ariG23498's picture
ariG23498 HF Staff
Create sb-bench.py
1ccd153 verified
import argparse
import time
import datasets
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
MODEL_ID = "Qwen/Qwen3-4B-Instruct-2507"
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--samples", type=int, default=100, help="Number of prompts to run")
parser.add_argument("--batch-size", "-bs", type=int, default=32, help="Static batch size")
parser.add_argument("--max-new-tokens", type=int, default=512, help="Max new tokens per request")
parser.add_argument("--warmup", type=int, default=1, help="Warmup batches (excluded from timing)")
args = parser.parse_args()
# Load model (static batching, SDPA attention), BF16 for speed/memory
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
attn_implementation="sdpa",
torch_dtype=torch.bfloat16,
).cuda().eval()
# Tokenizer: left padding is typically better for batched causal LMs
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
# Dataset: GSM8K (socratic) questions only
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
dataset = dataset.select(range(args.samples))
# Tokenize up front (no padding yet; we’ll pad per-batch for efficiency)
encoded = tokenizer(list(dataset["question"]), padding=False, truncation=False)
inputs = [{"input_ids": ids, "attention_mask": attn}
for ids, attn in zip(encoded["input_ids"], encoded["attention_mask"])]
# Generation config
gen_cfg = GenerationConfig(
do_sample=False,
max_new_tokens=args.max_new_tokens,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
use_cuda_graph=False, # keep simple/portable
)
# Helper to create a padded batch on-device
def make_batch(items):
batch = tokenizer.pad(items, padding=True, return_tensors="pt")
return {k: v.cuda(non_blocking=True) for k, v in batch.items()}
# Optional warmup (excluded from timing)
model_inputs = []
if args.warmup > 0:
warm = make_batch(inputs[: min(len(inputs), args.batch_size * args.warmup)])
with torch.no_grad():
_ = model.generate(**warm, generation_config=gen_cfg)
# Timed generation over all batches
token_count = 0
bs = args.batch_size
start = time.time()
with torch.no_grad():
for i in range(0, len(inputs), bs):
batch_items = inputs[i : i + bs]
batch = make_batch(batch_items)
# Run generate()
outputs = model.generate(**batch, generation_config=gen_cfg)
# Count newly generated tokens per sequence
# new_tokens = (#non-pad tokens after the original prompt length)
pad_id = tokenizer.pad_token_id
input_lens = batch["attention_mask"].sum(dim=1).tolist()
for row, in_len in zip(outputs, input_lens):
seq = row.tolist()
gen_part = seq[int(in_len):]
token_count += sum(1 for t in gen_part if t != pad_id)
end = time.time()
elapsed = end - start
tps = token_count / elapsed if elapsed > 0 else 0.0
print("-" * 20)
print("--- Finished Static Batching Benchmark ---\n")
print(f"Model: {MODEL_ID}")
print(f"Attention: sdpa | Batch size: {args.batch_size} | Samples: {args.samples} | Max new tokens: {args.max_new_tokens}")
print(f"Generation time (no warmup): {elapsed:.2f} s for {token_count} generated tokens -> {tps:.2f} tok/s")
if __name__ == "__main__":
main()
#Attention: sdpa | Batch size: 32 | Samples: 100 | Max new tokens: 512
# Generation time (no warmup): 153.98 s for 53427 generated tokens -> 346.98 tok/s