Dataset Viewer
Auto-converted to Parquet
mol1
stringlengths
6
108
mol2
stringlengths
6
108
sim
float64
0.5
0.95
CC1OC(=O)C2(C(C)CCC(O)C2O)C1O
CC1OC(=O)C2(C(C)C=CC(=O)C2O)C1O
0.631579
CC1OC(=O)C2(C(C)CCC(O)C2O)C1O
CC1CC2C(O)CCC2(O)C(=O)O1
0.517241
CC1OC(=O)C2(C(C)CCC(O)C2O)C1O
CC1OC(=O)CCC(O)C(O)C=CC1O
0.5
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
CC(=O)OCCC1(C)CC(=O)C(OC(C)=O)C2CC(C)(C)CC21
0.775
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
CC1(C)CC2C(O)C(O)CC(C)(CCOC(=O)C(C)(C)C)C2C1
0.649351
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
CC(=O)OCC1=C2C(=O)C(OC(C)=O)C2(C)C2CC(C)(C)CC2C1OC(C)=O
0.585366
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
CCC1C(=O)CC2C3CCC4C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)CC4(C)C3CCC12C
0.505747
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
CC1(C)CC2C(O)C(=O)CC(C)(CCO)C2C1
0.5
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
CC1(C)CC2C(O)C(O)CC(C)(CCO)C2C1
0.537313
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(O)C(=O)CC(C)(CCO)C2C1
0.80597
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC(=O)OCCC1(C)CC(=O)C(OC(C)=O)C2CC(C)(C)CC21
0.586667
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CCOC1(C)CC2=C(C(O)OC2=O)C(O)C2CC(C)(C)CC21
0.571429
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(O)C3=C(COC3=O)CC(C)(O)C2C1
0.57971
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(O)C3=C(CC(C)(O)C2C1)C(=O)OC3
0.56338
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
COC1(C)CC2=C(C(=O)OC2O)C(O)C2CC(C)(C)CC21
0.540541
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1C(O)C2CC(C)(C)CC2C2(C)CC(=O)C12
0.59375
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
COC1(C)Cc2cocc2C(O)C2CC(C)(C)CC21
0.5
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(O)c3cocc3CC(C)(O)C2C1
0.521739
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(O)C(O)CC(C)(CCOC(=O)C(C)(C)C)C2C1
0.5
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(O)C(CO)=C3C(O)C(O)C3(C)C2C1
0.5625
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(O)C(O)CC(C)(CCO)C2C1
0.548387
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C(C1)C1(C)CCC1(C(=O)CO)C2O
0.507463
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1(C)CC2C3=C(CO)C(=O)CC3(C)C(O)C2C1
0.5
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
CC1CC(C)(C)CC1=O
0.528302
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(ccc(OC)c3OC)CC2OC(C)=O)cc1OC
0.627907
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc(OC)c2c(c1)OC(c1ccc(O)c(O)c1)C(OC)C2
0.642857
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(ccc(OC)c3OC)CC2O)cc1OC
0.625
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
0.574713
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc(OC)c2c(c1C)OC(c1ccc(O)cc1)C(O)C2
0.592593
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(ccc(OC)c3OC)C(OC)C2O)cc1OC
0.6
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3cc(O)cc(O)c3CC2OC(=O)c2cc(O)c(O)c(O)c2)cc1O
0.521739
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(OC)cc(C=CC=O)cc3C2CO)cc1OC
0.522727
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
CC=Cc1cc(OC)c2c(c1)C(C)C(c1ccc(OC)c(OC)c1)O2
0.560976
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc(O)c(CC=C(C)C)c2c1CC(O)C(c1ccc(O)cc1)O2
0.516854
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(OC)cc4ccc(=O)oc4c3OC2CO)cc1OC
0.516854
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(O)cc(CCCO)cc3C2CO)cc1OC
0.522727
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc2c(c3c1CC(O)C(c1ccc(O)cc1)O3)CCC(C)(C)O2
0.511111
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(ccc(OC)c3OC)C(O)C2O)cc1OC
0.582278
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(OC)cc(C=O)cc3C2C)cc1OC
0.567901
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)c3ccc4c(c3O2)CCC(C)(C)O4)cc1OC
0.505495
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)c3c(OC)cc(OC)c(CC=C(C)C)c3O2)cc1OC
0.511111
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Oc3c(OC)cc(C=CCO)cc3C2CO)cc1OC
0.528736
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)c3c(c(O)c(OC)c(OC)c3OC)O2)cc1OC
0.52381
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc2c(c1)OC(c1ccc(OC)c(OC)c1)C(OC)C2=O
0.536585
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(CC2COC(c3ccc(OC)c(OC)c3)C2OC)cc1OC
0.55
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OC(C3=CC(OC)C(OC)C=C3)C(C)C2C)cc1OC
0.54321
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)Oc3c2c(=O)oc2ccccc32)cc1OC
0.505747
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)c3c(O)c(O)c(O)c(C)c3O2)cc1OC
0.52381
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Cc3cccc(O)c3C(=O)O2)cc1OC
0.536585
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCC3C(c4ccc5c(c4C)OCO5)OCC23)cc1OC
0.511628
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)c3ccccc3O2)cc1OC
0.556962
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2Cc3cc(CCCO)cc(OC)c3O2)cc1OC
0.517647
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OC(c3ccc4c(c3)OCO4)C(C)C2C)cc1OC
0.545455
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCC3C(c4cc(O)c(OC)c(OC)c4)OCC23)cc1OC
0.531646
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCC3C(=O)OCC32)cc1OC
0.538462
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc(OC)c2c(c1)OC(c1ccc(OC)c(OC)c1)C(O)C2=O
0.512195
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc2c(c1)C(=O)CC(c1ccc(OC)c(OC)c1)O2
0.518519
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCC3C(c4ccc(OC)c(OC)c4)OCC23)cc1OC
0.608696
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OC(=O)C(C)(C)C(=O)C2C)cc1OC
0.552632
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C(OC)C2COC(c3ccc(OC)c(OC)c3)C2CO)cc1OC
0.5
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CCc3c(O)cc(O)cc3O2)cc1OC
0.518519
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCC3C(c4ccc5c(c4)OCO5)OCC23)cc1OC
0.538462
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OC(O)C3C(c4ccc(OC)c(OC)c4)OCC23)cc1OC
0.538462
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCCC2O)cc1OC
0.575342
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc(O)c2c(c1)OC(c1ccc(OC)c(OC)c1)C(O)C2=O
0.5
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)c3c(cc(OC)c(OC)c3O)O2)cc1OC
0.5
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OC(=O)C(C)(O)C2C)cc1OC
0.545455
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C(=O)C2COC(c3ccc(OC)c(OC)c3)C2CO)cc1OC
0.5
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CC(=O)NC3=C2C(=O)OC3(C)C)cc1OC
0.506024
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCC3C(c4ccc(OC(C)=O)c(OC)c4)OCC23)cc1OC
0.538462
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc(O)cc2c1CC(O)C(c1ccc(O)cc1)O2
0.506329
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1cc2c(cc1O)C(c1ccc(OC)c(OC)c1)C(C)C(C)C2
0.5
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc2c(c1)OC(c1ccc(OC)c(OC)c1)CC2
0.506329
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
CCC1C(c2ccc(OC)c(OC)c2)OC(c2ccc(OC)c(OC)c2)C1C
0.540541
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2OCC3C(c4ccc(O)c(OC)c4)OCC23)cc1O
0.506667
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2COCC2c2ccc(OC)c(OC)c2)cc1OC
0.567164
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
COc1ccc(C2CCC3C(c4ccc(OC)c(OC)c4)CCC23)cc1OC
0.537313
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1c(C)c(OC(C)=O)c(Br)c2c1CCC(c1ccccc1)O2
0.87234
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1c(Cl)c(OC(C)=O)c(Cl)c2c1CCC(c1ccccc1)O2
0.804348
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
0.795699
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1c(C)c(OC(C)=O)cc2c1CCC(c1ccccc1)O2
0.774194
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc2oc(-c3c(O)cc(O)c(C)c3OC)cc2c2c1CCC(c1ccccc1)O2
0.607843
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(OC(C)=O)cc2c1CCC(c1ccccc1)O2
0.681319
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(O)c(-c2cc3c4c(c(OC)cc3o2)CCC(c2ccccc2)O4)c(OC)c1C
0.607843
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(O)c(C=Cc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
0.626263
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(O)c(CCc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
0.626263
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(O)c(-c2cc3c(OC)c(C)c(O)cc3o2)c2c1CCC(c1ccccc1)O2
0.607843
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(C(=O)CCc2c(O)c(C)c3c(c2OC)CCC(c2ccc(C)cc2)O3)ccc1O
0.560748
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(OC)c(C=Cc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
0.638298
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(OC)c(CCc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
0.638298
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(C2Oc3c(C)c4c(c(OC)c3CC2O)CCC(c2ccc(O)cc2)O4)cc(OC)c1O
0.58
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc2oc(C(=O)O)cc2c2c1CCC(c1ccccc1)O2
0.617021
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(O)c(C)c2c1CCC(c1ccccc1)O2
0.666667
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc2c(c(OC)c1C)CCC(c1ccccc1)O2
0.674419
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc2c(c3c1CCC(c1ccccc1)O3)C1CC(c3ccccc3)Oc3cc(O)c(C)c(c31)O2
0.568627
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc2oc(C3=C(C)C(=O)C(C)(C)C3=O)cc2c2c1CCC(c1ccccc1)O2
0.54902
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(O)c(C=O)c2c1CCC(c1ccccc1)O2
0.622222
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1c(O)c(CC=C(C)C)c2c(c1O)C(=O)CC(c1ccccc1)O2
0.5625
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1c(C)c(OC)c2c(c1C=O)OC(c1ccccc1)CC2O
0.593407
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
COc1cc(C2CC(=O)c3c(OC(C)=O)c(C)c(OC(C)=O)c(C)c3O2)ccc1OC(C)=O
0.5625
End of preview. Expand in Data Studio

ECFP4 Molecular Pairs Dataset

A dataset of molecular pairs with ECFP4 Dice similarity scores uniformly sampled across a target range, using FAISS for efficient similarity search. This pipeline intended to generate a high-quality dataset of molecular pairs for similarity-based learning, balancing chemical diversity, computational efficiency, and target similarity distribution. Specially designed to retain only pairs with 0.5 ≤ Dice(MACCS) ≤ 0.95—a targeted range for supervised fine-tuning (SFT) and sentence-transformers training aimed at learning meaningful but non-trivial molecular similarities.

🎯 Objective

Produce a balanced set of molecular pairs where the Dice similarity (based on ECFP4 fingerprints) falls within a specified range (e.g., 0.5–0.95), with approximately equal representation across similarity bins.

📦 Input

  • comb_smi.csv: CSV file containing a column SMILES with input molecules.
  • the dataset is curated and combined from ChemBL34, COCONUTDB, and SuperNatural3

⚙️ Key Steps

  1. Preprocessing:
    • Remove salts (keep largest fragment).
    • Canonicalize SMILES and deduplicate.
  2. Fingerprinting:
    • Compute ECFP4 (Morgan radius=2, 2048-bit folded) fingerprints using RDKit.
  3. Indexing:
    • Build a FAISS IndexFlatIP for fast inner-product (bitwise intersection) search.
  4. Pair Sampling:
    • For each molecule, retrieve nearest neighbors.
    • Compute Dice similarity: ( \text{Dice} = \frac{2 \cdot |A \cap B|}{|A| + |B|} ).
    • Assign pairs to bins within [0.5, 0.95] and sample up to 200,000 pairs per bin.
  5. Output:
    • Save pairs as pairs_ecfp4.parquet (columns: mol1, mol2, sim).
    • Generate and save a histogram of similarity scores (_histogram.png and .pdf).

📁 Output Files

  • pairs_ecfp4.parquet: Final dataset of molecular pairs with similarity scores.
  • pairs_ecfp4_histogram.png / .pdf: Visualization of similarity distribution and binning.

⚠️ Notes

  • Designed for large-scale datasets; uses batching and memory-efficient FAISS search.
  • Default configuration processes all molecules; set N_MOLS for testing.
  • Only valid, unique, canonical SMILES are retained.
  • Due to compute constraints I am unable to generate more samples

📦 Requirements

  • Python 3.8+
  • pandas, numpy, faiss-cpu, rdkit, tqdm, matplotlib, seaborn

Citations

ChEMBL34:

@misc{chembl34,
  title={ChemBL34},
  year={2023},
  doi={10.6019/CHEMBL.database.34}
}

@article{zdrazil2023chembl,
  title={The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods},
  author={Zdrazil, Barbara and Felix, Eloy and Hunter, Fiona and Manners, Emma J and Blackshaw, James and Corbett, Sybilla and de Veij, Marleen and Ioannidis, Harris and Lopez, David Mendez and Mosquera, Juan F and Magarinos, Maria Paula and Bosc, Nicolas and Arcila, Ricardo and Kizil{\"o}ren, Tevfik and Gaulton, Anna and Bento, A Patr{\'i}cia and Adasme, Melissa F and Monecke, Peter and Landrum, Gregory A and Leach, Andrew R},
  journal={Nucleic Acids Research},
  year={2023},
  volume={gkad1004},
  doi={10.1093/nar/gkad1004}
}

COCONUTDB:

@article{sorokina2021coconut,
  title={COCONUT online: Collection of Open Natural Products database},
  author={Sorokina, Maria and Merseburger, Peter and Rajan, Kohulan and Yirik, Mehmet Aziz and Steinbeck, Christoph},
  journal={Journal of Cheminformatics},
  volume={13},
  number={1},
  pages={2},
  year={2021},
  doi={10.1186/s13321-020-00478-9}
}

SuperNatural3:

@article{Gallo2023,
  author = {Gallo, K and Kemmler, E and Goede, A and Becker, F and Dunkel, M and Preissner, R and Banerjee, P},
  title = {{SuperNatural 3.0-a database of natural products and natural product-based derivatives}},
  journal = {Nucleic Acids Research},
  year = {2023},
  month = jan,
  day = {6},
  volume = {51},
  number = {D1},
  pages = {D654-D659},
  doi = {10.1093/nar/gkac1008}
}
Downloads last month
23