ariG23498 HF Staff commited on
Commit
1ccd153
·
verified ·
1 Parent(s): 165be40

Create sb-bench.py

Browse files
Files changed (1) hide show
  1. sb-bench.py +99 -0
sb-bench.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+
4
+ import datasets
5
+ import torch
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer
7
+ from transformers.generation import GenerationConfig
8
+
9
+
10
+ MODEL_ID = "Qwen/Qwen3-4B-Instruct-2507"
11
+
12
+
13
+ def main():
14
+ parser = argparse.ArgumentParser()
15
+ parser.add_argument("--samples", type=int, default=100, help="Number of prompts to run")
16
+ parser.add_argument("--batch-size", "-bs", type=int, default=32, help="Static batch size")
17
+ parser.add_argument("--max-new-tokens", type=int, default=512, help="Max new tokens per request")
18
+ parser.add_argument("--warmup", type=int, default=1, help="Warmup batches (excluded from timing)")
19
+ args = parser.parse_args()
20
+
21
+ # Load model (static batching, SDPA attention), BF16 for speed/memory
22
+ model = AutoModelForCausalLM.from_pretrained(
23
+ MODEL_ID,
24
+ attn_implementation="sdpa",
25
+ torch_dtype=torch.bfloat16,
26
+ ).cuda().eval()
27
+
28
+ # Tokenizer: left padding is typically better for batched causal LMs
29
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left")
30
+ if tokenizer.pad_token_id is None:
31
+ tokenizer.pad_token = tokenizer.eos_token
32
+
33
+ # Dataset: GSM8K (socratic) questions only
34
+ dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
35
+ dataset = dataset.select(range(args.samples))
36
+
37
+ # Tokenize up front (no padding yet; we’ll pad per-batch for efficiency)
38
+ encoded = tokenizer(list(dataset["question"]), padding=False, truncation=False)
39
+ inputs = [{"input_ids": ids, "attention_mask": attn}
40
+ for ids, attn in zip(encoded["input_ids"], encoded["attention_mask"])]
41
+
42
+ # Generation config
43
+ gen_cfg = GenerationConfig(
44
+ do_sample=False,
45
+ max_new_tokens=args.max_new_tokens,
46
+ eos_token_id=tokenizer.eos_token_id,
47
+ pad_token_id=tokenizer.pad_token_id,
48
+ use_cuda_graph=False, # keep simple/portable
49
+ )
50
+
51
+ # Helper to create a padded batch on-device
52
+ def make_batch(items):
53
+ batch = tokenizer.pad(items, padding=True, return_tensors="pt")
54
+ return {k: v.cuda(non_blocking=True) for k, v in batch.items()}
55
+
56
+ # Optional warmup (excluded from timing)
57
+ model_inputs = []
58
+ if args.warmup > 0:
59
+ warm = make_batch(inputs[: min(len(inputs), args.batch_size * args.warmup)])
60
+ with torch.no_grad():
61
+ _ = model.generate(**warm, generation_config=gen_cfg)
62
+
63
+ # Timed generation over all batches
64
+ token_count = 0
65
+ bs = args.batch_size
66
+ start = time.time()
67
+ with torch.no_grad():
68
+ for i in range(0, len(inputs), bs):
69
+ batch_items = inputs[i : i + bs]
70
+ batch = make_batch(batch_items)
71
+
72
+ # Run generate()
73
+ outputs = model.generate(**batch, generation_config=gen_cfg)
74
+
75
+ # Count newly generated tokens per sequence
76
+ # new_tokens = (#non-pad tokens after the original prompt length)
77
+ pad_id = tokenizer.pad_token_id
78
+ input_lens = batch["attention_mask"].sum(dim=1).tolist()
79
+ for row, in_len in zip(outputs, input_lens):
80
+ seq = row.tolist()
81
+ gen_part = seq[int(in_len):]
82
+ token_count += sum(1 for t in gen_part if t != pad_id)
83
+
84
+ end = time.time()
85
+ elapsed = end - start
86
+ tps = token_count / elapsed if elapsed > 0 else 0.0
87
+
88
+ print("-" * 20)
89
+ print("--- Finished Static Batching Benchmark ---\n")
90
+ print(f"Model: {MODEL_ID}")
91
+ print(f"Attention: sdpa | Batch size: {args.batch_size} | Samples: {args.samples} | Max new tokens: {args.max_new_tokens}")
92
+ print(f"Generation time (no warmup): {elapsed:.2f} s for {token_count} generated tokens -> {tps:.2f} tok/s")
93
+
94
+
95
+ if __name__ == "__main__":
96
+ main()
97
+
98
+ #Attention: sdpa | Batch size: 32 | Samples: 100 | Max new tokens: 512
99
+ # Generation time (no warmup): 153.98 s for 53427 generated tokens -> 346.98 tok/s