {} self.ssl_context = ssl_context self.encoding = encoding self.config = config self.log = log self.allow_reuse_address= 1 SocketServer.ThreadingTCPServer.__init__(self, addr, RequestHandler) # only define class if Unix domain sockets are available if hasattr(socket, "AF_UNIX"): class SOAPUnixSocketServer(SOAPServerBase, SocketServer.UnixStreamServer): def __init__(self, addr = 8000, RequestHandler = SOAPRequestHandler, log = 0, encoding = 'UTF-8', config = Config, namespace = None, ssl_context = None): # Test the encoding, raising an exception if it's not known if encoding != None: ''.encode(encoding) if ssl_context != None and not config.SSLserver: raise AttributeError, \ "SSL server not supported by this Python installation" self.namespace = namespace self.objmap = {} self.funcmap = {} self.ssl_context = ssl_context self.encoding = encoding self.config = config self.log = log self.allow_reuse_address= 1 SocketServer.UnixStreamServer.__init__(self, str(addr), RequestHandler)
krux/adspygoogle
adspygoogle/SOAPpy/Server.py
Python
apache-2.0
27,092
[ "Brian" ]
dec22cfa49f0c3aa969ea623a179653b452cf9bd3bb408fcc33c60f8efa4efaf
#!/usr/bin/env python """ The APIRUS API as an Abstract Base Class """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from abc import ABCMeta, abstractmethod class APIRUS: """ ABC for the API for Regular, Unstructured and Staggered model output (APIRUS) This ABC serves as a way to document the API, and is designed to be subclassed by py_ugrid, py_sgrid and any other future implementations. """ __metaclass__ = ABCMeta @abstractmethod def __init__(self): """ this one is probably going to be very different for each subclass """ pass @classmethod def load_grid(cls, grid): """ load a data set from an arbitrary source :param grid: the grid you want to load. This could be: * A string with a full path to a file, which could be any supported file type -- probably netcdf * a netcdf4 Dataset object * a OpenDAP url * possibley other supported APIs. :returns: returns an appropriate Grid object. This method will attempt to identify the type of the input grid, and call the appropriate loading methods. """ pass @abstractmethod @classmethod def from_netcdf(cls, filename): """ load a data set from a netcdf file """ pass @abstractmethod def subset_rect(self, bounding_box): """ subset the grid to the cells contained by the bounding box specified in lon-lat coordinates :param bounding_box: The bounding box, specified in lon-lat coords: ( (min_lon, min_lat), (max_lon, max_lat)) :type bounding_box: a 2x2 numpy array of float64, or any sequence that can be turned into one. :returns: a new APIRUS object, of the same type as self. """ pass @abstractmethod def subset_poly(self, polygon): """ Subset the grid to the cells contained by an arbitrary polygon, specified in lon-lat coordinates :param polygon: The polygon, specified in lon-lat coords: ( (lon1, lat1), (lon2, lat2), ..... ) :type bounding_box: an Nx2 numpy array of float64, or any sequence that can be turned into one. :returns: a new APIRUS object, of the same type as self. bounds are specified in lat-lon coords """ pass @abstractmethod def to_ugrid(self): """ return the same dataset, reformatted as a ugrid object. No interpolation or transformation is done. If self is already a ugrid object, it is returned unaltered If self can not be lovelessly converted, a TypeError is raised. """ pass
ioos/APIRUS
apirus_abc.py
Python
cc0-1.0
3,009
[ "NetCDF" ]
1f95c629338da0e2ec54a7a12fed900ba2a72153e369a733847b6e65bcddd14f
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This package implements various grain boundary analyses """
gVallverdu/pymatgen
pymatgen/analysis/gb/__init__.py
Python
mit
174
[ "pymatgen" ]
31d92203566360a61f2612416f2f176d13a1796db50a9215ba649d4bc65f0b4a
""" Test the Hartree-Fock Objective function 1. Hamiltonian expectation 2. The gradient values (local) 3. The Hessian values (local) The local gradient is the gradient assuming $kappa = 0$. This is the case in most electronic structure codes because the Hamiltonian (or orbitals) are always rotated to the $kappa=0$ point after updating the parameters in $kappa$. """ from itertools import product import cirq import numpy as np import scipy as sp import openfermion as of from openfermioncirq.experiments.hfvqe.circuits import \ prepare_slater_determinant from openfermioncirq.experiments.hfvqe.objective import get_matrix_of_eigs from openfermioncirq.experiments.hfvqe.circuits import rhf_params_to_matrix from openfermioncirq.experiments.hfvqe.molecular_example import make_h6_1_3 def get_opdm(wf, num_orbitals, transform=of.jordan_wigner): opdm_hw = np.zeros((num_orbitals, num_orbitals), dtype=np.complex128) creation_ops = [ of.get_sparse_operator(transform(of.FermionOperator(((p, 1)))), n_qubits=num_orbitals) for p in range(num_orbitals) ] # not using display style objects for p, q in product(range(num_orbitals), repeat=2): operator = creation_ops[p] @ creation_ops[q].conj().transpose() opdm_hw[p, q] = wf.conj().T @ operator @ wf return opdm_hw def test_global_gradient_h4(): """ Test the gradient at the solution given by psi4 """ # first get molecule rhf_objective, molecule, params, _, _ = make_h6_1_3() # molecule = h4_linear_molecule(1.0) nocc = molecule.n_electrons // 2 occ = list(range(nocc)) virt = list(range(nocc, molecule.n_orbitals)) qubits = cirq.LineQubit.range(molecule.n_orbitals) u = sp.linalg.expm(rhf_params_to_matrix(params, len(qubits), occ=occ, virt=virt)) circuit = cirq.Circuit(prepare_slater_determinant(qubits, u[:, :nocc].T)) simulator = cirq.Simulator(dtype=np.complex128) wf = simulator.simulate(circuit).final_state.reshape((-1, 1)) opdm_alpha = get_opdm(wf, molecule.n_orbitals) opdm = np.zeros((molecule.n_qubits, molecule.n_qubits), dtype=np.complex128) opdm[::2, ::2] = opdm_alpha opdm[1::2, 1::2] = opdm_alpha grad = rhf_objective.global_gradient_opdm(params, opdm_alpha) # get finite difference gradient finite_diff_grad = np.zeros(9) epsilon = 0.0001 for i in range(9): params_epsilon = params.copy() params_epsilon[i] += epsilon u = sp.linalg.expm(rhf_params_to_matrix(params_epsilon, len(qubits), occ=occ, virt=virt)) circuit = cirq.Circuit( prepare_slater_determinant(qubits, u[:, :nocc].T)) wf = simulator.simulate(circuit).final_state.reshape((-1, 1)) opdm_pepsilon = get_opdm(wf, molecule.n_orbitals) energy_plus_epsilon = rhf_objective.energy_from_opdm(opdm_pepsilon) params_epsilon[i] -= 2 * epsilon u = sp.linalg.expm(rhf_params_to_matrix(params_epsilon, len(qubits), occ=occ, virt=virt)) circuit = cirq.Circuit( prepare_slater_determinant(qubits, u[:, :nocc].T)) wf = simulator.simulate(circuit).final_state.reshape((-1, 1)) opdm_pepsilon = get_opdm(wf, molecule.n_orbitals) energy_minus_epsilon = rhf_objective.energy_from_opdm(opdm_pepsilon) finite_diff_grad[i] = (energy_plus_epsilon - energy_minus_epsilon) / (2 * epsilon) assert np.allclose(finite_diff_grad, grad, atol=epsilon) # random parameters now params = np.random.randn(9) u = sp.linalg.expm(rhf_params_to_matrix(params, len(qubits), occ=occ, virt=virt)) circuit = cirq.Circuit(prepare_slater_determinant(qubits, u[:, :nocc].T)) simulator = cirq.Simulator(dtype=np.complex128) wf = simulator.simulate(circuit).final_state.reshape((-1, 1)) opdm_alpha = get_opdm(wf, molecule.n_orbitals) opdm = np.zeros((molecule.n_qubits, molecule.n_qubits), dtype=np.complex128) opdm[::2, ::2] = opdm_alpha opdm[1::2, 1::2] = opdm_alpha grad = rhf_objective.global_gradient_opdm(params, opdm_alpha) # get finite difference gradient finite_diff_grad = np.zeros(9) epsilon = 0.0001 for i in range(9): params_epsilon = params.copy() params_epsilon[i] += epsilon u = sp.linalg.expm(rhf_params_to_matrix(params_epsilon, len(qubits), occ=occ, virt=virt)) circuit = cirq.Circuit( prepare_slater_determinant(qubits, u[:, :nocc].T)) wf = simulator.simulate(circuit).final_state.reshape((-1, 1)) opdm_pepsilon = get_opdm(wf, molecule.n_orbitals) energy_plus_epsilon = rhf_objective.energy_from_opdm(opdm_pepsilon) params_epsilon[i] -= 2 * epsilon u = sp.linalg.expm(rhf_params_to_matrix(params_epsilon, len(qubits), occ=occ, virt=virt)) circuit = cirq.Circuit( prepare_slater_determinant(qubits, u[:, :nocc].T)) wf = simulator.simulate(circuit).final_state.reshape((-1, 1)) opdm_pepsilon = get_opdm(wf, molecule.n_orbitals) energy_minus_epsilon = rhf_objective.energy_from_opdm(opdm_pepsilon) finite_diff_grad[i] = (energy_plus_epsilon - energy_minus_epsilon) / (2 * epsilon) assert np.allclose(finite_diff_grad, grad, atol=epsilon) def test_get_matrix_of_eigs(): """ Generate the matrix of [exp(i (li - lj)) - 1] / (i(li - lj) :return: """ lam_vals = np.random.randn(4) + 1j * np.random.randn(4) mat_eigs = np.zeros((lam_vals.shape[0], lam_vals.shape[0]), dtype=np.complex128) for i, j in product(range(lam_vals.shape[0]), repeat=2): if np.isclose(abs(lam_vals[i] - lam_vals[j]), 0): mat_eigs[i, j] = 1 else: mat_eigs[i, j] = (np.exp(1j * (lam_vals[i] - lam_vals[j])) - 1) / ( 1j * (lam_vals[i] - lam_vals[j])) test_mat_eigs = get_matrix_of_eigs(lam_vals) assert np.allclose(test_mat_eigs, mat_eigs)
quantumlib/OpenFermion-Cirq
openfermioncirq/experiments/hfvqe/objective_test.py
Python
apache-2.0
6,832
[ "Psi4" ]
6bc43f2cb8df2e47980318bc5e2fafb85723833e493ea684795eb51f0671c34b
# -*- coding: utf-8 -*- # This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Adds Beatport release and track search support to the autotagger """ from __future__ import division, absolute_import, print_function import json import re import six from datetime import datetime, timedelta from requests_oauthlib import OAuth1Session from requests_oauthlib.oauth1_session import (TokenRequestDenied, TokenMissing, VerifierMissing) import beets import beets.ui from beets.autotag.hooks import AlbumInfo, TrackInfo, Distance from beets.plugins import BeetsPlugin from beets.util import confit AUTH_ERRORS = (TokenRequestDenied, TokenMissing, VerifierMissing) USER_AGENT = u'beets/{0} +http://beets.io/'.format(beets.__version__) class BeatportAPIError(Exception): pass class BeatportObject(object): def __init__(self, data): self.beatport_id = data['id'] self.name = six.text_type(data['name']) if 'releaseDate' in data: self.release_date = datetime.strptime(data['releaseDate'], '%Y-%m-%d') if 'artists' in data: self.artists = [(x['id'], six.text_type(x['name'])) for x in data['artists']] if 'genres' in data: self.genres = [six.text_type(x['name']) for x in data['genres']] class BeatportClient(object): _api_base = 'https://oauth-api.beatport.com' def __init__(self, c_key, c_secret, auth_key=None, auth_secret=None): """ Initiate the client with OAuth information. For the initial authentication with the backend `auth_key` and `auth_secret` can be `None`. Use `get_authorize_url` and `get_access_token` to obtain them for subsequent uses of the API. :param c_key: OAuth1 client key :param c_secret: OAuth1 client secret :param auth_key: OAuth1 resource owner key :param auth_secret: OAuth1 resource owner secret """ self.api = OAuth1Session( client_key=c_key, client_secret=c_secret, resource_owner_key=auth_key, resource_owner_secret=auth_secret, callback_uri='oob') self.api.headers = {'User-Agent': USER_AGENT} def get_authorize_url(self): """ Generate the URL for the user to authorize the application. Retrieves a request token from the Beatport API and returns the corresponding authorization URL on their end that the user has to visit. This is the first step of the initial authorization process with the API. Once the user has visited the URL, call :py:method:`get_access_token` with the displayed data to complete the process. :returns: Authorization URL for the user to visit :rtype: unicode """ self.api.fetch_request_token( self._make_url('/identity/1/oauth/request-token')) return self.api.authorization_url( self._make_url('/identity/1/oauth/authorize')) def get_access_token(self, auth_data): """ Obtain the final access token and secret for the API. :param auth_data: URL-encoded authorization data as displayed at the authorization url (obtained via :py:meth:`get_authorize_url`) after signing in :type auth_data: unicode :returns: OAuth resource owner key and secret :rtype: (unicode, unicode) tuple """ self.api.parse_authorization_response( "http://beets.io/auth?" + auth_data) access_data = self.api.fetch_access_token( self._make_url('/identity/1/oauth/access-token')) return access_data['oauth_token'], access_data['oauth_token_secret'] def search(self, query, release_type='release', details=True): """ Perform a search of the Beatport catalogue. :param query: Query string :param release_type: Type of releases to search for, can be 'release' or 'track' :param details: Retrieve additional information about the search results. Currently this will fetch the tracklist for releases and do nothing for tracks :returns: Search results :rtype: generator that yields py:class:`BeatportRelease` or :py:class:`BeatportTrack` """ response = self._get('catalog/3/search', query=query, perPage=5, facets=['fieldType:{0}'.format(release_type)]) for item in response: if release_type == 'release': if details: release = self.get_release(item['id']) else: release = BeatportRelease(item) yield release elif release_type == 'track': yield BeatportTrack(item) def get_release(self, beatport_id): """ Get information about a single release. :param beatport_id: Beatport ID of the release :returns: The matching release :rtype: :py:class:`BeatportRelease` """ response = self._get('/catalog/3/releases', id=beatport_id) release = BeatportRelease(response[0]) release.tracks = self.get_release_tracks(beatport_id) return release def get_release_tracks(self, beatport_id): """ Get all tracks for a given release. :param beatport_id: Beatport ID of the release :returns: Tracks in the matching release :rtype: list of :py:class:`BeatportTrack` """ response = self._get('/catalog/3/tracks', releaseId=beatport_id) return [BeatportTrack(t) for t in response] def get_track(self, beatport_id): """ Get information about a single track. :param beatport_id: Beatport ID of the track :returns: The matching track :rtype: :py:class:`BeatportTrack` """ response = self._get('/catalog/3/tracks', id=beatport_id) return BeatportTrack(response[0]) def _make_url(self, endpoint): """ Get complete URL for a given API endpoint. """ if not endpoint.startswith('/'): endpoint = '/' + endpoint return self._api_base + endpoint def _get(self, endpoint, **kwargs): """ Perform a GET request on a given API endpoint. Automatically extracts result data from the response and converts HTTP exceptions into :py:class:`BeatportAPIError` objects. """ try: response = self.api.get(self._make_url(endpoint), params=kwargs) except Exception as e: raise BeatportAPIError("Error connecting to Beatport API: {}" .format(e.message)) if not response: raise BeatportAPIError( "Error {0.status_code} for '{0.request.path_url}" .format(response)) return response.json()['results'] @six.python_2_unicode_compatible class BeatportRelease(BeatportObject): def __str__(self): if len(self.artists) < 4: artist_str = ", ".join(x[1] for x in self.artists) else: artist_str = "Various Artists" return u"<BeatportRelease: {0} - {1} ({2})>".format( artist_str, self.name, self.catalog_number, ) def __repr__(self): return six.text_type(self).encode('utf8') def __init__(self, data): BeatportObject.__init__(self, data) if 'catalogNumber' in data: self.catalog_number = data['catalogNumber'] if 'label' in data: self.label_name = data['label']['name'] if 'category' in data: self.category = data['category'] if 'slug' in data: self.url = "http://beatport.com/release/{0}/{1}".format( data['slug'], data['id']) @six.python_2_unicode_compatible class BeatportTrack(BeatportObject): def __str__(self): artist_str = ", ".join(x[1] for x in self.artists) return (u"<BeatportTrack: {0} - {1} ({2})>" .format(artist_str, self.name, self.mix_name)) def __repr__(self): return six.text_type(self).encode('utf8') def __init__(self, data): BeatportObject.__init__(self, data) if 'title' in data: self.title = six.text_type(data['title']) if 'mixName' in data: self.mix_name = six.text_type(data['mixName']) self.length = timedelta(milliseconds=data.get('lengthMs', 0) or 0) if not self.length: try: min, sec = data.get('length', '0:0').split(':') self.length = timedelta(minutes=int(min), seconds=int(sec)) except ValueError: pass if 'slug' in data: self.url = "http://beatport.com/track/{0}/{1}".format(data['slug'], data['id']) self.track_number = data.get('trackNumber') class BeatportPlugin(BeetsPlugin): def __init__(self): super(BeatportPlugin, self).__init__() self.config.add({ 'apikey': '57713c3906af6f5def151b33601389176b37b429', 'apisecret': 'b3fe08c93c80aefd749fe871a16cd2bb32e2b954', 'tokenfile': 'beatport_token.json', 'source_weight': 0.5, }) self.config['apikey'].redact = True self.config['apisecret'].redact = True self.client = None self.register_listener('import_begin', self.setup) def setup(self, session=None): c_key = self.config['apikey'].as_str() c_secret = self.config['apisecret'].as_str() # Get the OAuth token from a file or log in. try: with open(self._tokenfile()) as f: tokendata = json.load(f) except IOError: # No token yet. Generate one. token, secret = self.authenticate(c_key, c_secret) else: token = tokendata['token'] secret = tokendata['secret'] self.client = BeatportClient(c_key, c_secret, token, secret) def authenticate(self, c_key, c_secret): # Get the link for the OAuth page. auth_client = BeatportClient(c_key, c_secret) try: url = auth_client.get_authorize_url() except AUTH_ERRORS as e: self._log.debug(u'authentication error: {0}', e) raise beets.ui.UserError(u'communication with Beatport failed') beets.ui.print_(u"To authenticate with Beatport, visit:") beets.ui.print_(url) # Ask for the verifier data and validate it. data = beets.ui.input_(u"Enter the string displayed in your browser:") try: token, secret = auth_client.get_access_token(data) except AUTH_ERRORS as e: self._log.debug(u'authentication error: {0}', e) raise beets.ui.UserError(u'Beatport token request failed') # Save the token for later use. self._log.debug(u'Beatport token {0}, secret {1}', token, secret) with open(self._tokenfile(), 'w') as f: json.dump({'token': token, 'secret': secret}, f) return token, secret def _tokenfile(self): """Get the path to the JSON file for storing the OAuth token. """ return self.config['tokenfile'].get(confit.Filename(in_app_dir=True)) def album_distance(self, items, album_info, mapping): """Returns the beatport source weight and the maximum source weight for albums. """ dist = Distance() if album_info.data_source == 'Beatport': dist.add('source', self.config['source_weight'].as_number()) return dist def track_distance(self, item, track_info): """Returns the beatport source weight and the maximum source weight for individual tracks. """ dist = Distance() if track_info.data_source == 'Beatport': dist.add('source', self.config['source_weight'].as_number()) return dist def candidates(self, items, artist, release, va_likely): """Returns a list of AlbumInfo objects for beatport search results matching release and artist (if not various). """ if va_likely: query = release else: query = '%s %s' % (artist, release) try: return self._get_releases(query) except BeatportAPIError as e: self._log.debug(u'API Error: {0} (query: {1})', e, query) return [] def item_candidates(self, item, artist, title): """Returns a list of TrackInfo objects for beatport search results matching title and artist. """ query = '%s %s' % (artist, title) try: return self._get_tracks(query) except BeatportAPIError as e: self._log.debug(u'API Error: {0} (query: {1})', e, query) return [] def album_for_id(self, release_id): """Fetches a release by its Beatport ID and returns an AlbumInfo object or None if the release is not found. """ self._log.debug(u'Searching for release {0}', release_id) match = re.search(r'(^|beatport\.com/release/.+/)(\d+)$', release_id) if not match: return None release = self.client.get_release(match.group(2)) album = self._get_album_info(release) return album def track_for_id(self, track_id): """Fetches a track by its Beatport ID and returns a TrackInfo object or None if the track is not found. """ self._log.debug(u'Searching for track {0}', track_id) match = re.search(r'(^|beatport\.com/track/.+/)(\d+)$', track_id) if not match: return None bp_track = self.client.get_track(match.group(2)) track = self._get_track_info(bp_track) return track def _get_releases(self, query): """Returns a list of AlbumInfo objects for a beatport search query. """ # Strip non-word characters from query. Things like "!" and "-" can # cause a query to return no results, even if they match the artist or # album title. Use `re.UNICODE` flag to avoid stripping non-english # word characters. query = re.sub(r'\W+', ' ', query, re.UNICODE) # Strip medium information from query, Things like "CD1" and "disk 1" # can also negate an otherwise positive result. query = re.sub(r'\b(CD|disc)\s*\d+', '', query, re.I) albums = [self._get_album_info(x) for x in self.client.search(query)] return albums def _get_album_info(self, release): """Returns an AlbumInfo object for a Beatport Release object. """ va = len(release.artists) > 3 artist, artist_id = self._get_artist(release.artists) if va: artist = u"Various Artists" tracks = [self._get_track_info(x) for x in release.tracks] return AlbumInfo(album=release.name, album_id=release.beatport_id, artist=artist, artist_id=artist_id, tracks=tracks, albumtype=release.category, va=va, year=release.release_date.year, month=release.release_date.month, day=release.release_date.day, label=release.label_name, catalognum=release.catalog_number, media=u'Digital', data_source=u'Beatport', data_url=release.url) def _get_track_info(self, track): """Returns a TrackInfo object for a Beatport Track object. """ title = track.name if track.mix_name != u"Original Mix": title += u" ({0})".format(track.mix_name) artist, artist_id = self._get_artist(track.artists) length = track.length.total_seconds() return TrackInfo(title=title, track_id=track.beatport_id, artist=artist, artist_id=artist_id, length=length, index=track.track_number, medium_index=track.track_number, data_source=u'Beatport', data_url=track.url) def _get_artist(self, artists): """Returns an artist string (all artists) and an artist_id (the main artist) for a list of Beatport release or track artists. """ artist_id = None bits = [] for artist in artists: if not artist_id: artist_id = artist[0] name = artist[1] # Strip disambiguation number. name = re.sub(r' \(\d+\)$', '', name) # Move articles to the front. name = re.sub(r'^(.*?), (a|an|the)$', r'\2 \1', name, flags=re.I) bits.append(name) artist = ', '.join(bits).replace(' ,', ',') or None return artist, artist_id def _get_tracks(self, query): """Returns a list of TrackInfo objects for a Beatport query. """ bp_tracks = self.client.search(query, release_type='track') tracks = [self._get_track_info(x) for x in bp_tracks] return tracks
jetskijoe/headphones
lib/beetsplug/beatport.py
Python
gpl-3.0
18,360
[ "VisIt" ]
6eef24014f58b83340ce93ca00139e0acab082505b7dcbf1fae5941472c894ba
# This code is part of Ansible, but is an independent component. # This particular file snippet, and this file snippet only, is BSD licensed. # Modules you write using this snippet, which is embedded dynamically by Ansible # still belong to the author of the module, and may assign their own license # to the complete work. # # Copyright (c), Michael DeHaan <[email protected]>, 2012-2013 # Copyright (c), Toshio Kuratomi <[email protected]> 2016 # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # BOOLEANS_TRUE = ['y', 'yes', 'on', '1', 'true', 1, True] BOOLEANS_FALSE = ['n', 'no', 'off', '0', 'false', 0, False] BOOLEANS = BOOLEANS_TRUE + BOOLEANS_FALSE SIZE_RANGES = { 'Y': 1<<80, 'Z': 1<<70, 'E': 1<<60, 'P': 1<<50, 'T': 1<<40, 'G': 1<<30, 'M': 1<<20, 'K': 1<<10, 'B': 1 } FILE_ATTRIBUTES = { 'A': 'noatime', 'a': 'append', 'c': 'compressed', 'C': 'nocow', 'd': 'nodump', 'D': 'dirsync', 'e': 'extents', 'E': 'encrypted', 'h': 'blocksize', 'i': 'immutable', 'I': 'indexed', 'j': 'journalled', 'N': 'inline', 's': 'zero', 'S': 'synchronous', 't': 'notail', 'T': 'blockroot', 'u': 'undelete', 'X': 'compressedraw', 'Z': 'compresseddirty', } # ansible modules can be written in any language. To simplify # development of Python modules, the functions available here can # be used to do many common tasks import locale import os import re import pipes import shlex import subprocess import sys import types import time import select import shutil import stat import tempfile import traceback import grp import pwd import platform import errno import datetime from itertools import repeat, chain try: import syslog HAS_SYSLOG=True except ImportError: HAS_SYSLOG=False try: from systemd import journal has_journal = True except ImportError: has_journal = False HAVE_SELINUX=False try: import selinux HAVE_SELINUX=True except ImportError: pass # Python2 & 3 way to get NoneType NoneType = type(None) try: from collections import Sequence, Mapping except ImportError: # python2.5 Sequence = (list, tuple) Mapping = (dict,) # Note: When getting Sequence from collections, it matches with strings. If # this matters, make sure to check for strings before checking for sequencetype try: from collections.abc import KeysView SEQUENCETYPE = (Sequence, KeysView) except: SEQUENCETYPE = Sequence try: import json # Detect the python-json library which is incompatible # Look for simplejson if that's the case try: if not isinstance(json.loads, types.FunctionType) or not isinstance(json.dumps, types.FunctionType): raise ImportError except AttributeError: raise ImportError except ImportError: try: import simplejson as json except ImportError: print('\n{"msg": "Error: ansible requires the stdlib json or simplejson module, neither was found!", "failed": true}') sys.exit(1) except SyntaxError: print('\n{"msg": "SyntaxError: probably due to installed simplejson being for a different python version", "failed": true}') sys.exit(1) AVAILABLE_HASH_ALGORITHMS = dict() try: import hashlib # python 2.7.9+ and 2.7.0+ for attribute in ('available_algorithms', 'algorithms'): algorithms = getattr(hashlib, attribute, None) if algorithms: break if algorithms is None: # python 2.5+ algorithms = ('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512') for algorithm in algorithms: AVAILABLE_HASH_ALGORITHMS[algorithm] = getattr(hashlib, algorithm) except ImportError: import sha AVAILABLE_HASH_ALGORITHMS = {'sha1': sha.sha} try: import md5 AVAILABLE_HASH_ALGORITHMS['md5'] = md5.md5 except ImportError: pass from ansible.module_utils.pycompat24 import get_exception, literal_eval from ansible.module_utils.six import (PY2, PY3, b, binary_type, integer_types, iteritems, text_type, string_types) from ansible.module_utils.six.moves import map, reduce from ansible.module_utils._text import to_native, to_bytes, to_text _NUMBERTYPES = tuple(list(integer_types) + [float]) # Deprecated compat. Only kept in case another module used these names Using # ansible.module_utils.six is preferred NUMBERTYPES = _NUMBERTYPES imap = map try: # Python 2 unicode except NameError: # Python 3 unicode = text_type try: # Python 2.6+ bytes except NameError: # Python 2.4 bytes = binary_type try: # Python 2 basestring except NameError: # Python 3 basestring = string_types _literal_eval = literal_eval # End of deprecated names # Internal global holding passed in params. This is consulted in case # multiple AnsibleModules are created. Otherwise each AnsibleModule would # attempt to read from stdin. Other code should not use this directly as it # is an internal implementation detail _ANSIBLE_ARGS = None FILE_COMMON_ARGUMENTS=dict( src = dict(), mode = dict(type='raw'), owner = dict(), group = dict(), seuser = dict(), serole = dict(), selevel = dict(), setype = dict(), follow = dict(type='bool', default=False), # not taken by the file module, but other modules call file so it must ignore them. content = dict(no_log=True), backup = dict(), force = dict(), remote_src = dict(), # used by assemble regexp = dict(), # used by assemble delimiter = dict(), # used by assemble directory_mode = dict(), # used by copy unsafe_writes = dict(type='bool'), # should be available to any module using atomic_move attributes = dict(aliases=['attr']), ) PASSWD_ARG_RE = re.compile(r'^[-]{0,2}pass[-]?(word|wd)?') # Can't use 07777 on Python 3, can't use 0o7777 on Python 2.4 PERM_BITS = int('07777', 8) # file mode permission bits EXEC_PERM_BITS = int('00111', 8) # execute permission bits DEFAULT_PERM = int('0666', 8) # default file permission bits def get_platform(): ''' what's the platform? example: Linux is a platform. ''' return platform.system() def get_distribution(): ''' return the distribution name ''' if platform.system() == 'Linux': try: supported_dists = platform._supported_dists + ('arch','alpine') distribution = platform.linux_distribution(supported_dists=supported_dists)[0].capitalize() if not distribution and os.path.isfile('/etc/system-release'): distribution = platform.linux_distribution(supported_dists=['system'])[0].capitalize() if 'Amazon' in distribution: distribution = 'Amazon' else: distribution = 'OtherLinux' except: # FIXME: MethodMissing, I assume? distribution = platform.dist()[0].capitalize() else: distribution = None return distribution def get_distribution_version(): ''' return the distribution version ''' if platform.system() == 'Linux': try: distribution_version = platform.linux_distribution()[1] if not distribution_version and os.path.isfile('/etc/system-release'): distribution_version = platform.linux_distribution(supported_dists=['system'])[1] except: # FIXME: MethodMissing, I assume? distribution_version = platform.dist()[1] else: distribution_version = None return distribution_version def get_all_subclasses(cls): ''' used by modules like Hardware or Network fact classes to retrieve all subclasses of a given class. __subclasses__ return only direct sub classes. This one go down into the class tree. ''' # Retrieve direct subclasses subclasses = cls.__subclasses__() to_visit = list(subclasses) # Then visit all subclasses while to_visit: for sc in to_visit: # The current class is now visited, so remove it from list to_visit.remove(sc) # Appending all subclasses to visit and keep a reference of available class for ssc in sc.__subclasses__(): subclasses.append(ssc) to_visit.append(ssc) return subclasses def load_platform_subclass(cls, *args, **kwargs): ''' used by modules like User to have different implementations based on detected platform. See User module for an example. ''' this_platform = get_platform() distribution = get_distribution() subclass = None # get the most specific superclass for this platform if distribution is not None: for sc in get_all_subclasses(cls): if sc.distribution is not None and sc.distribution == distribution and sc.platform == this_platform: subclass = sc if subclass is None: for sc in get_all_subclasses(cls): if sc.platform == this_platform and sc.distribution is None: subclass = sc if subclass is None: subclass = cls return super(cls, subclass).__new__(subclass) def json_dict_unicode_to_bytes(d, encoding='utf-8', errors='surrogate_or_strict'): ''' Recursively convert dict keys and values to byte str Specialized for json return because this only handles, lists, tuples, and dict container types (the containers that the json module returns) ''' if isinstance(d, text_type): return to_bytes(d, encoding=encoding, errors=errors) elif isinstance(d, dict): return dict(map(json_dict_unicode_to_bytes, iteritems(d), repeat(encoding), repeat(errors))) elif isinstance(d, list): return list(map(json_dict_unicode_to_bytes, d, repeat(encoding), repeat(errors))) elif isinstance(d, tuple): return tuple(map(json_dict_unicode_to_bytes, d, repeat(encoding), repeat(errors))) else: return d def json_dict_bytes_to_unicode(d, encoding='utf-8', errors='surrogate_or_strict'): ''' Recursively convert dict keys and values to byte str Specialized for json return because this only handles, lists, tuples, and dict container types (the containers that the json module returns) ''' if isinstance(d, binary_type): # Warning, can traceback return to_text(d, encoding=encoding, errors=errors) elif isinstance(d, dict): return dict(map(json_dict_bytes_to_unicode, iteritems(d), repeat(encoding), repeat(errors))) elif isinstance(d, list): return list(map(json_dict_bytes_to_unicode, d, repeat(encoding), repeat(errors))) elif isinstance(d, tuple): return tuple(map(json_dict_bytes_to_unicode, d, repeat(encoding), repeat(errors))) else: return d def return_values(obj): """ Return native stringified values from datastructures. For use with removing sensitive values pre-jsonification.""" if isinstance(obj, (text_type, binary_type)): if obj: yield to_native(obj, errors='surrogate_or_strict') return elif isinstance(obj, SEQUENCETYPE): for element in obj: for subelement in return_values(element): yield subelement elif isinstance(obj, Mapping): for element in obj.items(): for subelement in return_values(element[1]): yield subelement elif isinstance(obj, (bool, NoneType)): # This must come before int because bools are also ints return elif isinstance(obj, NUMBERTYPES): yield to_native(obj, nonstring='simplerepr') else: raise TypeError('Unknown parameter type: %s, %s' % (type(obj), obj)) def remove_values(value, no_log_strings): """ Remove strings in no_log_strings from value. If value is a container type, then remove a lot more""" if isinstance(value, (text_type, binary_type)): # Need native str type native_str_value = value if isinstance(value, text_type): value_is_text = True if PY2: native_str_value = to_bytes(value, encoding='utf-8', errors='surrogate_or_strict') elif isinstance(value, binary_type): value_is_text = False if PY3: native_str_value = to_text(value, encoding='utf-8', errors='surrogate_or_strict') if native_str_value in no_log_strings: return 'VALUE_SPECIFIED_IN_NO_LOG_PARAMETER' for omit_me in no_log_strings: native_str_value = native_str_value.replace(omit_me, '*' * 8) if value_is_text and isinstance(native_str_value, binary_type): value = to_text(native_str_value, encoding='utf-8', errors='surrogate_or_replace') elif not value_is_text and isinstance(native_str_value, text_type): value = to_bytes(native_str_value, encoding='utf-8', errors='surrogate_or_replace') else: value = native_str_value elif isinstance(value, SEQUENCETYPE): return [remove_values(elem, no_log_strings) for elem in value] elif isinstance(value, Mapping): return dict((k, remove_values(v, no_log_strings)) for k, v in value.items()) elif isinstance(value, tuple(chain(NUMBERTYPES, (bool, NoneType)))): stringy_value = to_native(value, encoding='utf-8', errors='surrogate_or_strict') if stringy_value in no_log_strings: return 'VALUE_SPECIFIED_IN_NO_LOG_PARAMETER' for omit_me in no_log_strings: if omit_me in stringy_value: return 'VALUE_SPECIFIED_IN_NO_LOG_PARAMETER' elif isinstance(value, datetime.datetime): value = value.isoformat() else: raise TypeError('Value of unknown type: %s, %s' % (type(value), value)) return value def heuristic_log_sanitize(data, no_log_values=None): ''' Remove strings that look like passwords from log messages ''' # Currently filters: # user:pass@foo/whatever and http://username:pass@wherever/foo # This code has false positives and consumes parts of logs that are # not passwds # begin: start of a passwd containing string # end: end of a passwd containing string # sep: char between user and passwd # prev_begin: where in the overall string to start a search for # a passwd # sep_search_end: where in the string to end a search for the sep data = to_native(data) output = [] begin = len(data) prev_begin = begin sep = 1 while sep: # Find the potential end of a passwd try: end = data.rindex('@', 0, begin) except ValueError: # No passwd in the rest of the data output.insert(0, data[0:begin]) break # Search for the beginning of a passwd sep = None sep_search_end = end while not sep: # URL-style username+password try: begin = data.rindex('://', 0, sep_search_end) except ValueError: # No url style in the data, check for ssh style in the # rest of the string begin = 0 # Search for separator try: sep = data.index(':', begin + 3, end) except ValueError: # No separator; choices: if begin == 0: # Searched the whole string so there's no password # here. Return the remaining data output.insert(0, data[0:begin]) break # Search for a different beginning of the password field. sep_search_end = begin continue if sep: # Password was found; remove it. output.insert(0, data[end:prev_begin]) output.insert(0, '********') output.insert(0, data[begin:sep + 1]) prev_begin = begin output = ''.join(output) if no_log_values: output = remove_values(output, no_log_values) return output def bytes_to_human(size, isbits=False, unit=None): base = 'Bytes' if isbits: base = 'bits' suffix = '' for suffix, limit in sorted(iteritems(SIZE_RANGES), key=lambda item: -item[1]): if (unit is None and size >= limit) or unit is not None and unit.upper() == suffix[0]: break if limit != 1: suffix += base[0] else: suffix = base return '%.2f %s' % (float(size)/ limit, suffix) def human_to_bytes(number, default_unit=None, isbits=False): ''' Convert number in string format into bytes (ex: '2K' => 2048) or using unit argument ex: human_to_bytes('10M') <=> human_to_bytes(10, 'M') ''' m = re.search('^\s*(\d*\.?\d*)\s*([A-Za-z]+)?', str(number), flags=re.IGNORECASE) if m is None: raise ValueError("human_to_bytes() can't interpret following string: %s" % str(number)) try: num = float(m.group(1)) except: raise ValueError("human_to_bytes() can't interpret following number: %s (original input string: %s)" % (m.group(1), number)) unit = m.group(2) if unit is None: unit = default_unit if unit is None: ''' No unit given, returning raw number ''' return int(round(num)) range_key = unit[0].upper() try: limit = SIZE_RANGES[range_key] except: raise ValueError("human_to_bytes() failed to convert %s (unit = %s). The suffix must be one of %s" % (number, unit, ", ".join(SIZE_RANGES.keys()))) # default value unit_class = 'B' unit_class_name = 'byte' # handling bits case if isbits: unit_class = 'b' unit_class_name = 'bit' # check unit value if more than one character (KB, MB) if len(unit) > 1: expect_message = 'expect %s%s or %s' % (range_key, unit_class, range_key) if range_key == 'B': expect_message = 'expect %s or %s' % (unit_class, unit_class_name) if unit_class_name in unit.lower(): pass elif unit[1] != unit_class: raise ValueError("human_to_bytes() failed to convert %s. Value is not a valid string (%s)" % (number, expect_message)) return int(round(num * limit)) def is_executable(path): '''is the given path executable? Limitations: * Does not account for FSACLs. * Most times we really want to know "Can the current user execute this file" This function does not tell us that, only if an execute bit is set. ''' # These are all bitfields so first bitwise-or all the permissions we're # looking for, then bitwise-and with the file's mode to determine if any # execute bits are set. return ((stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) & os.stat(path)[stat.ST_MODE]) def _load_params(): ''' read the modules parameters and store them globally. This function may be needed for certain very dynamic custom modules which want to process the parameters that are being handed the module. Since this is so closely tied to the implementation of modules we cannot guarantee API stability for it (it may change between versions) however we will try not to break it gratuitously. It is certainly more future-proof to call this function and consume its outputs than to implement the logic inside it as a copy in your own code. ''' global _ANSIBLE_ARGS if _ANSIBLE_ARGS is not None: buffer = _ANSIBLE_ARGS else: # debug overrides to read args from file or cmdline # Avoid tracebacks when locale is non-utf8 # We control the args and we pass them as utf8 if len(sys.argv) > 1: if os.path.isfile(sys.argv[1]): fd = open(sys.argv[1], 'rb') buffer = fd.read() fd.close() else: buffer = sys.argv[1] if PY3: buffer = buffer.encode('utf-8', errors='surrogateescape') # default case, read from stdin else: if PY2: buffer = sys.stdin.read() else: buffer = sys.stdin.buffer.read() _ANSIBLE_ARGS = buffer try: params = json.loads(buffer.decode('utf-8')) except ValueError: # This helper used too early for fail_json to work. print('\n{"msg": "Error: Module unable to decode valid JSON on stdin. Unable to figure out what parameters were passed", "failed": true}') sys.exit(1) if PY2: params = json_dict_unicode_to_bytes(params) try: return params['ANSIBLE_MODULE_ARGS'] except KeyError: # This helper does not have access to fail_json so we have to print # json output on our own. print('\n{"msg": "Error: Module unable to locate ANSIBLE_MODULE_ARGS in json data from stdin. Unable to figure out what parameters were passed", "failed": true}') sys.exit(1) def env_fallback(*args, **kwargs): ''' Load value from environment ''' for arg in args: if arg in os.environ: return os.environ[arg] else: raise AnsibleFallbackNotFound def _lenient_lowercase(lst): """Lowercase elements of a list. If an element is not a string, pass it through untouched. """ lowered = [] for value in lst: try: lowered.append(value.lower()) except AttributeError: lowered.append(value) return lowered def format_attributes(attributes): attribute_list = [] for attr in attributes: if attr in FILE_ATTRIBUTES: attribute_list.append(FILE_ATTRIBUTES[attr]) return attribute_list def get_flags_from_attributes(attributes): flags = [] for key,attr in FILE_ATTRIBUTES.items(): if attr in attributes: flags.append(key) return ''.join(flags) class AnsibleFallbackNotFound(Exception): pass class AnsibleModule(object): def __init__(self, argument_spec, bypass_checks=False, no_log=False, check_invalid_arguments=True, mutually_exclusive=None, required_together=None, required_one_of=None, add_file_common_args=False, supports_check_mode=False, required_if=None): ''' common code for quickly building an ansible module in Python (although you can write modules in anything that can return JSON) see library/* for examples ''' self._name = os.path.basename(__file__) #initialize name until we can parse from options self.argument_spec = argument_spec self.supports_check_mode = supports_check_mode self.check_mode = False self.no_log = no_log self.cleanup_files = [] self._debug = False self._diff = False self._verbosity = 0 # May be used to set modifications to the environment for any # run_command invocation self.run_command_environ_update = {} self._warnings = [] self._deprecations = [] self._passthrough = ['warnings', 'deprecations'] self.aliases = {} self._legal_inputs = ['_ansible_check_mode', '_ansible_no_log', '_ansible_debug', '_ansible_diff', '_ansible_verbosity', '_ansible_selinux_special_fs', '_ansible_module_name', '_ansible_version', '_ansible_syslog_facility'] if add_file_common_args: for k, v in FILE_COMMON_ARGUMENTS.items(): if k not in self.argument_spec: self.argument_spec[k] = v self._load_params() self._set_fallbacks() # append to legal_inputs and then possibly check against them try: self.aliases = self._handle_aliases() except Exception: e = get_exception() # Use exceptions here because it isn't safe to call fail_json until no_log is processed print('\n{"failed": true, "msg": "Module alias error: %s"}' % str(e)) sys.exit(1) # Save parameter values that should never be logged self.no_log_values = set() # Use the argspec to determine which args are no_log for arg_name, arg_opts in self.argument_spec.items(): if arg_opts.get('no_log', False): # Find the value for the no_log'd param no_log_object = self.params.get(arg_name, None) if no_log_object: self.no_log_values.update(return_values(no_log_object)) if arg_opts.get('removed_in_version') is not None and arg_name in self.params: self._deprecations.append({ 'msg': "Param '%s' is deprecated. See the module docs for more information" % arg_name, 'version': arg_opts.get('removed_in_version') }) # check the locale as set by the current environment, and reset to # a known valid (LANG=C) if it's an invalid/unavailable locale self._check_locale() self._check_arguments(check_invalid_arguments) # check exclusive early if not bypass_checks: self._check_mutually_exclusive(mutually_exclusive) self._set_defaults(pre=True) self._CHECK_ARGUMENT_TYPES_DISPATCHER = { 'str': self._check_type_str, 'list': self._check_type_list, 'dict': self._check_type_dict, 'bool': self._check_type_bool, 'int': self._check_type_int, 'float': self._check_type_float, 'path': self._check_type_path, 'raw': self._check_type_raw, 'jsonarg': self._check_type_jsonarg, 'json': self._check_type_jsonarg, 'bytes': self._check_type_bytes, 'bits': self._check_type_bits, } if not bypass_checks: self._check_required_arguments() self._check_argument_types() self._check_argument_values() self._check_required_together(required_together) self._check_required_one_of(required_one_of) self._check_required_if(required_if) self._set_defaults(pre=False) if not self.no_log: self._log_invocation() # finally, make sure we're in a sane working dir self._set_cwd() def warn(self, warning): if isinstance(warning, string_types): self._warnings.append(warning) self.log('[WARNING] %s' % warning) else: raise TypeError("warn requires a string not a %s" % type(warning)) def deprecate(self, msg, version=None): if isinstance(msg, string_types): self._deprecations.append({ 'msg': msg, 'version': version }) self.log('[DEPRECATION WARNING] %s %s' % (msg, version)) else: raise TypeError("deprecate requires a string not a %s" % type(msg)) def load_file_common_arguments(self, params): ''' many modules deal with files, this encapsulates common options that the file module accepts such that it is directly available to all modules and they can share code. ''' path = params.get('path', params.get('dest', None)) if path is None: return {} else: path = os.path.expanduser(os.path.expandvars(path)) b_path = to_bytes(path, errors='surrogate_or_strict') # if the path is a symlink, and we're following links, get # the target of the link instead for testing if params.get('follow', False) and os.path.islink(b_path): b_path = os.path.realpath(b_path) path = to_native(b_path) mode = params.get('mode', None) owner = params.get('owner', None) group = params.get('group', None) # selinux related options seuser = params.get('seuser', None) serole = params.get('serole', None) setype = params.get('setype', None) selevel = params.get('selevel', None) secontext = [seuser, serole, setype] if self.selinux_mls_enabled(): secontext.append(selevel) default_secontext = self.selinux_default_context(path) for i in range(len(default_secontext)): if i is not None and secontext[i] == '_default': secontext[i] = default_secontext[i] attributes = params.get('attributes', None) return dict( path=path, mode=mode, owner=owner, group=group, seuser=seuser, serole=serole, setype=setype, selevel=selevel, secontext=secontext, attributes=attributes, ) # Detect whether using selinux that is MLS-aware. # While this means you can set the level/range with # selinux.lsetfilecon(), it may or may not mean that you # will get the selevel as part of the context returned # by selinux.lgetfilecon(). def selinux_mls_enabled(self): if not HAVE_SELINUX: return False if selinux.is_selinux_mls_enabled() == 1: return True else: return False def selinux_enabled(self): if not HAVE_SELINUX: seenabled = self.get_bin_path('selinuxenabled') if seenabled is not None: (rc,out,err) = self.run_command(seenabled) if rc == 0: self.fail_json(msg="Aborting, target uses selinux but python bindings (libselinux-python) aren't installed!") return False if selinux.is_selinux_enabled() == 1: return True else: return False # Determine whether we need a placeholder for selevel/mls def selinux_initial_context(self): context = [None, None, None] if self.selinux_mls_enabled(): context.append(None) return context # If selinux fails to find a default, return an array of None def selinux_default_context(self, path, mode=0): context = self.selinux_initial_context() if not HAVE_SELINUX or not self.selinux_enabled(): return context try: ret = selinux.matchpathcon(to_native(path, errors='surrogate_or_strict'), mode) except OSError: return context if ret[0] == -1: return context # Limit split to 4 because the selevel, the last in the list, # may contain ':' characters context = ret[1].split(':', 3) return context def selinux_context(self, path): context = self.selinux_initial_context() if not HAVE_SELINUX or not self.selinux_enabled(): return context try: ret = selinux.lgetfilecon_raw(to_native(path, errors='surrogate_or_strict')) except OSError: e = get_exception() if e.errno == errno.ENOENT: self.fail_json(path=path, msg='path %s does not exist' % path) else: self.fail_json(path=path, msg='failed to retrieve selinux context') if ret[0] == -1: return context # Limit split to 4 because the selevel, the last in the list, # may contain ':' characters context = ret[1].split(':', 3) return context def user_and_group(self, filename): filename = os.path.expanduser(os.path.expandvars(filename)) b_filename = to_bytes(filename, errors='surrogate_or_strict') st = os.lstat(b_filename) uid = st.st_uid gid = st.st_gid return (uid, gid) def find_mount_point(self, path): path = os.path.realpath(os.path.expanduser(os.path.expandvars(path))) while not os.path.ismount(path): path = os.path.dirname(path) return path def is_special_selinux_path(self, path): """ Returns a tuple containing (True, selinux_context) if the given path is on a NFS or other 'special' fs mount point, otherwise the return will be (False, None). """ try: f = open('/proc/mounts', 'r') mount_data = f.readlines() f.close() except: return (False, None) path_mount_point = self.find_mount_point(path) for line in mount_data: (device, mount_point, fstype, options, rest) = line.split(' ', 4) if path_mount_point == mount_point: for fs in self._selinux_special_fs: if fs in fstype: special_context = self.selinux_context(path_mount_point) return (True, special_context) return (False, None) def set_default_selinux_context(self, path, changed): if not HAVE_SELINUX or not self.selinux_enabled(): return changed context = self.selinux_default_context(path) return self.set_context_if_different(path, context, False) def set_context_if_different(self, path, context, changed, diff=None): if not HAVE_SELINUX or not self.selinux_enabled(): return changed cur_context = self.selinux_context(path) new_context = list(cur_context) # Iterate over the current context instead of the # argument context, which may have selevel. (is_special_se, sp_context) = self.is_special_selinux_path(path) if is_special_se: new_context = sp_context else: for i in range(len(cur_context)): if len(context) > i: if context[i] is not None and context[i] != cur_context[i]: new_context[i] = context[i] elif context[i] is None: new_context[i] = cur_context[i] if cur_context != new_context: if diff is not None: if 'before' not in diff: diff['before'] = {} diff['before']['secontext'] = cur_context if 'after' not in diff: diff['after'] = {} diff['after']['secontext'] = new_context try: if self.check_mode: return True rc = selinux.lsetfilecon(to_native(path), str(':'.join(new_context))) except OSError: e = get_exception() self.fail_json(path=path, msg='invalid selinux context: %s' % str(e), new_context=new_context, cur_context=cur_context, input_was=context) if rc != 0: self.fail_json(path=path, msg='set selinux context failed') changed = True return changed def set_owner_if_different(self, path, owner, changed, diff=None): path = os.path.expanduser(os.path.expandvars(path)) b_path = to_bytes(path, errors='surrogate_or_strict') if owner is None: return changed orig_uid, orig_gid = self.user_and_group(path) try: uid = int(owner) except ValueError: try: uid = pwd.getpwnam(owner).pw_uid except KeyError: self.fail_json(path=path, msg='chown failed: failed to look up user %s' % owner) if orig_uid != uid: if diff is not None: if 'before' not in diff: diff['before'] = {} diff['before']['owner'] = orig_uid if 'after' not in diff: diff['after'] = {} diff['after']['owner'] = uid if self.check_mode: return True try: os.lchown(b_path, uid, -1) except OSError: self.fail_json(path=path, msg='chown failed') changed = True return changed def set_group_if_different(self, path, group, changed, diff=None): path = os.path.expanduser(os.path.expandvars(path)) b_path = to_bytes(path, errors='surrogate_or_strict') if group is None: return changed orig_uid, orig_gid = self.user_and_group(b_path) try: gid = int(group) except ValueError: try: gid = grp.getgrnam(group).gr_gid except KeyError: self.fail_json(path=path, msg='chgrp failed: failed to look up group %s' % group) if orig_gid != gid: if diff is not None: if 'before' not in diff: diff['before'] = {} diff['before']['group'] = orig_gid if 'after' not in diff: diff['after'] = {} diff['after']['group'] = gid if self.check_mode: return True try: os.lchown(b_path, -1, gid) except OSError: self.fail_json(path=path, msg='chgrp failed') changed = True return changed def set_mode_if_different(self, path, mode, changed, diff=None): b_path = to_bytes(path, errors='surrogate_or_strict') b_path = os.path.expanduser(os.path.expandvars(b_path)) path_stat = os.lstat(b_path) if mode is None: return changed if not isinstance(mode, int): try: mode = int(mode, 8) except Exception: try: mode = self._symbolic_mode_to_octal(path_stat, mode) except Exception: e = get_exception() self.fail_json(path=path, msg="mode must be in octal or symbolic form", details=str(e)) if mode != stat.S_IMODE(mode): # prevent mode from having extra info orbeing invalid long number self.fail_json(path=path, msg="Invalid mode supplied, only permission info is allowed", details=mode) prev_mode = stat.S_IMODE(path_stat.st_mode) if prev_mode != mode: if diff is not None: if 'before' not in diff: diff['before'] = {} diff['before']['mode'] = '0%03o' % prev_mode if 'after' not in diff: diff['after'] = {} diff['after']['mode'] = '0%03o' % mode if self.check_mode: return True # FIXME: comparison against string above will cause this to be executed # every time try: if hasattr(os, 'lchmod'): os.lchmod(b_path, mode) else: if not os.path.islink(b_path): os.chmod(b_path, mode) else: # Attempt to set the perms of the symlink but be # careful not to change the perms of the underlying # file while trying underlying_stat = os.stat(b_path) os.chmod(b_path, mode) new_underlying_stat = os.stat(b_path) if underlying_stat.st_mode != new_underlying_stat.st_mode: os.chmod(b_path, stat.S_IMODE(underlying_stat.st_mode)) except OSError: e = get_exception() if os.path.islink(b_path) and e.errno == errno.EPERM: # Can't set mode on symbolic links pass elif e.errno in (errno.ENOENT, errno.ELOOP): # Can't set mode on broken symbolic links pass else: raise e except Exception: e = get_exception() self.fail_json(path=path, msg='chmod failed', details=str(e)) path_stat = os.lstat(b_path) new_mode = stat.S_IMODE(path_stat.st_mode) if new_mode != prev_mode: changed = True return changed def set_attributes_if_different(self, path, attributes, changed, diff=None): if attributes is None: return changed b_path = to_bytes(path, errors='surrogate_or_strict') b_path = os.path.expanduser(os.path.expandvars(b_path)) existing = self.get_file_attributes(b_path) if existing.get('attr_flags','') != attributes: attrcmd = self.get_bin_path('chattr') if attrcmd: attrcmd = [attrcmd, '=%s' % attributes, b_path] changed = True if diff is not None: if 'before' not in diff: diff['before'] = {} diff['before']['attributes'] = existing.get('attr_flags') if 'after' not in diff: diff['after'] = {} diff['after']['attributes'] = attributes if not self.check_mode: try: rc, out, err = self.run_command(attrcmd) if rc != 0 or err: raise Exception("Error while setting attributes: %s" % (out + err)) except: e = get_exception() self.fail_json(path=path, msg='chattr failed', details=str(e)) return changed def get_file_attributes(self, path): output = {} attrcmd = self.get_bin_path('lsattr', False) if attrcmd: attrcmd = [attrcmd, '-vd', path] try: rc, out, err = self.run_command(attrcmd) if rc == 0: res = out.split(' ')[0:2] output['attr_flags'] = res[1].replace('-','').strip() output['version'] = res[0].strip() output['attributes'] = format_attributes(output['attr_flags']) except: pass return output def _symbolic_mode_to_octal(self, path_stat, symbolic_mode): new_mode = stat.S_IMODE(path_stat.st_mode) mode_re = re.compile(r'^(?P<users>[ugoa]+)(?P<operator>[-+=])(?P<perms>[rwxXst-]*|[ugo])$') for mode in symbolic_mode.split(','): match = mode_re.match(mode) if match: users = match.group('users') operator = match.group('operator') perms = match.group('perms') if users == 'a': users = 'ugo' for user in users: mode_to_apply = self._get_octal_mode_from_symbolic_perms(path_stat, user, perms) new_mode = self._apply_operation_to_mode(user, operator, mode_to_apply, new_mode) else: raise ValueError("bad symbolic permission for mode: %s" % mode) return new_mode def _apply_operation_to_mode(self, user, operator, mode_to_apply, current_mode): if operator == '=': if user == 'u': mask = stat.S_IRWXU | stat.S_ISUID elif user == 'g': mask = stat.S_IRWXG | stat.S_ISGID elif user == 'o': mask = stat.S_IRWXO | stat.S_ISVTX # mask out u, g, or o permissions from current_mode and apply new permissions inverse_mask = mask ^ PERM_BITS new_mode = (current_mode & inverse_mask) | mode_to_apply elif operator == '+': new_mode = current_mode | mode_to_apply elif operator == '-': new_mode = current_mode - (current_mode & mode_to_apply) return new_mode def _get_octal_mode_from_symbolic_perms(self, path_stat, user, perms): prev_mode = stat.S_IMODE(path_stat.st_mode) is_directory = stat.S_ISDIR(path_stat.st_mode) has_x_permissions = (prev_mode & EXEC_PERM_BITS) > 0 apply_X_permission = is_directory or has_x_permissions # Permission bits constants documented at: # http://docs.python.org/2/library/stat.html#stat.S_ISUID if apply_X_permission: X_perms = { 'u': {'X': stat.S_IXUSR}, 'g': {'X': stat.S_IXGRP}, 'o': {'X': stat.S_IXOTH} } else: X_perms = { 'u': {'X': 0}, 'g': {'X': 0}, 'o': {'X': 0} } user_perms_to_modes = { 'u': { 'r': stat.S_IRUSR, 'w': stat.S_IWUSR, 'x': stat.S_IXUSR, 's': stat.S_ISUID, 't': 0, 'u': prev_mode & stat.S_IRWXU, 'g': (prev_mode & stat.S_IRWXG) << 3, 'o': (prev_mode & stat.S_IRWXO) << 6 }, 'g': { 'r': stat.S_IRGRP, 'w': stat.S_IWGRP, 'x': stat.S_IXGRP, 's': stat.S_ISGID, 't': 0, 'u': (prev_mode & stat.S_IRWXU) >> 3, 'g': prev_mode & stat.S_IRWXG, 'o': (prev_mode & stat.S_IRWXO) << 3 }, 'o': { 'r': stat.S_IROTH, 'w': stat.S_IWOTH, 'x': stat.S_IXOTH, 's': 0, 't': stat.S_ISVTX, 'u': (prev_mode & stat.S_IRWXU) >> 6, 'g': (prev_mode & stat.S_IRWXG) >> 3, 'o': prev_mode & stat.S_IRWXO } } # Insert X_perms into user_perms_to_modes for key, value in X_perms.items(): user_perms_to_modes[key].update(value) or_reduce = lambda mode, perm: mode | user_perms_to_modes[user][perm] return reduce(or_reduce, perms, 0) def set_fs_attributes_if_different(self, file_args, changed, diff=None): # set modes owners and context as needed changed = self.set_context_if_different( file_args['path'], file_args['secontext'], changed, diff ) changed = self.set_owner_if_different( file_args['path'], file_args['owner'], changed, diff ) changed = self.set_group_if_different( file_args['path'], file_args['group'], changed, diff ) changed = self.set_mode_if_different( file_args['path'], file_args['mode'], changed, diff ) changed = self.set_attributes_if_different( file_args['path'], file_args['attributes'], changed, diff ) return changed def set_directory_attributes_if_different(self, file_args, changed, diff=None): return self.set_fs_attributes_if_different(file_args, changed, diff) def set_file_attributes_if_different(self, file_args, changed, diff=None): return self.set_fs_attributes_if_different(file_args, changed, diff) def add_path_info(self, kwargs): ''' for results that are files, supplement the info about the file in the return path with stats about the file path. ''' path = kwargs.get('path', kwargs.get('dest', None)) if path is None: return kwargs b_path = to_bytes(path, errors='surrogate_or_strict') if os.path.exists(b_path): (uid, gid) = self.user_and_group(path) kwargs['uid'] = uid kwargs['gid'] = gid try: user = pwd.getpwuid(uid)[0] except KeyError: user = str(uid) try: group = grp.getgrgid(gid)[0] except KeyError: group = str(gid) kwargs['owner'] = user kwargs['group'] = group st = os.lstat(b_path) kwargs['mode'] = '0%03o' % stat.S_IMODE(st[stat.ST_MODE]) # secontext not yet supported if os.path.islink(b_path): kwargs['state'] = 'link' elif os.path.isdir(b_path): kwargs['state'] = 'directory' elif os.stat(b_path).st_nlink > 1: kwargs['state'] = 'hard' else: kwargs['state'] = 'file' if HAVE_SELINUX and self.selinux_enabled(): kwargs['secontext'] = ':'.join(self.selinux_context(path)) kwargs['size'] = st[stat.ST_SIZE] else: kwargs['state'] = 'absent' return kwargs def _check_locale(self): ''' Uses the locale module to test the currently set locale (per the LANG and LC_CTYPE environment settings) ''' try: # setting the locale to '' uses the default locale # as it would be returned by locale.getdefaultlocale() locale.setlocale(locale.LC_ALL, '') except locale.Error: # fallback to the 'C' locale, which may cause unicode # issues but is preferable to simply failing because # of an unknown locale locale.setlocale(locale.LC_ALL, 'C') os.environ['LANG'] = 'C' os.environ['LC_ALL'] = 'C' os.environ['LC_MESSAGES'] = 'C' except Exception: e = get_exception() self.fail_json(msg="An unknown error was encountered while attempting to validate the locale: %s" % e) def _handle_aliases(self): # this uses exceptions as it happens before we can safely call fail_json aliases_results = {} #alias:canon for (k,v) in self.argument_spec.items(): self._legal_inputs.append(k) aliases = v.get('aliases', None) default = v.get('default', None) required = v.get('required', False) if default is not None and required: # not alias specific but this is a good place to check this raise Exception("internal error: required and default are mutually exclusive for %s" % k) if aliases is None: continue if not isinstance(aliases, SEQUENCETYPE) or isinstance(aliases, (binary_type, text_type)): raise Exception('internal error: aliases must be a list or tuple') for alias in aliases: self._legal_inputs.append(alias) aliases_results[alias] = k if alias in self.params: self.params[k] = self.params[alias] return aliases_results def _check_arguments(self, check_invalid_arguments): self._syslog_facility = 'LOG_USER' unsupported_parameters = set() for (k,v) in list(self.params.items()): if k == '_ansible_check_mode' and v: self.check_mode = True elif k == '_ansible_no_log': self.no_log = self.boolean(v) elif k == '_ansible_debug': self._debug = self.boolean(v) elif k == '_ansible_diff': self._diff = self.boolean(v) elif k == '_ansible_verbosity': self._verbosity = v elif k == '_ansible_selinux_special_fs': self._selinux_special_fs = v elif k == '_ansible_syslog_facility': self._syslog_facility = v elif k == '_ansible_version': self.ansible_version = v elif k == '_ansible_module_name': self._name = v elif check_invalid_arguments and k not in self._legal_inputs: unsupported_parameters.add(k) #clean up internal params: if k.startswith('_ansible_'): del self.params[k] if unsupported_parameters: self.fail_json(msg="Unsupported parameters for (%s) module: %s. Supported parameters include: %s" % (self._name, ','.join(sorted(list(unsupported_parameters))), ','.join(sorted(self.argument_spec.keys())))) if self.check_mode and not self.supports_check_mode: self.exit_json(skipped=True, msg="remote module (%s) does not support check mode" % self._name) def _count_terms(self, check): count = 0 for term in check: if term in self.params: count += 1 return count def _check_mutually_exclusive(self, spec): if spec is None: return for check in spec: count = self._count_terms(check) if count > 1: self.fail_json(msg="parameters are mutually exclusive: %s" % (check,)) def _check_required_one_of(self, spec): if spec is None: return for check in spec: count = self._count_terms(check) if count == 0: self.fail_json(msg="one of the following is required: %s" % ','.join(check)) def _check_required_together(self, spec): if spec is None: return for check in spec: counts = [ self._count_terms([field]) for field in check ] non_zero = [ c for c in counts if c > 0 ] if len(non_zero) > 0: if 0 in counts: self.fail_json(msg="parameters are required together: %s" % (check,)) def _check_required_arguments(self): ''' ensure all required arguments are present ''' missing = [] for (k,v) in self.argument_spec.items(): required = v.get('required', False) if required and k not in self.params: missing.append(k) if len(missing) > 0: self.fail_json(msg="missing required arguments: %s" % ",".join(missing)) def _check_required_if(self, spec): ''' ensure that parameters which conditionally required are present ''' if spec is None: return for sp in spec: missing = [] max_missing_count = 0 is_one_of = False if len(sp) == 4: key, val, requirements, is_one_of = sp else: key, val, requirements = sp # is_one_of is True at least one requirement should be # present, else all requirements should be present. if is_one_of: max_missing_count = len(requirements) if key in self.params and self.params[key] == val: for check in requirements: count = self._count_terms((check,)) if count == 0: missing.append(check) if len(missing) and len(missing) >= max_missing_count: self.fail_json(msg="%s is %s but the following are missing: %s" % (key, val, ','.join(missing))) def _check_argument_values(self): ''' ensure all arguments have the requested values, and there are no stray arguments ''' for (k,v) in self.argument_spec.items(): choices = v.get('choices',None) if choices is None: continue if isinstance(choices, SEQUENCETYPE) and not isinstance(choices, (binary_type, text_type)): if k in self.params: if self.params[k] not in choices: # PyYaml converts certain strings to bools. If we can unambiguously convert back, do so before checking # the value. If we can't figure this out, module author is responsible. lowered_choices = None if self.params[k] == 'False': lowered_choices = _lenient_lowercase(choices) FALSEY = frozenset(BOOLEANS_FALSE) overlap = FALSEY.intersection(choices) if len(overlap) == 1: # Extract from a set (self.params[k],) = overlap if self.params[k] == 'True': if lowered_choices is None: lowered_choices = _lenient_lowercase(choices) TRUTHY = frozenset(BOOLEANS_TRUE) overlap = TRUTHY.intersection(choices) if len(overlap) == 1: (self.params[k],) = overlap if self.params[k] not in choices: choices_str=",".join([to_native(c) for c in choices]) msg="value of %s must be one of: %s, got: %s" % (k, choices_str, self.params[k]) self.fail_json(msg=msg) else: self.fail_json(msg="internal error: choices for argument %s are not iterable: %s" % (k, choices)) def safe_eval(self, value, locals=None, include_exceptions=False): # do not allow method calls to modules if not isinstance(value, string_types): # already templated to a datavaluestructure, perhaps? if include_exceptions: return (value, None) return value if re.search(r'\w\.\w+\(', value): if include_exceptions: return (value, None) return value # do not allow imports if re.search(r'import \w+', value): if include_exceptions: return (value, None) return value try: result = literal_eval(value) if include_exceptions: return (result, None) else: return result except Exception: e = get_exception() if include_exceptions: return (value, e) return value def _check_type_str(self, value): if isinstance(value, string_types): return value # Note: This could throw a unicode error if value's __str__() method # returns non-ascii. Have to port utils.to_bytes() if that happens return str(value) def _check_type_list(self, value): if isinstance(value, list): return value if isinstance(value, string_types): return value.split(",") elif isinstance(value, int) or isinstance(value, float): return [ str(value) ] raise TypeError('%s cannot be converted to a list' % type(value)) def _check_type_dict(self, value): if isinstance(value, dict): return value if isinstance(value, string_types): if value.startswith("{"): try: return json.loads(value) except: (result, exc) = self.safe_eval(value, dict(), include_exceptions=True) if exc is not None: raise TypeError('unable to evaluate string as dictionary') return result elif '=' in value: fields = [] field_buffer = [] in_quote = False in_escape = False for c in value.strip(): if in_escape: field_buffer.append(c) in_escape = False elif c == '\\': in_escape = True elif not in_quote and c in ('\'', '"'): in_quote = c elif in_quote and in_quote == c: in_quote = False elif not in_quote and c in (',', ' '): field = ''.join(field_buffer) if field: fields.append(field) field_buffer = [] else: field_buffer.append(c) field = ''.join(field_buffer) if field: fields.append(field) return dict(x.split("=", 1) for x in fields) else: raise TypeError("dictionary requested, could not parse JSON or key=value") raise TypeError('%s cannot be converted to a dict' % type(value)) def _check_type_bool(self, value): if isinstance(value, bool): return value if isinstance(value, string_types) or isinstance(value, int): return self.boolean(value) raise TypeError('%s cannot be converted to a bool' % type(value)) def _check_type_int(self, value): if isinstance(value, int): return value if isinstance(value, string_types): return int(value) raise TypeError('%s cannot be converted to an int' % type(value)) def _check_type_float(self, value): if isinstance(value, float): return value if isinstance(value, (binary_type, text_type, int)): return float(value) raise TypeError('%s cannot be converted to a float' % type(value)) def _check_type_path(self, value): value = self._check_type_str(value) return os.path.expanduser(os.path.expandvars(value)) def _check_type_jsonarg(self, value): # Return a jsonified string. Sometimes the controller turns a json # string into a dict/list so transform it back into json here if isinstance(value, (text_type, binary_type)): return value.strip() else: if isinstance(value, (list, tuple, dict)): return json.dumps(value) raise TypeError('%s cannot be converted to a json string' % type(value)) def _check_type_raw(self, value): return value def _check_type_bytes(self, value): try: self.human_to_bytes(value) except ValueError: raise TypeError('%s cannot be converted to a Byte value' % type(value)) def _check_type_bits(self, value): try: self.human_to_bytes(value, isbits=True) except ValueError: raise TypeError('%s cannot be converted to a Bit value' % type(value)) def _check_argument_types(self): ''' ensure all arguments have the requested type ''' for (k, v) in self.argument_spec.items(): wanted = v.get('type', None) if k not in self.params: continue if wanted is None: # Mostly we want to default to str. # For values set to None explicitly, return None instead as # that allows a user to unset a parameter if self.params[k] is None: continue wanted = 'str' value = self.params[k] if value is None: continue try: type_checker = self._CHECK_ARGUMENT_TYPES_DISPATCHER[wanted] except KeyError: self.fail_json(msg="implementation error: unknown type %s requested for %s" % (wanted, k)) try: self.params[k] = type_checker(value) except (TypeError, ValueError): e = get_exception() self.fail_json(msg="argument %s is of type %s and we were unable to convert to %s: %s" % (k, type(value), wanted, e)) def _set_defaults(self, pre=True): for (k,v) in self.argument_spec.items(): default = v.get('default', None) if pre == True: # this prevents setting defaults on required items if default is not None and k not in self.params: self.params[k] = default else: # make sure things without a default still get set None if k not in self.params: self.params[k] = default def _set_fallbacks(self): for k,v in self.argument_spec.items(): fallback = v.get('fallback', (None,)) fallback_strategy = fallback[0] fallback_args = [] fallback_kwargs = {} if k not in self.params and fallback_strategy is not None: for item in fallback[1:]: if isinstance(item, dict): fallback_kwargs = item else: fallback_args = item try: self.params[k] = fallback_strategy(*fallback_args, **fallback_kwargs) except AnsibleFallbackNotFound: continue def _load_params(self): ''' read the input and set the params attribute. This method is for backwards compatibility. The guts of the function were moved out in 2.1 so that custom modules could read the parameters. ''' # debug overrides to read args from file or cmdline self.params = _load_params() def _log_to_syslog(self, msg): if HAS_SYSLOG: module = 'ansible-%s' % self._name facility = getattr(syslog, self._syslog_facility, syslog.LOG_USER) syslog.openlog(str(module), 0, facility) syslog.syslog(syslog.LOG_INFO, msg) def debug(self, msg): if self._debug: self.log('[debug] %s' % msg) def log(self, msg, log_args=None): if not self.no_log: if log_args is None: log_args = dict() module = 'ansible-%s' % self._name if isinstance(module, binary_type): module = module.decode('utf-8', 'replace') # 6655 - allow for accented characters if not isinstance(msg, (binary_type, text_type)): raise TypeError("msg should be a string (got %s)" % type(msg)) # We want journal to always take text type # syslog takes bytes on py2, text type on py3 if isinstance(msg, binary_type): journal_msg = remove_values(msg.decode('utf-8', 'replace'), self.no_log_values) else: # TODO: surrogateescape is a danger here on Py3 journal_msg = remove_values(msg, self.no_log_values) if PY3: syslog_msg = journal_msg else: syslog_msg = journal_msg.encode('utf-8', 'replace') if has_journal: journal_args = [("MODULE", os.path.basename(__file__))] for arg in log_args: journal_args.append((arg.upper(), str(log_args[arg]))) try: journal.send(u"%s %s" % (module, journal_msg), **dict(journal_args)) except IOError: # fall back to syslog since logging to journal failed self._log_to_syslog(syslog_msg) else: self._log_to_syslog(syslog_msg) def _log_invocation(self): ''' log that ansible ran the module ''' # TODO: generalize a separate log function and make log_invocation use it # Sanitize possible password argument when logging. log_args = dict() passwd_keys = ['password', 'login_password'] for param in self.params: canon = self.aliases.get(param, param) arg_opts = self.argument_spec.get(canon, {}) no_log = arg_opts.get('no_log', False) if self.boolean(no_log): log_args[param] = 'NOT_LOGGING_PARAMETER' elif param in passwd_keys: log_args[param] = 'NOT_LOGGING_PASSWORD' else: param_val = self.params[param] if not isinstance(param_val, (text_type, binary_type)): param_val = str(param_val) elif isinstance(param_val, text_type): param_val = param_val.encode('utf-8') log_args[param] = heuristic_log_sanitize(param_val, self.no_log_values) msg = [] for arg in log_args: arg_val = log_args[arg] if not isinstance(arg_val, (text_type, binary_type)): arg_val = str(arg_val) elif isinstance(arg_val, text_type): arg_val = arg_val.encode('utf-8') msg.append('%s=%s' % (arg, arg_val)) if msg: msg = 'Invoked with %s' % ' '.join(msg) else: msg = 'Invoked' self.log(msg, log_args=log_args) def _set_cwd(self): try: cwd = os.getcwd() if not os.access(cwd, os.F_OK|os.R_OK): raise return cwd except: # we don't have access to the cwd, probably because of sudo. # Try and move to a neutral location to prevent errors for cwd in [os.path.expandvars('$HOME'), tempfile.gettempdir()]: try: if os.access(cwd, os.F_OK|os.R_OK): os.chdir(cwd) return cwd except: pass # we won't error here, as it may *not* be a problem, # and we don't want to break modules unnecessarily return None def get_bin_path(self, arg, required=False, opt_dirs=[]): ''' find system executable in PATH. Optional arguments: - required: if executable is not found and required is true, fail_json - opt_dirs: optional list of directories to search in addition to PATH if found return full path; otherwise return None ''' sbin_paths = ['/sbin', '/usr/sbin', '/usr/local/sbin'] paths = [] for d in opt_dirs: if d is not None and os.path.exists(d): paths.append(d) paths += os.environ.get('PATH', '').split(os.pathsep) bin_path = None # mangle PATH to include /sbin dirs for p in sbin_paths: if p not in paths and os.path.exists(p): paths.append(p) for d in paths: if not d: continue path = os.path.join(d, arg) if os.path.exists(path) and is_executable(path): bin_path = path break if required and bin_path is None: self.fail_json(msg='Failed to find required executable %s in paths: %s' % (arg, os.pathsep.join(paths))) return bin_path def boolean(self, arg): ''' return a bool for the arg ''' if arg is None or isinstance(arg, bool): return arg if isinstance(arg, string_types): arg = arg.lower() if arg in BOOLEANS_TRUE: return True elif arg in BOOLEANS_FALSE: return False else: self.fail_json(msg='%s is not a valid boolean. Valid booleans include: %s' % (to_text(arg), ','.join(['%s' % x for x in BOOLEANS]))) def jsonify(self, data): for encoding in ("utf-8", "latin-1"): try: return json.dumps(data, encoding=encoding) # Old systems using old simplejson module does not support encoding keyword. except TypeError: try: new_data = json_dict_bytes_to_unicode(data, encoding=encoding) except UnicodeDecodeError: continue return json.dumps(new_data) except UnicodeDecodeError: continue self.fail_json(msg='Invalid unicode encoding encountered') def from_json(self, data): return json.loads(data) def add_cleanup_file(self, path): if path not in self.cleanup_files: self.cleanup_files.append(path) def do_cleanup_files(self): for path in self.cleanup_files: self.cleanup(path) def _return_formatted(self, kwargs): self.add_path_info(kwargs) if 'invocation' not in kwargs: kwargs['invocation'] = {'module_args': self.params} if 'warnings' in kwargs: if isinstance(kwargs['warnings'], list): for w in kwargs['warnings']: self.warn(w) else: self.warn(kwargs['warnings']) if self._warnings: kwargs['warnings'] = self._warnings if 'deprecations' in kwargs: if isinstance(kwargs['deprecations'], list): for d in kwargs['deprecations']: self.warn(d) else: self.warn(kwargs['deprecations']) if self._deprecations: kwargs['deprecations'] = self._deprecations kwargs = remove_values(kwargs, self.no_log_values) print('\n%s' % self.jsonify(kwargs)) def exit_json(self, **kwargs): ''' return from the module, without error ''' if not 'changed' in kwargs: kwargs['changed'] = False self.do_cleanup_files() self._return_formatted(kwargs) sys.exit(0) def fail_json(self, **kwargs): ''' return from the module, with an error message ''' assert 'msg' in kwargs, "implementation error -- msg to explain the error is required" kwargs['failed'] = True self.do_cleanup_files() self._return_formatted(kwargs) sys.exit(1) def fail_on_missing_params(self, required_params=None): ''' This is for checking for required params when we can not check via argspec because we need more information than is simply given in the argspec. ''' if not required_params: return missing_params = [] for required_param in required_params: if not self.params.get(required_param): missing_params.append(required_param) if missing_params: self.fail_json(msg="missing required arguments: %s" % ','.join(missing_params)) def digest_from_file(self, filename, algorithm): ''' Return hex digest of local file for a digest_method specified by name, or None if file is not present. ''' if not os.path.exists(filename): return None if os.path.isdir(filename): self.fail_json(msg="attempted to take checksum of directory: %s" % filename) # preserve old behaviour where the third parameter was a hash algorithm object if hasattr(algorithm, 'hexdigest'): digest_method = algorithm else: try: digest_method = AVAILABLE_HASH_ALGORITHMS[algorithm]() except KeyError: self.fail_json(msg="Could not hash file '%s' with algorithm '%s'. Available algorithms: %s" % (filename, algorithm, ', '.join(AVAILABLE_HASH_ALGORITHMS))) blocksize = 64 * 1024 infile = open(filename, 'rb') block = infile.read(blocksize) while block: digest_method.update(block) block = infile.read(blocksize) infile.close() return digest_method.hexdigest() def md5(self, filename): ''' Return MD5 hex digest of local file using digest_from_file(). Do not use this function unless you have no other choice for: 1) Optional backwards compatibility 2) Compatibility with a third party protocol This function will not work on systems complying with FIPS-140-2. Most uses of this function can use the module.sha1 function instead. ''' if 'md5' not in AVAILABLE_HASH_ALGORITHMS: raise ValueError('MD5 not available. Possibly running in FIPS mode') return self.digest_from_file(filename, 'md5') def sha1(self, filename): ''' Return SHA1 hex digest of local file using digest_from_file(). ''' return self.digest_from_file(filename, 'sha1') def sha256(self, filename): ''' Return SHA-256 hex digest of local file using digest_from_file(). ''' return self.digest_from_file(filename, 'sha256') def backup_local(self, fn): '''make a date-marked backup of the specified file, return True or False on success or failure''' backupdest = '' if os.path.exists(fn): # backups named basename-YYYY-MM-DD@HH:MM:SS~ ext = time.strftime("%Y-%m-%d@%H:%M:%S~", time.localtime(time.time())) backupdest = '%s.%s.%s' % (fn, os.getpid(), ext) try: shutil.copy2(fn, backupdest) except (shutil.Error, IOError): e = get_exception() self.fail_json(msg='Could not make backup of %s to %s: %s' % (fn, backupdest, e)) return backupdest def cleanup(self, tmpfile): if os.path.exists(tmpfile): try: os.unlink(tmpfile) except OSError: e = get_exception() sys.stderr.write("could not cleanup %s: %s" % (tmpfile, e)) def atomic_move(self, src, dest, unsafe_writes=False): '''atomically move src to dest, copying attributes from dest, returns true on success it uses os.rename to ensure this as it is an atomic operation, rest of the function is to work around limitations, corner cases and ensure selinux context is saved if possible''' context = None dest_stat = None b_src = to_bytes(src, errors='surrogate_or_strict') b_dest = to_bytes(dest, errors='surrogate_or_strict') if os.path.exists(b_dest): try: dest_stat = os.stat(b_dest) # copy mode and ownership os.chmod(b_src, dest_stat.st_mode & PERM_BITS) os.chown(b_src, dest_stat.st_uid, dest_stat.st_gid) # try to copy flags if possible if hasattr(os, 'chflags') and hasattr(dest_stat, 'st_flags'): try: os.chflags(b_src, dest_stat.st_flags) except OSError: e = get_exception() for err in 'EOPNOTSUPP', 'ENOTSUP': if hasattr(errno, err) and e.errno == getattr(errno, err): break else: raise except OSError: e = get_exception() if e.errno != errno.EPERM: raise if self.selinux_enabled(): context = self.selinux_context(dest) else: if self.selinux_enabled(): context = self.selinux_default_context(dest) creating = not os.path.exists(b_dest) try: # Optimistically try a rename, solves some corner cases and can avoid useless work, throws exception if not atomic. os.rename(b_src, b_dest) except (IOError, OSError): e = get_exception() if e.errno not in [errno.EPERM, errno.EXDEV, errno.EACCES, errno.ETXTBSY, errno.EBUSY]: # only try workarounds for errno 18 (cross device), 1 (not permitted), 13 (permission denied) # and 26 (text file busy) which happens on vagrant synced folders and other 'exotic' non posix file systems self.fail_json(msg='Could not replace file: %s to %s: %s' % (src, dest, e), exception=traceback.format_exc()) else: b_dest_dir = os.path.dirname(b_dest) # Use bytes here. In the shippable CI, this fails with # a UnicodeError with surrogateescape'd strings for an unknown # reason (doesn't happen in a local Ubuntu16.04 VM) native_dest_dir = b_dest_dir native_suffix = os.path.basename(b_dest) native_prefix = b('.ansible_tmp') try: tmp_dest_fd, tmp_dest_name = tempfile.mkstemp( prefix=native_prefix, dir=native_dest_dir, suffix=native_suffix) except (OSError, IOError): e = get_exception() self.fail_json(msg='The destination directory (%s) is not writable by the current user. Error was: %s' % (os.path.dirname(dest), e)) except TypeError: # We expect that this is happening because python3.4.x and # below can't handle byte strings in mkstemp(). Traceback # would end in something like: # file = _os.path.join(dir, pre + name + suf) # TypeError: can't concat bytes to str self.fail_json(msg='Failed creating temp file for atomic move. This usually happens when using Python3 less than Python3.5. Please use Python2.x or Python3.5 or greater.', exception=traceback.format_exc()) b_tmp_dest_name = to_bytes(tmp_dest_name, errors='surrogate_or_strict') try: try: # close tmp file handle before file operations to prevent text file busy errors on vboxfs synced folders (windows host) os.close(tmp_dest_fd) # leaves tmp file behind when sudo and not root try: shutil.move(b_src, b_tmp_dest_name) except OSError: # cleanup will happen by 'rm' of tempdir # copy2 will preserve some metadata shutil.copy2(b_src, b_tmp_dest_name) if self.selinux_enabled(): self.set_context_if_different( b_tmp_dest_name, context, False) try: tmp_stat = os.stat(b_tmp_dest_name) if dest_stat and (tmp_stat.st_uid != dest_stat.st_uid or tmp_stat.st_gid != dest_stat.st_gid): os.chown(b_tmp_dest_name, dest_stat.st_uid, dest_stat.st_gid) except OSError: e = get_exception() if e.errno != errno.EPERM: raise try: os.rename(b_tmp_dest_name, b_dest) except (shutil.Error, OSError, IOError): e = get_exception() if unsafe_writes and e.errno == errno.EBUSY: self._unsafe_writes(b_tmp_dest_name, b_dest) else: self.fail_json(msg='Unable to rename file: %s to %s: %s' % (src, dest, e), exception=traceback.format_exc()) except (shutil.Error, OSError, IOError): e = get_exception() self.fail_json(msg='Failed to replace file: %s to %s: %s' % (src, dest, e), exception=traceback.format_exc()) finally: self.cleanup(b_tmp_dest_name) if creating: # make sure the file has the correct permissions # based on the current value of umask umask = os.umask(0) os.umask(umask) os.chmod(b_dest, DEFAULT_PERM & ~umask) try: os.chown(b_dest, os.geteuid(), os.getegid()) except OSError: # We're okay with trying our best here. If the user is not # root (or old Unices) they won't be able to chown. pass if self.selinux_enabled(): # rename might not preserve context self.set_context_if_different(dest, context, False) def _unsafe_writes(self, src, dest): # sadly there are some situations where we cannot ensure atomicity, but only if # the user insists and we get the appropriate error we update the file unsafely try: try: out_dest = open(dest, 'wb') in_src = open(src, 'rb') shutil.copyfileobj(in_src, out_dest) finally: # assuring closed files in 2.4 compatible way if out_dest: out_dest.close() if in_src: in_src.close() except (shutil.Error, OSError, IOError): e = get_exception() self.fail_json(msg='Could not write data to file (%s) from (%s): %s' % (dest, src, e), exception=traceback.format_exc()) def _read_from_pipes(self, rpipes, rfds, file_descriptor): data = b('') if file_descriptor in rfds: data = os.read(file_descriptor.fileno(), 9000) if data == b(''): rpipes.remove(file_descriptor) return data def run_command(self, args, check_rc=False, close_fds=True, executable=None, data=None, binary_data=False, path_prefix=None, cwd=None, use_unsafe_shell=False, prompt_regex=None, environ_update=None, umask=None, encoding='utf-8', errors='surrogate_or_strict'): ''' Execute a command, returns rc, stdout, and stderr. :arg args: is the command to run * If args is a list, the command will be run with shell=False. * If args is a string and use_unsafe_shell=False it will split args to a list and run with shell=False * If args is a string and use_unsafe_shell=True it runs with shell=True. :kw check_rc: Whether to call fail_json in case of non zero RC. Default False :kw close_fds: See documentation for subprocess.Popen(). Default True :kw executable: See documentation for subprocess.Popen(). Default None :kw data: If given, information to write to the stdin of the command :kw binary_data: If False, append a newline to the data. Default False :kw path_prefix: If given, additional path to find the command in. This adds to the PATH environment vairable so helper commands in the same directory can also be found :kw cwd: If given, working directory to run the command inside :kw use_unsafe_shell: See `args` parameter. Default False :kw prompt_regex: Regex string (not a compiled regex) which can be used to detect prompts in the stdout which would otherwise cause the execution to hang (especially if no input data is specified) :kw environ_update: dictionary to *update* os.environ with :kw umask: Umask to be used when running the command. Default None :kw encoding: Since we return native strings, on python3 we need to know the encoding to use to transform from bytes to text. If you want to always get bytes back, use encoding=None. The default is "utf-8". This does not affect transformation of strings given as args. :kw errors: Since we return native strings, on python3 we need to transform stdout and stderr from bytes to text. If the bytes are undecodable in the ``encoding`` specified, then use this error handler to deal with them. The default is ``surrogate_or_strict`` which means that the bytes will be decoded using the surrogateescape error handler if available (available on all python3 versions we support) otherwise a UnicodeError traceback will be raised. This does not affect transformations of strings given as args. :returns: A 3-tuple of return code (integer), stdout (native string), and stderr (native string). On python2, stdout and stderr are both byte strings. On python3, stdout and stderr are text strings converted according to the encoding and errors parameters. If you want byte strings on python3, use encoding=None to turn decoding to text off. ''' shell = False if isinstance(args, list): if use_unsafe_shell: args = " ".join([pipes.quote(x) for x in args]) shell = True elif isinstance(args, (binary_type, text_type)) and use_unsafe_shell: shell = True elif isinstance(args, (binary_type, text_type)): # On python2.6 and below, shlex has problems with text type # On python3, shlex needs a text type. if PY2: args = to_bytes(args, errors='surrogate_or_strict') elif PY3: args = to_text(args, errors='surrogateescape') args = shlex.split(args) else: msg = "Argument 'args' to run_command must be list or string" self.fail_json(rc=257, cmd=args, msg=msg) prompt_re = None if prompt_regex: if isinstance(prompt_regex, text_type): if PY3: prompt_regex = to_bytes(prompt_regex, errors='surrogateescape') elif PY2: prompt_regex = to_bytes(prompt_regex, errors='surrogate_or_strict') try: prompt_re = re.compile(prompt_regex, re.MULTILINE) except re.error: self.fail_json(msg="invalid prompt regular expression given to run_command") # expand things like $HOME and ~ if not shell: args = [ os.path.expanduser(os.path.expandvars(x)) for x in args if x is not None ] rc = 0 msg = None st_in = None # Manipulate the environ we'll send to the new process old_env_vals = {} # We can set this from both an attribute and per call for key, val in self.run_command_environ_update.items(): old_env_vals[key] = os.environ.get(key, None) os.environ[key] = val if environ_update: for key, val in environ_update.items(): old_env_vals[key] = os.environ.get(key, None) os.environ[key] = val if path_prefix: old_env_vals['PATH'] = os.environ['PATH'] os.environ['PATH'] = "%s:%s" % (path_prefix, os.environ['PATH']) # If using test-module and explode, the remote lib path will resemble ... # /tmp/test_module_scratch/debug_dir/ansible/module_utils/basic.py # If using ansible or ansible-playbook with a remote system ... # /tmp/ansible_vmweLQ/ansible_modlib.zip/ansible/module_utils/basic.py # Clean out python paths set by ansiballz if 'PYTHONPATH' in os.environ: pypaths = os.environ['PYTHONPATH'].split(':') pypaths = [x for x in pypaths \ if not x.endswith('/ansible_modlib.zip') \ and not x.endswith('/debug_dir')] os.environ['PYTHONPATH'] = ':'.join(pypaths) if not os.environ['PYTHONPATH']: del os.environ['PYTHONPATH'] # create a printable version of the command for use # in reporting later, which strips out things like # passwords from the args list to_clean_args = args if PY2: if isinstance(args, text_type): to_clean_args = to_bytes(args) else: if isinstance(args, binary_type): to_clean_args = to_text(args) if isinstance(args, (text_type, binary_type)): to_clean_args = shlex.split(to_clean_args) clean_args = [] is_passwd = False for arg in to_clean_args: if is_passwd: is_passwd = False clean_args.append('********') continue if PASSWD_ARG_RE.match(arg): sep_idx = arg.find('=') if sep_idx > -1: clean_args.append('%s=********' % arg[:sep_idx]) continue else: is_passwd = True arg = heuristic_log_sanitize(arg, self.no_log_values) clean_args.append(arg) clean_args = ' '.join(pipes.quote(arg) for arg in clean_args) if data: st_in = subprocess.PIPE kwargs = dict( executable=executable, shell=shell, close_fds=close_fds, stdin=st_in, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) # store the pwd prev_dir = os.getcwd() # make sure we're in the right working directory if cwd and os.path.isdir(cwd): cwd = os.path.abspath(os.path.expanduser(cwd)) kwargs['cwd'] = cwd try: os.chdir(cwd) except (OSError, IOError): e = get_exception() self.fail_json(rc=e.errno, msg="Could not open %s, %s" % (cwd, str(e))) old_umask = None if umask: old_umask = os.umask(umask) try: if self._debug: self.log('Executing: ' + clean_args) cmd = subprocess.Popen(args, **kwargs) # the communication logic here is essentially taken from that # of the _communicate() function in ssh.py stdout = b('') stderr = b('') rpipes = [cmd.stdout, cmd.stderr] if data: if not binary_data: data += '\n' if isinstance(data, text_type): data = to_bytes(data) cmd.stdin.write(data) cmd.stdin.close() while True: rfds, wfds, efds = select.select(rpipes, [], rpipes, 1) stdout += self._read_from_pipes(rpipes, rfds, cmd.stdout) stderr += self._read_from_pipes(rpipes, rfds, cmd.stderr) # if we're checking for prompts, do it now if prompt_re: if prompt_re.search(stdout) and not data: if encoding: stdout = to_native(stdout, encoding=encoding, errors=errors) else: stdout = stdout return (257, stdout, "A prompt was encountered while running a command, but no input data was specified") # only break out if no pipes are left to read or # the pipes are completely read and # the process is terminated if (not rpipes or not rfds) and cmd.poll() is not None: break # No pipes are left to read but process is not yet terminated # Only then it is safe to wait for the process to be finished # NOTE: Actually cmd.poll() is always None here if rpipes is empty elif not rpipes and cmd.poll() is None: cmd.wait() # The process is terminated. Since no pipes to read from are # left, there is no need to call select() again. break cmd.stdout.close() cmd.stderr.close() rc = cmd.returncode except (OSError, IOError): e = get_exception() self.fail_json(rc=e.errno, msg=to_native(e), cmd=clean_args) except Exception: e = get_exception() self.fail_json(rc=257, msg=to_native(e), exception=traceback.format_exc(), cmd=clean_args) # Restore env settings for key, val in old_env_vals.items(): if val is None: del os.environ[key] else: os.environ[key] = val if old_umask: os.umask(old_umask) if rc != 0 and check_rc: msg = heuristic_log_sanitize(stderr.rstrip(), self.no_log_values) self.fail_json(cmd=clean_args, rc=rc, stdout=stdout, stderr=stderr, msg=msg) # reset the pwd os.chdir(prev_dir) if encoding is not None: return (rc, to_native(stdout, encoding=encoding, errors=errors), to_native(stderr, encoding=encoding, errors=errors)) return (rc, stdout, stderr) def append_to_file(self, filename, str): filename = os.path.expandvars(os.path.expanduser(filename)) fh = open(filename, 'a') fh.write(str) fh.close() def bytes_to_human(self, size): return bytes_to_human(size) # for backwards compatibility pretty_bytes = bytes_to_human def human_to_bytes(self, number, isbits=False): return human_to_bytes(number, isbits) # # Backwards compat # # In 2.0, moved from inside the module to the toplevel is_executable = is_executable def get_module_path(): return os.path.dirname(os.path.realpath(__file__))
emersonsoftware/ansiblefork
lib/ansible/module_utils/basic.py
Python
gpl-3.0
98,105
[ "VisIt" ]
fa23e4b59b4bc33c9051499a217e8f0080ba249274df128b288f019ac6d0a957
# -*- coding: utf-8 -*- # Copyright 2007-2016 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import copy import itertools import textwrap from traits import trait_base from mpl_toolkits.axes_grid1 import make_axes_locatable import warnings import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import hyperspy as hs from distutils.version import LooseVersion import logging from hyperspy.defaults_parser import preferences _logger = logging.getLogger(__name__) def contrast_stretching(data, saturated_pixels): """Calculate bounds that leaves out a given percentage of the data. Parameters ---------- data: numpy array saturated_pixels: scalar The percentage of pixels that are left out of the bounds. For example, the low and high bounds of a value of 1 are the 0.5% and 99.5% percentiles. It must be in the [0, 100] range. Returns ------- vmin, vmax: scalar The low and high bounds Raises ------ ValueError if the value of `saturated_pixels` is out of the valid range. """ # Sanity check if not 0 <= saturated_pixels <= 100: raise ValueError( "saturated_pixels must be a scalar in the range[0, 100]") nans = np.isnan(data) if nans.any(): data = data[~nans] vmin = np.percentile(data, saturated_pixels / 2.) vmax = np.percentile(data, 100 - saturated_pixels / 2.) return vmin, vmax MPL_DIVERGING_COLORMAPS = [ "BrBG", "bwr", "coolwarm", "PiYG", "PRGn", "PuOr", "RdBu", "RdGy", "RdYIBu", "RdYIGn", "seismic", "Spectral", ] # Add reversed colormaps MPL_DIVERGING_COLORMAPS += [cmap + "_r" for cmap in MPL_DIVERGING_COLORMAPS] def centre_colormap_values(vmin, vmax): """Calculate vmin and vmax to set the colormap midpoint to zero. Parameters ---------- vmin, vmax : scalar The range of data to display. Returns ------- cvmin, cvmax : scalar The values to obtain a centre colormap. """ absmax = max(abs(vmin), abs(vmax)) return -absmax, absmax def create_figure(window_title=None, _on_figure_window_close=None, **kwargs): """Create a matplotlib figure. This function adds the possibility to execute another function when the figure is closed and to easily set the window title. Any keyword argument is passed to the plt.figure function Parameters ---------- window_title : string _on_figure_window_close : function Returns ------- fig : plt.figure """ fig = plt.figure(**kwargs) if window_title is not None: fig.canvas.set_window_title(window_title) if _on_figure_window_close is not None: on_figure_window_close(fig, _on_figure_window_close) return fig def on_figure_window_close(figure, function): """Connects a close figure signal to a given function. Parameters ---------- figure : mpl figure instance function : function """ def function_wrapper(evt): function() figure.canvas.mpl_connect('close_event', function_wrapper) def plot_RGB_map(im_list, normalization='single', dont_plot=False): """Plot 2 or 3 maps in RGB. Parameters ---------- im_list : list of Signal2D instances normalization : {'single', 'global'} dont_plot : bool Returns ------- array: RGB matrix """ # from widgets import cursors height, width = im_list[0].data.shape[:2] rgb = np.zeros((height, width, 3)) rgb[:, :, 0] = im_list[0].data.squeeze() rgb[:, :, 1] = im_list[1].data.squeeze() if len(im_list) == 3: rgb[:, :, 2] = im_list[2].data.squeeze() if normalization == 'single': for i in range(len(im_list)): rgb[:, :, i] /= rgb[:, :, i].max() elif normalization == 'global': rgb /= rgb.max() rgb = rgb.clip(0, rgb.max()) if not dont_plot: figure = plt.figure() ax = figure.add_subplot(111) ax.frameon = False ax.set_axis_off() ax.imshow(rgb, interpolation='nearest') # cursors.set_mpl_ax(ax) figure.canvas.draw_idle() else: return rgb def subplot_parameters(fig): """Returns a list of the subplot parameters of a mpl figure. Parameters ---------- fig : mpl figure Returns ------- tuple : (left, bottom, right, top, wspace, hspace) """ wspace = fig.subplotpars.wspace hspace = fig.subplotpars.hspace left = fig.subplotpars.left right = fig.subplotpars.right top = fig.subplotpars.top bottom = fig.subplotpars.bottom return left, bottom, right, top, wspace, hspace class ColorCycle: _color_cycle = [mpl.colors.colorConverter.to_rgba(color) for color in ('b', 'g', 'r', 'c', 'm', 'y', 'k')] def __init__(self): self.color_cycle = copy.copy(self._color_cycle) def __call__(self): if not self.color_cycle: self.color_cycle = copy.copy(self._color_cycle) return self.color_cycle.pop(0) def plot_signals(signal_list, sync=True, navigator="auto", navigator_list=None, **kwargs): """Plot several signals at the same time. Parameters ---------- signal_list : list of BaseSignal instances If sync is set to True, the signals must have the same navigation shape, but not necessarily the same signal shape. sync : True or False, default "True" If True: the signals will share navigation, all the signals must have the same navigation shape for this to work, but not necessarily the same signal shape. navigator : {"auto", None, "spectrum", "slider", BaseSignal}, default "auto" See signal.plot docstring for full description navigator_list : {List of navigator arguments, None}, default None Set different navigator options for the signals. Must use valid navigator arguments: "auto", None, "spectrum", "slider", or a hyperspy Signal. The list must have the same size as signal_list. If None, the argument specified in navigator will be used. **kwargs Any extra keyword arguments are passed to each signal `plot` method. Example ------- >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll]) Specifying the navigator: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll], navigator="slider") Specifying the navigator for each signal: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> s_edx = hs.load("edx.dm3") >>> s_adf = hs.load("adf.dm3") >>> hs.plot.plot_signals( [s_cl, s_ll, s_edx], navigator_list=["slider",None,s_adf]) """ import hyperspy.signal if navigator_list: if not (len(signal_list) == len(navigator_list)): raise ValueError( "signal_list and navigator_list must" " have the same size") if sync: axes_manager_list = [] for signal in signal_list: axes_manager_list.append(signal.axes_manager) if not navigator_list: navigator_list = [] if navigator is None: navigator_list.extend([None] * len(signal_list)) elif navigator is "slider": navigator_list.append("slider") navigator_list.extend([None] * (len(signal_list) - 1)) elif isinstance(navigator, hyperspy.signal.BaseSignal): navigator_list.append(navigator) navigator_list.extend([None] * (len(signal_list) - 1)) elif navigator is "spectrum": navigator_list.extend(["spectrum"] * len(signal_list)) elif navigator is "auto": navigator_list.extend(["auto"] * len(signal_list)) else: raise ValueError( "navigator must be one of \"spectrum\",\"auto\"," " \"slider\", None, a Signal instance") # Check to see if the spectra have the same navigational shapes temp_shape_first = axes_manager_list[0].navigation_shape for i, axes_manager in enumerate(axes_manager_list): temp_shape = axes_manager.navigation_shape if not (temp_shape_first == temp_shape): raise ValueError( "The spectra does not have the same navigation shape") axes_manager_list[i] = axes_manager.deepcopy() if i > 0: for axis0, axisn in zip(axes_manager_list[0].navigation_axes, axes_manager_list[i].navigation_axes): axes_manager_list[i]._axes[axisn.index_in_array] = axis0 del axes_manager for signal, navigator, axes_manager in zip(signal_list, navigator_list, axes_manager_list): signal.plot(axes_manager=axes_manager, navigator=navigator, **kwargs) # If sync is False else: if not navigator_list: navigator_list = [] navigator_list.extend([navigator] * len(signal_list)) for signal, navigator in zip(signal_list, navigator_list): signal.plot(navigator=navigator, **kwargs) def _make_heatmap_subplot(spectra): from hyperspy._signals.signal2d import Signal2D im = Signal2D(spectra.data, axes=spectra.axes_manager._get_axes_dicts()) im.metadata.General.title = spectra.metadata.General.title im.plot() return im._plot.signal_plot.ax def _make_overlap_plot(spectra, ax, color="blue", line_style='-'): if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_ylabel('Intensity') ax.autoscale(tight=True) def _make_cascade_subplot( spectra, ax, color="blue", line_style='-', padding=1): max_value = 0 for spectrum in spectra: spectrum_yrange = (np.nanmax(spectrum.data) - np.nanmin(spectrum.data)) if spectrum_yrange > max_value: max_value = spectrum_yrange if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] data_to_plot = ((spectrum.data - spectrum.data.min()) / float(max_value) + spectrum_index * padding) ax.plot(x_axis.axis, data_to_plot, color=color, ls=line_style) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_yticks([]) ax.autoscale(tight=True) def _plot_spectrum(spectrum, ax, color="blue", line_style='-'): x_axis = spectrum.axes_manager.signal_axes[0] ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) def _set_spectrum_xlabel(spectrum, ax): x_axis = spectrum.axes_manager.signal_axes[0] ax.set_xlabel("%s (%s)" % (x_axis.name, x_axis.units)) def plot_images(images, cmap=None, no_nans=False, per_row=3, label='auto', labelwrap=30, suptitle=None, suptitle_fontsize=18, colorbar='multi', centre_colormap="auto", saturated_pixels=0, scalebar=None, scalebar_color='white', axes_decor='all', padding=None, tight_layout=False, aspect='auto', min_asp=0.1, namefrac_thresh=0.4, fig=None, vmin=None, vmax=None, *args, **kwargs): """Plot multiple images as sub-images in one figure. Parameters ---------- images : list `images` should be a list of Signals (Images) to plot If any signal is not an image, a ValueError will be raised multi-dimensional images will have each plane plotted as a separate image cmap : matplotlib colormap, optional The colormap used for the images, by default read from pyplot no_nans : bool, optional If True, set nans to zero for plotting. per_row : int, optional The number of plots in each row label : None, str, or list of str, optional Control the title labeling of the plotted images. If None, no titles will be shown. If 'auto' (default), function will try to determine suitable titles using Signal2D titles, falling back to the 'titles' option if no good short titles are detected. Works best if all images to be plotted have the same beginning to their titles. If 'titles', the title from each image's metadata.General.title will be used. If any other single str, images will be labeled in sequence using that str as a prefix. If a list of str, the list elements will be used to determine the labels (repeated, if necessary). labelwrap : int, optional integer specifying the number of characters that will be used on one line If the function returns an unexpected blank figure, lower this value to reduce overlap of the labels between each figure suptitle : str, optional Title to use at the top of the figure. If called with label='auto', this parameter will override the automatically determined title. suptitle_fontsize : int, optional Font size to use for super title at top of figure colorbar : {'multi', None, 'single'} Controls the type of colorbars that are plotted. If None, no colorbar is plotted. If 'multi' (default), individual colorbars are plotted for each (non-RGB) image If 'single', all (non-RGB) images are plotted on the same scale, and one colorbar is shown for all centre_colormap : {"auto", True, False} If True the centre of the color scheme is set to zero. This is specially useful when using diverging color schemes. If "auto" (default), diverging color schemes are automatically centred. saturated_pixels: scalar The percentage of pixels that are left out of the bounds. For example, the low and high bounds of a value of 1 are the 0.5% and 99.5% percentiles. It must be in the [0, 100] range. scalebar : {None, 'all', list of ints}, optional If None (or False), no scalebars will be added to the images. If 'all', scalebars will be added to all images. If list of ints, scalebars will be added to each image specified. scalebar_color : str, optional A valid MPL color string; will be used as the scalebar color axes_decor : {'all', 'ticks', 'off', None}, optional Controls how the axes are displayed on each image; default is 'all' If 'all', both ticks and axis labels will be shown If 'ticks', no axis labels will be shown, but ticks/labels will If 'off', all decorations and frame will be disabled If None, no axis decorations will be shown, but ticks/frame will padding : None or dict, optional This parameter controls the spacing between images. If None, default options will be used Otherwise, supply a dictionary with the spacing options as keywords and desired values as values Values should be supplied as used in pyplot.subplots_adjust(), and can be: 'left', 'bottom', 'right', 'top', 'wspace' (width), and 'hspace' (height) tight_layout : bool, optional If true, hyperspy will attempt to improve image placement in figure using matplotlib's tight_layout If false, repositioning images inside the figure will be left as an exercise for the user. aspect : str or numeric, optional If 'auto', aspect ratio is auto determined, subject to min_asp. If 'square', image will be forced onto square display. If 'equal', aspect ratio of 1 will be enforced. If float (or int/long), given value will be used. min_asp : float, optional Minimum aspect ratio to be used when plotting images namefrac_thresh : float, optional Threshold to use for auto-labeling. This parameter controls how much of the titles must be the same for the auto-shortening of labels to activate. Can vary from 0 to 1. Smaller values encourage shortening of titles by auto-labeling, while larger values will require more overlap in titles before activing the auto-label code. fig : mpl figure, optional If set, the images will be plotted to an existing MPL figure vmin, vmax : scalar or list of scalar, optional, default: None If list of scalar, the length should match the number of images to show. A list of scalar is not compatible with a single colorbar. See vmin, vmax of matplotlib.imshow() for more details. *args, **kwargs, optional Additional arguments passed to matplotlib.imshow() Returns ------- axes_list : list a list of subplot axes that hold the images See Also -------- plot_spectra : Plotting of multiple spectra plot_signals : Plotting of multiple signals plot_histograms : Compare signal histograms Notes ----- `interpolation` is a useful parameter to provide as a keyword argument to control how the space between pixels is interpolated. A value of ``'nearest'`` will cause no interpolation between pixels. `tight_layout` is known to be quite brittle, so an option is provided to disable it. Turn this option off if output is not as expected, or try adjusting `label`, `labelwrap`, or `per_row` """ from hyperspy.drawing.widgets import ScaleBar from hyperspy.misc import rgb_tools from hyperspy.signal import BaseSignal if isinstance(images, BaseSignal) and len(images) is 1: images.plot() ax = plt.gca() return ax elif not isinstance(images, (list, tuple, BaseSignal)): raise ValueError("images must be a list of image signals or " "multi-dimensional signal." " " + repr(type(images)) + " was given.") # Get default colormap from pyplot: if cmap is None: cmap = plt.get_cmap().name elif isinstance(cmap, mpl.colors.Colormap): cmap = cmap.name if centre_colormap == "auto": if cmap in MPL_DIVERGING_COLORMAPS: centre_colormap = True else: centre_colormap = False # If input is >= 1D signal (e.g. for multi-dimensional plotting), # copy it and put it in a list so labeling works out as (x,y) when plotting if isinstance(images, BaseSignal) and images.axes_manager.navigation_dimension > 0: images = [images._deepcopy_with_new_data(images.data)] n = 0 for i, sig in enumerate(images): if sig.axes_manager.signal_dimension != 2: raise ValueError("This method only plots signals that are images. " "The signal dimension must be equal to 2. " "The signal at position " + repr(i) + " was " + repr(sig) + ".") # increment n by the navigation size, or by 1 if the navigation size is # <= 0 n += (sig.axes_manager.navigation_size if sig.axes_manager.navigation_size > 0 else 1) if isinstance(vmin, list): if len(vmin) != n: _logger.warning('The provided vmin values are ignored because the ' 'length of the list does not match the number of ' 'images') vmin = [None] * n else: vmin = [vmin] * n if isinstance(vmax, list): if len(vmax) != n: _logger.warning('The provided vmax values are ignored because the ' 'length of the list does not match the number of ' 'images') vmax = [None] * n else: vmax = [vmax] * n # Sort out the labeling: div_num = 0 all_match = False shared_titles = False user_labels = False if label is None: pass elif label is 'auto': # Use some heuristics to try to get base string of similar titles label_list = [x.metadata.General.title for x in images] # Find the shortest common string between the image titles # and pull that out as the base title for the sequence of images # array in which to store arrays res = np.zeros((len(label_list), len(label_list[0]) + 1)) res[:, 0] = 1 # j iterates the strings for j in range(len(label_list)): # i iterates length of substring test for i in range(1, len(label_list[0]) + 1): # stores whether or not characters in title match res[j, i] = label_list[0][:i] in label_list[j] # sum up the results (1 is True, 0 is False) and create # a substring based on the minimum value (this will be # the "smallest common string" between all the titles if res.all(): basename = label_list[0] div_num = len(label_list[0]) all_match = True else: div_num = int(min(np.sum(res, 1))) basename = label_list[0][:div_num - 1] all_match = False # trim off any '(' or ' ' characters at end of basename if div_num > 1: while True: if basename[len(basename) - 1] == '(': basename = basename[:-1] elif basename[len(basename) - 1] == ' ': basename = basename[:-1] else: break # namefrac is ratio of length of basename to the image name # if it is high (e.g. over 0.5), we can assume that all images # share the same base if len(label_list[0]) > 0: namefrac = float(len(basename)) / len(label_list[0]) else: # If label_list[0] is empty, it means there was probably no # title set originally, so nothing to share namefrac = 0 if namefrac > namefrac_thresh: # there was a significant overlap of label beginnings shared_titles = True # only use new suptitle if one isn't specified already if suptitle is None: suptitle = basename else: # there was not much overlap, so default back to 'titles' mode shared_titles = False label = 'titles' div_num = 0 elif label is 'titles': # Set label_list to each image's pre-defined title label_list = [x.metadata.General.title for x in images] elif isinstance(label, str): # Set label_list to an indexed list, based off of label label_list = [label + " " + repr(num) for num in range(n)] elif isinstance(label, list) and all( isinstance(x, str) for x in label): label_list = label user_labels = True # If list of labels is longer than the number of images, just use the # first n elements if len(label_list) > n: del label_list[n:] if len(label_list) < n: label_list *= (n // len(label_list)) + 1 del label_list[n:] else: raise ValueError("Did not understand input of labels.") # Determine appropriate number of images per row rows = int(np.ceil(n / float(per_row))) if n < per_row: per_row = n # Set overall figure size and define figure (if not pre-existing) if fig is None: k = max(plt.rcParams['figure.figsize']) / max(per_row, rows) f = plt.figure(figsize=(tuple(k * i for i in (per_row, rows)))) else: f = fig # Initialize list to hold subplot axes axes_list = [] # Initialize list of rgb tags isrgb = [False] * len(images) # Check to see if there are any rgb images in list # and tag them using the isrgb list for i, img in enumerate(images): if rgb_tools.is_rgbx(img.data): isrgb[i] = True # Determine how many non-rgb Images there are non_rgb = list(itertools.compress(images, [not j for j in isrgb])) if len(non_rgb) is 0 and colorbar is not None: colorbar = None warnings.warn("Sorry, colorbar is not implemented for RGB images.") # Find global min and max values of all the non-rgb images for use with # 'single' scalebar if colorbar is 'single': g_vmin, g_vmax = contrast_stretching(np.concatenate( [i.data.flatten() for i in non_rgb]), saturated_pixels) if isinstance(vmin, list): _logger.warning('vmin have to be a scalar to be compatible with a ' 'single colorbar') else: g_vmin = vmin if vmin is not None else g_vmin if isinstance(vmax, list): _logger.warning('vmax have to be a scalar to be compatible with a ' 'single colorbar') else: g_vmax = vmax if vmax is not None else g_vmax if centre_colormap: g_vmin, g_vmax = centre_colormap_values(g_vmin, g_vmax) # Check if we need to add a scalebar for some of the images if isinstance(scalebar, list) and all(isinstance(x, int) for x in scalebar): scalelist = True else: scalelist = False idx = 0 ax_im_list = [0] * len(isrgb) # Loop through each image, adding subplot for each one for i, ims in enumerate(images): # Get handles for the signal axes and axes_manager axes_manager = ims.axes_manager if axes_manager.navigation_dimension > 0: ims = ims._deepcopy_with_new_data(ims.data) for j, im in enumerate(ims): idx += 1 ax = f.add_subplot(rows, per_row, idx) axes_list.append(ax) data = im.data # Enable RGB plotting if rgb_tools.is_rgbx(data): data = rgb_tools.rgbx2regular_array(data, plot_friendly=True) l_vmin, l_vmax = None, None else: data = im.data # Find min and max for contrast l_vmin, l_vmax = contrast_stretching(data, saturated_pixels) l_vmin = vmin[idx - 1] if vmin[idx - 1] is not None else l_vmin l_vmax = vmax[idx - 1] if vmax[idx - 1] is not None else l_vmax if centre_colormap: l_vmin, l_vmax = centre_colormap_values(l_vmin, l_vmax) # Remove NaNs (if requested) if no_nans: data = np.nan_to_num(data) # Get handles for the signal axes and axes_manager axes_manager = im.axes_manager axes = axes_manager.signal_axes # Set dimensions of images xaxis = axes[0] yaxis = axes[1] extent = ( xaxis.low_value, xaxis.high_value, yaxis.high_value, yaxis.low_value, ) if not isinstance(aspect, (int, float)) and aspect not in [ 'auto', 'square', 'equal']: print('Did not understand aspect ratio input. ' 'Using \'auto\' as default.') aspect = 'auto' if aspect is 'auto': if float(yaxis.size) / xaxis.size < min_asp: factor = min_asp * float(xaxis.size) / yaxis.size elif float(yaxis.size) / xaxis.size > min_asp ** -1: factor = min_asp ** -1 * float(xaxis.size) / yaxis.size else: factor = 1 asp = np.abs(factor * float(xaxis.scale) / yaxis.scale) elif aspect is 'square': asp = abs(extent[1] - extent[0]) / abs(extent[3] - extent[2]) elif aspect is 'equal': asp = 1 elif isinstance(aspect, (int, float)): asp = aspect if 'interpolation' not in kwargs.keys(): kwargs['interpolation'] = 'nearest' # Plot image data, using vmin and vmax to set bounds, # or allowing them to be set automatically if using individual # colorbars if colorbar is 'single' and not isrgb[i]: axes_im = ax.imshow(data, cmap=cmap, extent=extent, vmin=g_vmin, vmax=g_vmax, aspect=asp, *args, **kwargs) ax_im_list[i] = axes_im else: axes_im = ax.imshow(data, cmap=cmap, extent=extent, vmin=l_vmin, vmax=l_vmax, aspect=asp, *args, **kwargs) ax_im_list[i] = axes_im # If an axis trait is undefined, shut off : if isinstance(xaxis.units, trait_base._Undefined) or \ isinstance(yaxis.units, trait_base._Undefined) or \ isinstance(xaxis.name, trait_base._Undefined) or \ isinstance(yaxis.name, trait_base._Undefined): if axes_decor is 'all': warnings.warn( 'Axes labels were requested, but one ' 'or both of the ' 'axes units and/or name are undefined. ' 'Axes decorations have been set to ' '\'ticks\' instead.') axes_decor = 'ticks' # If all traits are defined, set labels as appropriate: else: ax.set_xlabel(axes[0].name + " axis (" + axes[0].units + ")") ax.set_ylabel(axes[1].name + " axis (" + axes[1].units + ")") if label: if all_match: title = '' elif shared_titles: title = label_list[i][div_num - 1:] else: if len(ims) == n: # This is true if we are plotting just 1 # multi-dimensional Signal2D title = label_list[idx - 1] elif user_labels: title = label_list[idx - 1] else: title = label_list[i] if ims.axes_manager.navigation_size > 1 and not user_labels: title += " %s" % str(ims.axes_manager.indices) ax.set_title(textwrap.fill(title, labelwrap)) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) # If using independent colorbars, add them if colorbar is 'multi' and not isrgb[i]: div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(axes_im, cax=cax) # Add scalebars as necessary if (scalelist and idx - 1 in scalebar) or scalebar is 'all': ax.scalebar = ScaleBar( ax=ax, units=axes[0].units, color=scalebar_color, ) # If using a single colorbar, add it, and do tight_layout, ensuring that # a colorbar is only added based off of non-rgb Images: if colorbar is 'single': foundim = None for i in range(len(isrgb)): if (not isrgb[i]) and foundim is None: foundim = i if foundim is not None: f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.9, 0.1, 0.03, 0.8]) f.colorbar(ax_im_list[foundim], cax=cbar_ax) if tight_layout: # tight_layout, leaving room for the colorbar plt.tight_layout(rect=[0, 0, 0.9, 1]) elif tight_layout: plt.tight_layout() elif tight_layout: plt.tight_layout() # Set top bounds for shared titles and add suptitle if suptitle: f.subplots_adjust(top=0.85) f.suptitle(suptitle, fontsize=suptitle_fontsize) # If we want to plot scalebars, loop through the list of axes and add them if scalebar is None or scalebar is False: # Do nothing if no scalebars are called for pass elif scalebar is 'all': # scalebars were taken care of in the plotting loop pass elif scalelist: # scalebars were taken care of in the plotting loop pass else: raise ValueError("Did not understand scalebar input. Must be None, " "\'all\', or list of ints.") # Adjust subplot spacing according to user's specification if padding is not None: plt.subplots_adjust(**padding) return axes_list def set_axes_decor(ax, axes_decor): if axes_decor is 'off': ax.axis('off') elif axes_decor is 'ticks': ax.set_xlabel('') ax.set_ylabel('') elif axes_decor is 'all': pass elif axes_decor is None: ax.set_xlabel('') ax.set_ylabel('') ax.set_xticklabels([]) ax.set_yticklabels([]) def plot_spectra( spectra, style='overlap', color=None, line_style=None, padding=1., legend=None, legend_picking=True, legend_loc='upper right', fig=None, ax=None, **kwargs): """Plot several spectra in the same figure. Extra keyword arguments are passed to `matplotlib.figure`. Parameters ---------- spectra : iterable object Ordered spectra list to plot. If `style` is "cascade" or "mosaic" the spectra can have different size and axes. style : {'overlap', 'cascade', 'mosaic', 'heatmap'} The style of the plot. color : matplotlib color or a list of them or `None` Sets the color of the lines of the plots (no action on 'heatmap'). If a list, if its length is less than the number of spectra to plot, the colors will be cycled. If `None`, use default matplotlib color cycle. line_style: matplotlib line style or a list of them or `None` Sets the line style of the plots (no action on 'heatmap'). The main line style are '-','--','steps','-.',':'. If a list, if its length is less than the number of spectra to plot, line_style will be cycled. If If `None`, use continuous lines, eg: ('-','--','steps','-.',':') padding : float, optional, default 0.1 Option for "cascade". 1 guarantees that there is not overlapping. However, in many cases a value between 0 and 1 can produce a tighter plot without overlapping. Negative values have the same effect but reverse the order of the spectra without reversing the order of the colors. legend: None or list of str or 'auto' If list of string, legend for "cascade" or title for "mosaic" is displayed. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool If true, a spectrum can be toggle on and off by clicking on the legended line. legend_loc : str or int This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values fig : matplotlib figure or None If None, a default figure will be created. Specifying fig will not work for the 'heatmap' style. ax : matplotlib ax (subplot) or None If None, a default ax will be created. Will not work for 'mosaic' or 'heatmap' style. **kwargs remaining keyword arguments are passed to matplotlib.figure() or matplotlib.subplots(). Has no effect on 'heatmap' style. Example ------- >>> s = hs.load("some_spectra") >>> hs.plot.plot_spectra(s, style='cascade', color='red', padding=0.5) To save the plot as a png-file >>> hs.plot.plot_spectra(s).figure.savefig("test.png") Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ import hyperspy.signal def _reverse_legend(ax_, legend_loc_): """ Reverse the ordering of a matplotlib legend (to be more consistent with the default ordering of plots in the 'cascade' and 'overlap' styles Parameters ---------- ax_: matplotlib axes legend_loc_: str or int This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values """ l = ax_.get_legend() labels = [lb.get_text() for lb in list(l.get_texts())] handles = l.legendHandles ax_.legend(handles[::-1], labels[::-1], loc=legend_loc_) # Before v1.3 default would read the value from prefereces. if style == "default": style = "overlap" if color is not None: if isinstance(color, str): color = itertools.cycle([color]) elif hasattr(color, "__iter__"): color = itertools.cycle(color) else: raise ValueError("Color must be None, a valid matplotlib color " "string or a list of valid matplotlib colors.") else: if LooseVersion(mpl.__version__) >= "1.5.3": color = itertools.cycle( plt.rcParams['axes.prop_cycle'].by_key()["color"]) else: color = itertools.cycle(plt.rcParams['axes.color_cycle']) if line_style is not None: if isinstance(line_style, str): line_style = itertools.cycle([line_style]) elif hasattr(line_style, "__iter__"): line_style = itertools.cycle(line_style) else: raise ValueError("line_style must be None, a valid matplotlib" " line_style string or a list of valid matplotlib" " line_style.") else: line_style = ['-'] * len(spectra) if legend is not None: if isinstance(legend, str): if legend == 'auto': legend = [spec.metadata.General.title for spec in spectra] else: raise ValueError("legend must be None, 'auto' or a list of" " string") elif hasattr(legend, "__iter__"): legend = itertools.cycle(legend) if style == 'overlap': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_overlap_plot(spectra, ax, color=color, line_style=line_style,) if legend is not None: plt.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) if legend_picking is True: animate_legend(figure=fig) elif style == 'cascade': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_cascade_subplot(spectra, ax, color=color, line_style=line_style, padding=padding) if legend is not None: plt.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) elif style == 'mosaic': default_fsize = plt.rcParams["figure.figsize"] figsize = (default_fsize[0], default_fsize[1] * len(spectra)) fig, subplots = plt.subplots( len(spectra), 1, figsize=figsize, **kwargs) if legend is None: legend = [legend] * len(spectra) for spectrum, ax, color, line_style, legend in zip( spectra, subplots, color, line_style, legend): _plot_spectrum(spectrum, ax, color=color, line_style=line_style) ax.set_ylabel('Intensity') if legend is not None: ax.set_title(legend) if not isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) if isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) fig.tight_layout() elif style == 'heatmap': if not isinstance(spectra, hyperspy.signal.BaseSignal): import hyperspy.utils spectra = hyperspy.utils.stack(spectra) with spectra.unfolded(): ax = _make_heatmap_subplot(spectra) ax.set_ylabel('Spectra') ax = ax if style != "mosaic" else subplots return ax def animate_legend(figure='last'): """Animate the legend of a figure. A spectrum can be toggle on and off by clicking on the legended line. Parameters ---------- figure: 'last' | matplotlib.figure If 'last' pick the last figure Note ---- Code inspired from legend_picking.py in the matplotlib gallery """ if figure == 'last': figure = plt.gcf() ax = plt.gca() else: ax = figure.axes[0] lines = ax.lines lined = dict() leg = ax.get_legend() for legline, origline in zip(leg.get_lines(), lines): legline.set_picker(5) # 5 pts tolerance lined[legline] = origline def onpick(event): # on the pick event, find the orig line corresponding to the # legend proxy line, and toggle the visibility legline = event.artist origline = lined[legline] vis = not origline.get_visible() origline.set_visible(vis) # Change the alpha on the line in the legend so we can see what lines # have been toggled if vis: legline.set_alpha(1.0) else: legline.set_alpha(0.2) figure.canvas.draw_idle() figure.canvas.mpl_connect('pick_event', onpick) def plot_histograms(signal_list, bins='freedman', range_bins=None, color=None, line_style=None, legend='auto', fig=None, **kwargs): """Plot the histogram of every signal in the list in the same figure. This function creates a histogram for each signal and plot the list with the `utils.plot.plot_spectra` function. Parameters ---------- signal_list : iterable Ordered spectra list to plot. If `style` is "cascade" or "mosaic" the spectra can have different size and axes. bins : int or list or str, optional If bins is a string, then it must be one of: 'knuth' : use Knuth's rule to determine bins 'scotts' : use Scott's rule to determine bins 'freedman' : use the Freedman-diaconis rule to determine bins 'blocks' : use bayesian blocks for dynamic bin widths range_bins : tuple or None, optional. the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max()) color : valid matplotlib color or a list of them or `None`, optional. Sets the color of the lines of the plots. If a list, if its length is less than the number of spectra to plot, the colors will be cycled. If If `None`, use default matplotlib color cycle. line_style: valid matplotlib line style or a list of them or `None`, optional. The main line style are '-','--','steps','-.',':'. If a list, if its length is less than the number of spectra to plot, line_style will be cycled. If If `None`, use continuous lines, eg: ('-','--','steps','-.',':') legend: None or list of str or 'auto', optional. Display a legend. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool, optional. If true, a spectrum can be toggle on and off by clicking on the legended line. fig : matplotlib figure or None, optional. If None, a default figure will be created. **kwargs other keyword arguments (weight and density) are described in np.histogram(). Example ------- Histograms of two random chi-square distributions >>> img = hs.signals.Signal2D(np.random.chisquare(1,[10,10,100])) >>> img2 = hs.signals.Signal2D(np.random.chisquare(2,[10,10,100])) >>> hs.plot.plot_histograms([img,img2],legend=['hist1','hist2']) Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ hists = [] for obj in signal_list: hists.append(obj.get_histogram(bins=bins, range_bins=range_bins, **kwargs)) if line_style is None: line_style = 'steps' return plot_spectra(hists, style='overlap', color=color, line_style=line_style, legend=legend, fig=fig)
CodeMonkeyJan/hyperspy
hyperspy/drawing/utils.py
Python
gpl-3.0
47,617
[ "ADF" ]
def92fb30484063d82f37011b97be8798820476e8ef25e8752a3bd54efbdf669
# $Id$ # # Copyright (C) 2003-2006 Greg Landrum and Rational Discovery LLC # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # """ class definitions for similarity screening See _SimilarityScreener_ for overview of required API """ from rdkit import DataStructs from rdkit import six from rdkit.DataStructs import TopNContainer class SimilarityScreener(object): """ base class important attributes: probe: the probe fingerprint against which we screen. metric: a function that takes two arguments and returns a similarity measure between them dataSource: the source pool from which to draw, needs to support a next() method fingerprinter: a function that takes a molecule and returns a fingerprint of the appropriate format **Notes** subclasses must support either an iterator interface or __len__ and __getitem__ """ def __init__(self, probe=None, metric=None, dataSource=None, fingerprinter=None): self.metric = metric self.dataSource = dataSource self.fingerprinter = fingerprinter self.probe = probe def Reset(self): """ used to reset screeners that behave as iterators """ pass # FIX: add setters/getters for attributes def SetProbe(self, probeFingerprint): """ sets our probe fingerprint """ self.probe = probeFingerprint def GetSingleFingerprint(self, probe): """ returns a fingerprint for a single probe object This is potentially useful in initializing our internal probe object. """ return self.fingerprinter(probe) class ThresholdScreener(SimilarityScreener): """ Used to return all compounds that have a similarity to the probe beyond a threshold value **Notes**: - This is as lazy as possible, so the data source isn't queried until the client asks for a hit. - In addition to being lazy, this class is as thin as possible. (Who'd have thought it was possible!) Hits are *not* stored locally, so if a client resets the iteration and starts over, the same amount of work must be done to retrieve the hits. - The thinness and laziness forces us to support only forward iteration (not random access) """ def __init__(self, threshold, **kwargs): SimilarityScreener.__init__(self, **kwargs) self.threshold = threshold self.dataIter = iter(self.dataSource) # FIX: add setters/getters for attributes def _nextMatch(self): """ *Internal use only* """ done = 0 res = None sim = 0 while not done: # this is going to crap out when the data source iterator finishes, # that's how we stop when no match is found obj = six.next(self.dataIter) fp = self.fingerprinter(obj) sim = DataStructs.FingerprintSimilarity(fp, self.probe, self.metric) if sim >= self.threshold: res = obj done = 1 return sim, res def Reset(self): """ used to reset our internal state so that iteration starts again from the beginning """ self.dataSource.reset() self.dataIter = iter(self.dataSource) def __iter__(self): """ returns an iterator for this screener """ self.Reset() return self def next(self): """ required part of iterator interface """ return self._nextMatch() __next__ = next class TopNScreener(SimilarityScreener): """ A screener that only returns the top N hits found **Notes** - supports forward iteration and getitem """ def __init__(self, num, **kwargs): SimilarityScreener.__init__(self, **kwargs) self.numToGet = num self.topN = None self._pos = 0 def Reset(self): self._pos = 0 def __iter__(self): if self.topN is None: self._initTopN() self.Reset() return self def next(self): if self._pos >= self.numToGet: raise StopIteration else: res = self.topN[self._pos] self._pos += 1 return res __next__ = next def _initTopN(self): self.topN = TopNContainer.TopNContainer(self.numToGet) for obj in self.dataSource: fp = self.fingerprinter(obj) sim = DataStructs.FingerprintSimilarity(fp, self.probe, self.metric) self.topN.Insert(sim, obj) def __len__(self): if self.topN is None: self._initTopN() return self.numToGet def __getitem__(self, idx): if self.topN is None: self._initTopN() return self.topN[idx]
rvianello/rdkit
rdkit/Chem/Fingerprints/SimilarityScreener.py
Python
bsd-3-clause
4,634
[ "RDKit" ]
4525d318ceef042af50170b5f170ac9bdb2da0f74f00bd44d16769a194f1b9fb
""" blast module Requirements: - getSequence uses BLAST's fastacmd """ import os, sys, copy, re from mungoCore import * import fasta, sequence from useful import smartopen def sign_to_strand(x): if x<0: return '-' else: return '+' def test_to_strand(test): if test: return '+' else: return '-' class HSP(AbstractFeature): """HSP feature""" attributes = ['queryId','subjectId','pcId','alignLength', 'matches','mismatches','qStart','qEnd','sStart','sEnd','eValue', 'bitScore'] converters = [ ('pcId', float), ('alignLength', int), ('matches', int), ('mismatches', int), ('qStart', int), ('qEnd', int), ('sStart', int), ('sEnd', int), ('eValue', float), ('bitScore', float) ] format = attributesToFormat(attributes) def __init__(self, *args, **kw): super(HSP,self).__init__(*args,**kw) if self.sStart>self.sEnd: self.sStart,self.sEnd = self.sEnd,self.sStart self._strand = '-' else: self._strand = '+' def __repr__(self): self.forcePlusStrand() output = self.format % self.__dict__ self.forceCorrectStrand() return output def __eq__(self,x): if self.__dict__==x.__dict__: return True else: return False def __hash__(self): return hash("%(queryId)s %(subjectId)s:%(sStart)i-%(sEnd)i" % self.__dict__) def addField(self, field, default=None): if not field in self.attributes: self.attributes.append(field) self.format = self.format + '\t%%(%s)s' % field self.__dict__[field] = default def strand(self): strand = test_to_strand( self._strand==sign_to_strand(self.sEnd-self.sStart)) return strand def swapStartEnd(self): self.sStart,self.sEnd = self.sEnd,self.sStart self._strand = {'+': '-', '-': '+'}[self._strand] def forcePlusStrand(self): if self._strand=='-': self.sStart,self.sEnd = self.sEnd,self.sStart self._strand = '+' def forceCorrectStrand(self): if self._strand=='+' and self.sStart<self.sEnd: self.sStart,self.sEnd = self.sEnd,self.sStart self._strand = '-' def convertBlockToGenomeCoords(self): """Convert block to genome coordinates.""" try: for delimiter in [':', '.', '-']: self.subjectId = self.subjectId.replace(delimiter, ' ') tokens = self.subjectId.split() self.subjectId = tokens[0] self.sStart += int(tokens[1])-1 self.sEnd += int(tokens[1])-1 except Exception, e: print e def convertGenomeToBlockCoords(self, L, blockSize=5000000): """Convert genome to block coordinates. @param L: Length of chromosome @param blockSize: Length of block (Default = 5000000) """ self.subjectId,self.sStart,self.sEnd = fasta.genomeToBlock( self.subjectId, self.sStart, self.sEnd, L, blockSize=blockSize) def getSequence(self, blastDb, accessionConverter=lambda x: x, padFivePrime=0, padThreePrime=0, getAll=True): if getAll: start = 0 end = 0 else: start = max(1,self.sStart-padFivePrime) end = self.sEnd+padThreePrime accession = accessionConverter(self.subjectId) h,s = getSequence(blastDb, accession, start, end, self.strand()) return h,s def BlastFile(iFileHandle, multi=False, **kw): """Factory function for Reader and Writer classes @param iFileHandle: BLAST file name or object """ if multi: return MultiBlastReader(iFileHandle, **kw) else: return BlastReader(iFileHandle, **kw) class BlastReader(AbstractDataReader): def __init__(self, iFileHandle, eValueCutoff=None, **kw): """Constructor @param iFileHandle: Input file or name """ super(BlastReader, self).__init__(iFileHandle) self.eValueCutoff = eValueCutoff def iterBestHits(self): oldQueryId = None for hsp in self: if hsp.queryId!=oldQueryId: yield hsp oldQueryId = copy.copy(hsp.queryId) def bestHits(self): data = [] for bh in self.iterBestHits(): data.append(bh) return bh def firstHit(self): for hsp in self: return hsp def _generator(self): for line in self.iFile: line = line.strip() if line and line[0]!='#': tokens = line.split('\t') hsp = HSP(tokens) if not self.eValueCutoff or hsp.eValue<=self.eValueCutoff: yield HSP(tokens) class MultiBlastReader(BlastReader): """ Subclass of BlastReader for parsing the results of aligning a multi-fasta file to a blast database. """ def bestHits(self): hsps = [] oldQueryId = None for hsp in self: if hsp.queryId!=oldQueryId and not oldQueryId is None: if len(hsps)>1: yield hsps[0], hsps[1], len(hsps) else: yield hsps[0], None, len(hsps) hsps = [] hsps.append(hsp) oldQueryId = copy.copy(hsp.queryId) if len(hsps)>1: yield hsps[0], hsps[1], len(hsps) elif len(hsps)==1: yield hsps[0], None, len(hsps) def groupByQuerySeq(self): hsps = [] oldQueryId = None for hsp in self: if hsp.queryId!=oldQueryId and not oldQueryId is None: yield hsps hsps = [] hsps.append(hsp) oldQueryId = copy.copy(hsp.queryId) yield hsps class NotFoundException(Exception): pass def getSequence(blastDb, accession, start=0, end=0, strand='+', padding=0, debug=False): """Load a sequence from a BLAST database. @param blastDb: BLAST database @param accession: Accession name @param start: Start coordinate (Default: 0, extract from start of sequence) @param end: End coordinate (Default: 0, extract to the end of sequence) @param strand: Strand (Default: '+') @param padding: Sequence padding (Default: 0) @returns: (header,seq) """ if start>end: start,end = end,start cmd = 'fastacmd -d %s -s "%s" -L %i,%i' % (blastDb,accession,start,end) if debug: print cmd p = os.popen(cmd) header = p.readline()[1:].strip() if not header: raise Exception('BLAST failure') seq = [] for line in p: seq.append(line.strip()) seq = ''.join(seq) if not seq: print blastDb, accession raise NotFoundException() if strand=='-': seq = sequence.reverseComplement(seq) return header,seq class TooManyBlocks(Exception): def __init__(self, chrom, start, end): self.chrom = chrom self.start = start self.end = end print chrom,start,end def genomeToBlock(chrom, start, end, L=1000000000, blockSize=5000000, delimiter='.'): """Transform genomic to block coordinates. @param chrom: Chromosome @param start: Start coordinate @param end: End coorinate @param L: Chromosome length @param blockSize: Block size (Default: 5000000) @returns: (block, relStart, relEnd) """ strand = '+' if start>end: strand = '-' start,end = end,start blockStart = 1 + blockSize*int(start/blockSize) blockEnd = min(L, blockStart+blockSize-1) block = '%s%s%i-%i' % (chrom, delimiter, blockStart, blockEnd) relStart = start % blockSize relEnd = end % blockSize if strand=='-': relStart,relEnd = relEnd,relStart return block,relStart,relEnd def genomeToBlocks(chrom, start, end, L, blockSize=5000000): """Transform genomic to block coordinates (chrom.blockStart-blockEnd:start-end). @param chrom: Chromosome @param start: Start coordinate @param end: End coorinate @param L: Chromosome length @param blockSize: Block size (Default: 5000000) @returns: a tuple of lists (blocks,startInBlocks,endInBlocks). """ strand = '+' if start>end: strand = '-' start,end = end,start startBlock = 1 + blockSize*int(start/blockSize) endBlock = min(L, blockSize*(1+int(end/blockSize))) blocks = [] i = 0 ; imax = 200 s = startBlock while s<endBlock: e = min(L, s+blockSize-1) blocks.append('%s.%i-%i' % (chrom,s,e)) s += blockSize i += 1 if i>imax: raise TooManyBlocks(chrom,start,end) startInBlocks = [start % blockSize] endInBlocks = [end % blockSize] for i in xrange(len(blocks)-1): startInBlocks.append(0) endInBlocks.insert(0,0) if strand=='-': startInBlocks,endInBlocks = endInBlocks,startInBlocks return blocks,startInBlocks,endInBlocks def blockToGenome(block, startInBlock, endInBlock): """Transform block to genomic coordinates. @param block: Block (chrom.blockStart-blockEnd) @param startInBlock: Start coordinate in block @param endInBlock: End coorinate in block @returns: (chrom, gStart, gEnd) """ prog = re.compile('[\.|:]|-') chrom,blockStart,blockEnd = prog.split(block) gStart = int(blockStart)+startInBlock-1 gEnd = int(blockStart)+endInBlock-1 return chrom,gStart,gEnd
PapenfussLab/Mungo
mungo/blast.py
Python
artistic-2.0
9,823
[ "BLAST" ]
12eb3ad45f5f17ff71ee7bdc76f72f79e510481b506ee3552fc1cd56ea467ab8
from galaxy import web, util from galaxy.web.base.controller import BaseAPIController from galaxy.web.framework.helpers import is_true def get_id( base, format ): if format: return "%s.%s" % ( base, format ) else: return base class GenomesController( BaseAPIController ): """ RESTful controller for interactions with genome data. """ @web.expose_api_anonymous def index( self, trans, **kwd ): """ GET /api/genomes: returns a list of installed genomes """ return self.app.genomes.get_dbkeys( trans, **kwd ) @web.json def show( self, trans, id, num=None, chrom=None, low=None, high=None, **kwd ): """ GET /api/genomes/{id} Returns information about build <id> """ # Process kwds. id = get_id( id, kwd.get( 'format', None ) ) reference = is_true( kwd.get( 'reference', False ) ) # Return info. rval = None if reference: region = self.app.genomes.reference( trans, dbkey=id, chrom=chrom, low=low, high=high ) rval = { 'dataset_type': 'refseq', 'data': region.sequence } else: rval = self.app.genomes.chroms( trans, dbkey=id, num=num, chrom=chrom, low=low ) return rval
mikel-egana-aranguren/SADI-Galaxy-Docker
galaxy-dist/lib/galaxy/webapps/galaxy/api/genomes.py
Python
gpl-3.0
1,289
[ "Galaxy" ]
9ddb07cbf0d55b4d07bdae7be9a463b041590bc49abba2674cb37f2761f42ba6
""" Displays Agg images in the browser, with interactivity """ from __future__ import (absolute_import, division, print_function, unicode_literals) # The WebAgg backend is divided into two modules: # # - `backend_webagg_core.py` contains code necessary to embed a WebAgg # plot inside of a web application, and communicate in an abstract # way over a web socket. # # - `backend_webagg.py` contains a concrete implementation of a basic # application, implemented with tornado. import six import datetime import errno import io import json import os import random import socket import threading try: import tornado except ImportError: raise RuntimeError("The WebAgg backend requires Tornado.") import tornado.web import tornado.ioloop import tornado.websocket import matplotlib from matplotlib import rcParams from matplotlib import backend_bases from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf from . import backend_webagg_core as core def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasWebAgg(figure) manager = core.FigureManagerWebAgg(canvas, num) return manager def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw_idle() class Show(backend_bases.ShowBase): def mainloop(self): WebAggApplication.initialize() url = "http://127.0.0.1:{port}{prefix}".format( port=WebAggApplication.port, prefix=WebAggApplication.url_prefix) if rcParams['webagg.open_in_browser']: import webbrowser webbrowser.open(url) else: print("To view figure, visit {0}".format(url)) WebAggApplication.start() show = Show().mainloop class ServerThread(threading.Thread): def run(self): tornado.ioloop.IOLoop.instance().start() webagg_server_thread = ServerThread() class TimerTornado(backend_bases.TimerBase): def _timer_start(self): self._timer_stop() if self._single: ioloop = tornado.ioloop.IOLoop.instance() self._timer = ioloop.add_timeout( datetime.timedelta(milliseconds=self.interval), self._on_timer) else: self._timer = tornado.ioloop.PeriodicCallback( self._on_timer, self.interval) self._timer.start() def _timer_stop(self): if self._timer is not None: self._timer.stop() self._timer = None def _timer_set_interval(self): # Only stop and restart it if the timer has already been started if self._timer is not None: self._timer_stop() self._timer_start() class FigureCanvasWebAgg(core.FigureCanvasWebAggCore): def show(self): # show the figure window show() def new_timer(self, *args, **kwargs): return TimerTornado(*args, **kwargs) def start_event_loop(self, timeout): backend_bases.FigureCanvasBase.start_event_loop_default( self, timeout) start_event_loop.__doc__ = \ backend_bases.FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): backend_bases.FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__ = \ backend_bases.FigureCanvasBase.stop_event_loop_default.__doc__ class WebAggApplication(tornado.web.Application): initialized = False started = False class FavIcon(tornado.web.RequestHandler): def get(self): image_path = os.path.join( os.path.dirname(os.path.dirname(__file__)), 'mpl-data', 'images') self.set_header('Content-Type', 'image/png') with open(os.path.join(image_path, 'matplotlib.png'), 'rb') as fd: self.write(fd.read()) class SingleFigurePage(tornado.web.RequestHandler): def __init__(self, application, request, **kwargs): self.url_prefix = kwargs.pop('url_prefix', '') return tornado.web.RequestHandler.__init__(self, application, request, **kwargs) def get(self, fignum): fignum = int(fignum) manager = Gcf.get_fig_manager(fignum) ws_uri = 'ws://{req.host}{prefix}/'.format(req=self.request, prefix=self.url_prefix) self.render( "single_figure.html", prefix=self.url_prefix, ws_uri=ws_uri, fig_id=fignum, toolitems=core.NavigationToolbar2WebAgg.toolitems, canvas=manager.canvas) class AllFiguresPage(tornado.web.RequestHandler): def __init__(self, application, request, **kwargs): self.url_prefix = kwargs.pop('url_prefix', '') return tornado.web.RequestHandler.__init__(self, application, request, **kwargs) def get(self): ws_uri = 'ws://{req.host}{prefix}/'.format(req=self.request, prefix=self.url_prefix) self.render( "all_figures.html", prefix=self.url_prefix, ws_uri=ws_uri, figures=sorted( list(Gcf.figs.items()), key=lambda item: item[0]), toolitems=core.NavigationToolbar2WebAgg.toolitems) class MplJs(tornado.web.RequestHandler): def get(self): self.set_header('Content-Type', 'application/javascript') js_content = core.FigureManagerWebAgg.get_javascript() self.write(js_content) class Download(tornado.web.RequestHandler): def get(self, fignum, fmt): fignum = int(fignum) manager = Gcf.get_fig_manager(fignum) # TODO: Move this to a central location mimetypes = { 'ps': 'application/postscript', 'eps': 'application/postscript', 'pdf': 'application/pdf', 'svg': 'image/svg+xml', 'png': 'image/png', 'jpeg': 'image/jpeg', 'tif': 'image/tiff', 'emf': 'application/emf' } self.set_header('Content-Type', mimetypes.get(fmt, 'binary')) buff = io.BytesIO() manager.canvas.print_figure(buff, format=fmt) self.write(buff.getvalue()) class WebSocket(tornado.websocket.WebSocketHandler): supports_binary = True def open(self, fignum): self.fignum = int(fignum) self.manager = Gcf.get_fig_manager(self.fignum) self.manager.add_web_socket(self) if hasattr(self, 'set_nodelay'): self.set_nodelay(True) def on_close(self): self.manager.remove_web_socket(self) def on_message(self, message): message = json.loads(message) # The 'supports_binary' message is on a client-by-client # basis. The others affect the (shared) canvas as a # whole. if message['type'] == 'supports_binary': self.supports_binary = message['value'] else: manager = Gcf.get_fig_manager(self.fignum) # It is possible for a figure to be closed, # but a stale figure UI is still sending messages # from the browser. if manager is not None: manager.handle_json(message) def send_json(self, content): self.write_message(json.dumps(content)) def send_binary(self, blob): if self.supports_binary: self.write_message(blob, binary=True) else: data_uri = "data:image/png;base64,{0}".format( blob.encode('base64').replace('\n', '')) self.write_message(data_uri) def __init__(self, url_prefix=''): if url_prefix: assert url_prefix[0] == '/' and url_prefix[-1] != '/', \ 'url_prefix must start with a "/" and not end with one.' super(WebAggApplication, self).__init__( [ # Static files for the CSS and JS (url_prefix + r'/_static/(.*)', tornado.web.StaticFileHandler, {'path': core.FigureManagerWebAgg.get_static_file_path()}), # An MPL favicon (url_prefix + r'/favicon.ico', self.FavIcon), # The page that contains all of the pieces (url_prefix + r'/([0-9]+)', self.SingleFigurePage, {'url_prefix': url_prefix}), # The page that contains all of the figures (url_prefix + r'/?', self.AllFiguresPage, {'url_prefix': url_prefix}), (url_prefix + r'/mpl.js', self.MplJs), # Sends images and events to the browser, and receives # events from the browser (url_prefix + r'/([0-9]+)/ws', self.WebSocket), # Handles the downloading (i.e., saving) of static images (url_prefix + r'/([0-9]+)/download.([a-z0-9.]+)', self.Download), ], template_path=core.FigureManagerWebAgg.get_static_file_path()) @classmethod def initialize(cls, url_prefix='', port=None): if cls.initialized: return # Create the class instance app = cls(url_prefix=url_prefix) cls.url_prefix = url_prefix # This port selection algorithm is borrowed, more or less # verbatim, from IPython. def random_ports(port, n): """ Generate a list of n random ports near the given port. The first 5 ports will be sequential, and the remaining n-5 will be randomly selected in the range [port-2*n, port+2*n]. """ for i in range(min(5, n)): yield port + i for i in range(n - 5): yield port + random.randint(-2 * n, 2 * n) success = None cls.port = rcParams['webagg.port'] for port in random_ports(cls.port, rcParams['webagg.port_retries']): try: app.listen(port) except socket.error as e: if e.errno != errno.EADDRINUSE: raise else: cls.port = port success = True break if not success: raise SystemExit( "The webagg server could not be started because an available " "port could not be found") cls.initialized = True @classmethod def start(cls): if cls.started: return # Set the flag to True *before* blocking on IOLoop.instance().start() cls.started = True """ IOLoop.running() was removed as of Tornado 2.4; see for example https://groups.google.com/forum/#!topic/python-tornado/QLMzkpQBGOY Thus there is no correct way to check if the loop has already been launched. We may end up with two concurrently running loops in that unlucky case with all the expected consequences. """ print("Press Ctrl+C to stop server") try: tornado.ioloop.IOLoop.instance().start() except KeyboardInterrupt: print("Server stopped") finally: cls.started = False def ipython_inline_display(figure): import tornado.template WebAggApplication.initialize() if not webagg_server_thread.is_alive(): webagg_server_thread.start() with open(os.path.join( core.FigureManagerWebAgg.get_static_file_path(), 'ipython_inline_figure.html')) as fd: tpl = fd.read() fignum = figure.number t = tornado.template.Template(tpl) return t.generate( prefix=WebAggApplication.url_prefix, fig_id=fignum, toolitems=core.NavigationToolbar2WebAgg.toolitems, canvas=figure.canvas, port=WebAggApplication.port).decode('utf-8') FigureCanvas = FigureCanvasWebAgg
yavalvas/yav_com
build/matplotlib/lib/matplotlib/backends/backend_webagg.py
Python
mit
12,895
[ "VisIt" ]
75c30758425d37ca29ff51d25670bd31b6aeb564066dcbca84c419b8c22b562f