mol1
stringlengths 6
108
| mol2
stringlengths 6
108
| sim
float64 0.5
0.95
|
|---|---|---|
CC1OC(=O)C2(C(C)CCC(O)C2O)C1O
|
CC1OC(=O)C2(C(C)C=CC(=O)C2O)C1O
| 0.631579
|
CC1OC(=O)C2(C(C)CCC(O)C2O)C1O
|
CC1CC2C(O)CCC2(O)C(=O)O1
| 0.517241
|
CC1OC(=O)C2(C(C)CCC(O)C2O)C1O
|
CC1OC(=O)CCC(O)C(O)C=CC1O
| 0.5
|
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
|
CC(=O)OCCC1(C)CC(=O)C(OC(C)=O)C2CC(C)(C)CC21
| 0.775
|
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
|
CC1(C)CC2C(O)C(O)CC(C)(CCOC(=O)C(C)(C)C)C2C1
| 0.649351
|
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
|
CC(=O)OCC1=C2C(=O)C(OC(C)=O)C2(C)C2CC(C)(C)CC2C1OC(C)=O
| 0.585366
|
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
|
CCC1C(=O)CC2C3CCC4C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)CC4(C)C3CCC12C
| 0.505747
|
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
|
CC1(C)CC2C(O)C(=O)CC(C)(CCO)C2C1
| 0.5
|
CC(=O)OCCC1(C)CC(OC(C)=O)C(OC(C)=O)C2CC(C)(C)CC21
|
CC1(C)CC2C(O)C(O)CC(C)(CCO)C2C1
| 0.537313
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(O)C(=O)CC(C)(CCO)C2C1
| 0.80597
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC(=O)OCCC1(C)CC(=O)C(OC(C)=O)C2CC(C)(C)CC21
| 0.586667
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CCOC1(C)CC2=C(C(O)OC2=O)C(O)C2CC(C)(C)CC21
| 0.571429
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(O)C3=C(COC3=O)CC(C)(O)C2C1
| 0.57971
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(O)C3=C(CC(C)(O)C2C1)C(=O)OC3
| 0.56338
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
COC1(C)CC2=C(C(=O)OC2O)C(O)C2CC(C)(C)CC21
| 0.540541
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1C(O)C2CC(C)(C)CC2C2(C)CC(=O)C12
| 0.59375
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
COC1(C)Cc2cocc2C(O)C2CC(C)(C)CC21
| 0.5
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(O)c3cocc3CC(C)(O)C2C1
| 0.521739
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(O)C(O)CC(C)(CCOC(=O)C(C)(C)C)C2C1
| 0.5
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(O)C(CO)=C3C(O)C(O)C3(C)C2C1
| 0.5625
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(O)C(O)CC(C)(CCO)C2C1
| 0.548387
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C(C1)C1(C)CCC1(C(=O)CO)C2O
| 0.507463
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1(C)CC2C3=C(CO)C(=O)CC3(C)C(O)C2C1
| 0.5
|
CC1(C)CC2C(O)C(=O)CC(C)(CC=O)C2C1
|
CC1CC(C)(C)CC1=O
| 0.528302
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(ccc(OC)c3OC)CC2OC(C)=O)cc1OC
| 0.627907
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc(OC)c2c(c1)OC(c1ccc(O)c(O)c1)C(OC)C2
| 0.642857
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(ccc(OC)c3OC)CC2O)cc1OC
| 0.625
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
| 0.574713
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc(OC)c2c(c1C)OC(c1ccc(O)cc1)C(O)C2
| 0.592593
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(ccc(OC)c3OC)C(OC)C2O)cc1OC
| 0.6
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3cc(O)cc(O)c3CC2OC(=O)c2cc(O)c(O)c(O)c2)cc1O
| 0.521739
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(OC)cc(C=CC=O)cc3C2CO)cc1OC
| 0.522727
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
CC=Cc1cc(OC)c2c(c1)C(C)C(c1ccc(OC)c(OC)c1)O2
| 0.560976
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc(O)c(CC=C(C)C)c2c1CC(O)C(c1ccc(O)cc1)O2
| 0.516854
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(OC)cc4ccc(=O)oc4c3OC2CO)cc1OC
| 0.516854
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(O)cc(CCCO)cc3C2CO)cc1OC
| 0.522727
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc2c(c3c1CC(O)C(c1ccc(O)cc1)O3)CCC(C)(C)O2
| 0.511111
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(ccc(OC)c3OC)C(O)C2O)cc1OC
| 0.582278
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(OC)cc(C=O)cc3C2C)cc1OC
| 0.567901
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)c3ccc4c(c3O2)CCC(C)(C)O4)cc1OC
| 0.505495
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)c3c(OC)cc(OC)c(CC=C(C)C)c3O2)cc1OC
| 0.511111
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Oc3c(OC)cc(C=CCO)cc3C2CO)cc1OC
| 0.528736
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)c3c(c(O)c(OC)c(OC)c3OC)O2)cc1OC
| 0.52381
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc2c(c1)OC(c1ccc(OC)c(OC)c1)C(OC)C2=O
| 0.536585
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(CC2COC(c3ccc(OC)c(OC)c3)C2OC)cc1OC
| 0.55
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OC(C3=CC(OC)C(OC)C=C3)C(C)C2C)cc1OC
| 0.54321
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)Oc3c2c(=O)oc2ccccc32)cc1OC
| 0.505747
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)c3c(O)c(O)c(O)c(C)c3O2)cc1OC
| 0.52381
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Cc3cccc(O)c3C(=O)O2)cc1OC
| 0.536585
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCC3C(c4ccc5c(c4C)OCO5)OCC23)cc1OC
| 0.511628
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)c3ccccc3O2)cc1OC
| 0.556962
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2Cc3cc(CCCO)cc(OC)c3O2)cc1OC
| 0.517647
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OC(c3ccc4c(c3)OCO4)C(C)C2C)cc1OC
| 0.545455
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCC3C(c4cc(O)c(OC)c(OC)c4)OCC23)cc1OC
| 0.531646
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCC3C(=O)OCC32)cc1OC
| 0.538462
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc(OC)c2c(c1)OC(c1ccc(OC)c(OC)c1)C(O)C2=O
| 0.512195
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc2c(c1)C(=O)CC(c1ccc(OC)c(OC)c1)O2
| 0.518519
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCC3C(c4ccc(OC)c(OC)c4)OCC23)cc1OC
| 0.608696
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OC(=O)C(C)(C)C(=O)C2C)cc1OC
| 0.552632
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C(OC)C2COC(c3ccc(OC)c(OC)c3)C2CO)cc1OC
| 0.5
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CCc3c(O)cc(O)cc3O2)cc1OC
| 0.518519
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCC3C(c4ccc5c(c4)OCO5)OCC23)cc1OC
| 0.538462
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OC(O)C3C(c4ccc(OC)c(OC)c4)OCC23)cc1OC
| 0.538462
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCCC2O)cc1OC
| 0.575342
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc(O)c2c(c1)OC(c1ccc(OC)c(OC)c1)C(O)C2=O
| 0.5
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)c3c(cc(OC)c(OC)c3O)O2)cc1OC
| 0.5
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OC(=O)C(C)(O)C2C)cc1OC
| 0.545455
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C(=O)C2COC(c3ccc(OC)c(OC)c3)C2CO)cc1OC
| 0.5
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CC(=O)NC3=C2C(=O)OC3(C)C)cc1OC
| 0.506024
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCC3C(c4ccc(OC(C)=O)c(OC)c4)OCC23)cc1OC
| 0.538462
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc(O)cc2c1CC(O)C(c1ccc(O)cc1)O2
| 0.506329
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1cc2c(cc1O)C(c1ccc(OC)c(OC)c1)C(C)C(C)C2
| 0.5
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc2c(c1)OC(c1ccc(OC)c(OC)c1)CC2
| 0.506329
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
CCC1C(c2ccc(OC)c(OC)c2)OC(c2ccc(OC)c(OC)c2)C1C
| 0.540541
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2OCC3C(c4ccc(O)c(OC)c4)OCC23)cc1O
| 0.506667
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2COCC2c2ccc(OC)c(OC)c2)cc1OC
| 0.567164
|
COc1ccc(C2Oc3c(I)c(OC)cc(OC)c3CC2OC)cc1OC
|
COc1ccc(C2CCC3C(c4ccc(OC)c(OC)c4)CCC23)cc1OC
| 0.537313
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1c(C)c(OC(C)=O)c(Br)c2c1CCC(c1ccccc1)O2
| 0.87234
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1c(Cl)c(OC(C)=O)c(Cl)c2c1CCC(c1ccccc1)O2
| 0.804348
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
| 0.795699
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1c(C)c(OC(C)=O)cc2c1CCC(c1ccccc1)O2
| 0.774194
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc2oc(-c3c(O)cc(O)c(C)c3OC)cc2c2c1CCC(c1ccccc1)O2
| 0.607843
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(OC(C)=O)cc2c1CCC(c1ccccc1)O2
| 0.681319
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(O)c(-c2cc3c4c(c(OC)cc3o2)CCC(c2ccccc2)O4)c(OC)c1C
| 0.607843
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(O)c(C=Cc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
| 0.626263
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(O)c(CCc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
| 0.626263
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(O)c(-c2cc3c(OC)c(C)c(O)cc3o2)c2c1CCC(c1ccccc1)O2
| 0.607843
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(C(=O)CCc2c(O)c(C)c3c(c2OC)CCC(c2ccc(C)cc2)O3)ccc1O
| 0.560748
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(OC)c(C=Cc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
| 0.638298
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(OC)c(CCc2c(OC)cc(OC)c3c2OC(c2ccccc2)CC3)c(OC)c1C
| 0.638298
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(C2Oc3c(C)c4c(c(OC)c3CC2O)CCC(c2ccc(O)cc2)O4)cc(OC)c1O
| 0.58
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc2oc(C(=O)O)cc2c2c1CCC(c1ccccc1)O2
| 0.617021
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(O)c(C)c2c1CCC(c1ccccc1)O2
| 0.666667
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc2c(c(OC)c1C)CCC(c1ccccc1)O2
| 0.674419
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc2c(c3c1CCC(c1ccccc1)O3)C1CC(c3ccccc3)Oc3cc(O)c(C)c(c31)O2
| 0.568627
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc2oc(C3=C(C)C(=O)C(C)(C)C3=O)cc2c2c1CCC(c1ccccc1)O2
| 0.54902
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(O)c(C=O)c2c1CCC(c1ccccc1)O2
| 0.622222
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1c(O)c(CC=C(C)C)c2c(c1O)C(=O)CC(c1ccccc1)O2
| 0.5625
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1c(C)c(OC)c2c(c1C=O)OC(c1ccccc1)CC2O
| 0.593407
|
COc1c(C)c(OC(C)=O)c(I)c2c1CCC(c1ccccc1)O2
|
COc1cc(C2CC(=O)c3c(OC(C)=O)c(C)c(OC(C)=O)c(C)c3O2)ccc1OC(C)=O
| 0.5625
|
ECFP4 Molecular Pairs Dataset
A dataset of molecular pairs with ECFP4 Dice similarity scores uniformly sampled across a target range, using FAISS for efficient similarity search. This pipeline intended to generate a high-quality dataset of molecular pairs for similarity-based learning, balancing chemical diversity, computational efficiency, and target similarity distribution. Specially designed to retain only pairs with 0.5 ≤ Dice(MACCS) ≤ 0.95—a targeted range for supervised fine-tuning (SFT) and sentence-transformers training aimed at learning meaningful but non-trivial molecular similarities.
🎯 Objective
Produce a balanced set of molecular pairs where the Dice similarity (based on ECFP4 fingerprints) falls within a specified range (e.g., 0.5–0.95), with approximately equal representation across similarity bins.
📦 Input
comb_smi.csv: CSV file containing a columnSMILESwith input molecules.- the dataset is curated and combined from ChemBL34, COCONUTDB, and SuperNatural3
⚙️ Key Steps
- Preprocessing:
- Remove salts (keep largest fragment).
- Canonicalize SMILES and deduplicate.
- Fingerprinting:
- Compute ECFP4 (Morgan radius=2, 2048-bit folded) fingerprints using RDKit.
- Indexing:
- Build a FAISS IndexFlatIP for fast inner-product (bitwise intersection) search.
- Pair Sampling:
- For each molecule, retrieve nearest neighbors.
- Compute Dice similarity: ( \text{Dice} = \frac{2 \cdot |A \cap B|}{|A| + |B|} ).
- Assign pairs to bins within
[0.5, 0.95]and sample up to200,000pairs per bin.
- Output:
- Save pairs as
pairs_ecfp4.parquet(columns:mol1,mol2,sim). - Generate and save a histogram of similarity scores (
_histogram.pngand.pdf).
- Save pairs as
📁 Output Files
pairs_ecfp4.parquet: Final dataset of molecular pairs with similarity scores.pairs_ecfp4_histogram.png/.pdf: Visualization of similarity distribution and binning.
⚠️ Notes
- Designed for large-scale datasets; uses batching and memory-efficient FAISS search.
- Default configuration processes all molecules; set
N_MOLSfor testing. - Only valid, unique, canonical SMILES are retained.
- Due to compute constraints I am unable to generate more samples
📦 Requirements
- Python 3.8+
pandas,numpy,faiss-cpu,rdkit,tqdm,matplotlib,seaborn
Citations
ChEMBL34:
@misc{chembl34,
title={ChemBL34},
year={2023},
doi={10.6019/CHEMBL.database.34}
}
@article{zdrazil2023chembl,
title={The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods},
author={Zdrazil, Barbara and Felix, Eloy and Hunter, Fiona and Manners, Emma J and Blackshaw, James and Corbett, Sybilla and de Veij, Marleen and Ioannidis, Harris and Lopez, David Mendez and Mosquera, Juan F and Magarinos, Maria Paula and Bosc, Nicolas and Arcila, Ricardo and Kizil{\"o}ren, Tevfik and Gaulton, Anna and Bento, A Patr{\'i}cia and Adasme, Melissa F and Monecke, Peter and Landrum, Gregory A and Leach, Andrew R},
journal={Nucleic Acids Research},
year={2023},
volume={gkad1004},
doi={10.1093/nar/gkad1004}
}
COCONUTDB:
@article{sorokina2021coconut,
title={COCONUT online: Collection of Open Natural Products database},
author={Sorokina, Maria and Merseburger, Peter and Rajan, Kohulan and Yirik, Mehmet Aziz and Steinbeck, Christoph},
journal={Journal of Cheminformatics},
volume={13},
number={1},
pages={2},
year={2021},
doi={10.1186/s13321-020-00478-9}
}
SuperNatural3:
@article{Gallo2023,
author = {Gallo, K and Kemmler, E and Goede, A and Becker, F and Dunkel, M and Preissner, R and Banerjee, P},
title = {{SuperNatural 3.0-a database of natural products and natural product-based derivatives}},
journal = {Nucleic Acids Research},
year = {2023},
month = jan,
day = {6},
volume = {51},
number = {D1},
pages = {D654-D659},
doi = {10.1093/nar/gkac1008}
}
- Downloads last month
- 23