Datasets:

Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
StructBench / README.md
zhouyiqing
update readme
57b3df9
metadata
license: mit
dataset_info:
  features:
    - name: instance_id
      dtype: string
    - name: doc_type
      dtype: string
    - name: source
      dtype: string
    - name: url
      dtype: string
    - name: edu_pred_input
      dtype: string
    - name: ground_truth
      dtype: string
  splits:
    - name: test
      num_bytes: 32221618
      num_examples: 248
  download_size: 6102151
  dataset_size: 32221618
configs:
  - config_name: default
    data_files:
      - split: test
        path: test/data.parquet

Dataset Card for StructBench

Dataset Summary

StructBench is a benchmark for evaluating fine-grained document structure analysis. It provides a high-quality test set of 248 documents in diverse formats, including 203 Web pages and 47 PDFs.

To ensure reliable ground truth, all documents were:

  • Parsed and sentence-segmented

  • Manually annotated by human experts for discourse structure

In addition to the structured annotations, raw Web pages and PDF files are included.

Dataset Structure

  • test/: evaluation-only split
    • data.parquet: data samples
    • raw_pdf_files/: original PDF files
    • raw_web_htmls/: original WEB htmls

Tasks

  • Discouse Analysis
  • Document Structure Parsing
  • Document Understanding

Usage

Clone the dataset:

git clone https://huggingface.co/datasets/deeplang-ai/StructBench

Or load with Hugging Face datasets library:

from datasets import load_dataset
dataset = load_dataset("deeplang-ai/StructBench", split="test")

Citation

@misc{zhou2025contextedusfaithfulstructured,
      title={From Context to EDUs: Faithful and Structured Context Compression via Elementary Discourse Unit Decomposition}, 
      author={Yiqing Zhou and Yu Lei and Shuzheng Si and Qingyan Sun and Wei Wang and Yifei Wu and Hao Wen and Gang Chen and Fanchao Qi and Maosong Sun},
      year={2025},
      eprint={2512.14244},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2512.14244}, 
}