|
|
import os |
|
|
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' |
|
|
import re |
|
|
import json |
|
|
|
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import torch |
|
|
from torchvision import transforms |
|
|
from tqdm import tqdm |
|
|
|
|
|
from utils import ( |
|
|
calculate_psnr, |
|
|
calculate_ssim, |
|
|
calculate_fvd, |
|
|
calculate_epe, |
|
|
calculate_lpips, |
|
|
calculate_fid, |
|
|
calculate_clip_I, |
|
|
save_video_frames, |
|
|
preprocess |
|
|
) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def preprocess_in_chunks(all_raw_videos, all_gen_videos, batch_size, target_resolution=(224, 224)): |
|
|
|
|
|
processed_raw_chunks = [] |
|
|
processed_gen_chunks = [] |
|
|
|
|
|
for i in range(0, len(all_raw_videos), batch_size): |
|
|
raw_chunk_videos = torch.cat(all_raw_videos[i:i + batch_size], dim=0) |
|
|
gen_chunk_videos = torch.cat(all_gen_videos[i:i + batch_size], dim=0) |
|
|
|
|
|
raw_chunk_processed = preprocess(raw_chunk_videos, target_resolution) |
|
|
gen_chunk_processed = preprocess(gen_chunk_videos, target_resolution) |
|
|
|
|
|
processed_raw_chunks.append(raw_chunk_processed) |
|
|
processed_gen_chunks.append(gen_chunk_processed) |
|
|
|
|
|
processed_raw = torch.cat(processed_raw_chunks, dim=0) |
|
|
processed_gen = torch.cat(processed_gen_chunks, dim=0) |
|
|
|
|
|
return processed_raw, processed_gen |
|
|
|
|
|
class NumpyEncoder(json.JSONEncoder): |
|
|
""" Custom encoder for numpy data types """ |
|
|
def default(self, obj): |
|
|
if isinstance(obj, np.integer): |
|
|
return int(obj) |
|
|
elif isinstance(obj, np.floating): |
|
|
return float(obj) |
|
|
elif isinstance(obj, np.ndarray): |
|
|
return obj.tolist() |
|
|
return super().default(obj) |
|
|
|
|
|
def get_min_max_frame(frames_dir): |
|
|
frame_pattern = re.compile(r'^(.*?)_frame_(\d+)\.png$') |
|
|
max_frames = {} |
|
|
|
|
|
for filename in os.listdir(frames_dir): |
|
|
if not filename.endswith('.png'): |
|
|
continue |
|
|
match = frame_pattern.match(filename) |
|
|
if not match: |
|
|
continue |
|
|
video_name, frame_num = match.groups() |
|
|
frame_num = int(frame_num) |
|
|
current_max = max_frames.get(video_name, -1) |
|
|
if frame_num > current_max: |
|
|
max_frames[video_name] = frame_num |
|
|
|
|
|
return min(max_frames.values()) if max_frames else 0 |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
raw_root = "gt/zh" |
|
|
gen_root = "results/zh" |
|
|
|
|
|
raw_frame_dir = f"{raw_root}_frames" |
|
|
gen_frame_dir = f"{gen_root}_frames" |
|
|
|
|
|
if not os.path.exists(raw_frame_dir): |
|
|
raw_frame_num = save_video_frames(raw_root, raw_frame_dir) |
|
|
else: |
|
|
raw_frame_num = get_min_max_frame(raw_frame_dir) |
|
|
|
|
|
if not os.path.exists(gen_frame_dir): |
|
|
gen_frame_num = save_video_frames(gen_root, gen_frame_dir) |
|
|
else: |
|
|
gen_frame_num = get_min_max_frame(gen_frame_dir) |
|
|
|
|
|
print(f"Evaluating with frame count: {gen_frame_num}") |
|
|
assert gen_frame_num <= raw_frame_num, "Generated frames exceed raw frames count" |
|
|
|
|
|
video_names = sorted([name for name in os.listdir(gen_root) if name.endswith('.mp4')]) |
|
|
|
|
|
scores = { |
|
|
"clip": [], |
|
|
"epe": [], |
|
|
"lpips": [], |
|
|
"ssim": [], |
|
|
"psnr": [], |
|
|
} |
|
|
all_raw_videos, all_gen_videos = [], [] |
|
|
|
|
|
with torch.no_grad(): |
|
|
progress_bar = tqdm(video_names, desc="Processing videos") |
|
|
|
|
|
for video_name in progress_bar: |
|
|
base_name = video_name.replace(".mp4", "") |
|
|
clip, lpips, ssim, psnr = [], [], [], [] |
|
|
raw_video, gen_video = [], [] |
|
|
|
|
|
for frame_idx in range(gen_frame_num): |
|
|
|
|
|
raw_path = f"{raw_frame_dir}/{base_name}_frame_{frame_idx}.png" |
|
|
gen_path = f"{gen_frame_dir}/{base_name}_frame_{frame_idx}.png" |
|
|
|
|
|
try: |
|
|
raw_img = Image.open(raw_path) |
|
|
gen_img = Image.open(gen_path) |
|
|
except FileNotFoundError: |
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
if raw_img.size != gen_img.size: |
|
|
gen_img = gen_img.resize(raw_img.size) |
|
|
|
|
|
|
|
|
clip.append(calculate_clip_I(raw_img, gen_img)) |
|
|
|
|
|
raw_tensor = transforms.ToTensor()(raw_img).unsqueeze(0) |
|
|
gen_tensor = transforms.ToTensor()(gen_img).unsqueeze(0) |
|
|
|
|
|
raw_video.append(raw_tensor) |
|
|
gen_video.append(gen_tensor) |
|
|
|
|
|
psnr.append(calculate_psnr(raw_tensor, gen_tensor).item()) |
|
|
ssim.append(calculate_ssim(raw_tensor, gen_tensor).item()) |
|
|
lpips.append(calculate_lpips( |
|
|
raw_tensor.sub(0.5).div(0.5), |
|
|
gen_tensor.sub(0.5).div(0.5) |
|
|
).item()) |
|
|
|
|
|
if not raw_video: |
|
|
continue |
|
|
|
|
|
|
|
|
raw_video = torch.cat(raw_video) |
|
|
gen_video = torch.cat(gen_video) |
|
|
all_raw_videos.append(raw_video.unsqueeze(0)) |
|
|
all_gen_videos.append(gen_video.unsqueeze(0)) |
|
|
|
|
|
epe = calculate_epe(raw_video, gen_video).item() |
|
|
|
|
|
scores["clip"].append(np.mean(clip)) |
|
|
scores["epe"].append(epe) |
|
|
scores["lpips"].append(np.mean(lpips)) |
|
|
scores["ssim"].append(np.mean(ssim)) |
|
|
scores["psnr"].append(np.mean(psnr)) |
|
|
|
|
|
|
|
|
current_means = { |
|
|
k: round(np.mean(v), 2) |
|
|
for k, v in scores.items() |
|
|
if isinstance(v, list) and len(v) > 0 |
|
|
} |
|
|
progress_bar.set_postfix(current_means) |
|
|
|
|
|
|
|
|
try: |
|
|
fid = calculate_fid(raw_frame_dir, gen_frame_dir) |
|
|
except Exception as e: |
|
|
print(f"[WARN] FID calculation failed: {e}") |
|
|
else: |
|
|
scores["fid"] = fid |
|
|
|
|
|
|
|
|
processed_raw_chunks = [] |
|
|
processed_gen_chunks = [] |
|
|
|
|
|
batch_size = 20 |
|
|
TARGET_RESOLUTION = (224, 224) |
|
|
|
|
|
|
|
|
for i in tqdm(range(0, len(all_raw_videos), batch_size)): |
|
|
|
|
|
raw_chunk_videos = torch.cat(all_raw_videos[i:i + batch_size]).mul(255).clamp(0, 255).byte().numpy() |
|
|
gen_chunk_videos = torch.cat(all_gen_videos[i:i + batch_size]).mul(255).clamp(0, 255).byte().numpy() |
|
|
raw_chunk_videos = raw_chunk_videos.transpose(0, 1, 3, 4, 2) |
|
|
gen_chunk_videos = gen_chunk_videos.transpose(0, 1, 3, 4, 2) |
|
|
|
|
|
raw_chunk_processed = preprocess(raw_chunk_videos, TARGET_RESOLUTION) |
|
|
gen_chunk_processed = preprocess(gen_chunk_videos, TARGET_RESOLUTION) |
|
|
|
|
|
processed_raw_chunks.append(raw_chunk_processed) |
|
|
processed_gen_chunks.append(gen_chunk_processed) |
|
|
|
|
|
all_raw = torch.cat(processed_raw_chunks, dim=0) |
|
|
all_gen = torch.cat(processed_gen_chunks, dim=0) |
|
|
|
|
|
fvd = calculate_fvd(all_raw, all_gen) |
|
|
scores["fvd"] = fvd |
|
|
|
|
|
|
|
|
|
|
|
final_scores = { |
|
|
k: np.mean(v) if isinstance(v, list) else v |
|
|
for k, v in scores.items() |
|
|
} |
|
|
|
|
|
print("\nEvaluation Results:") |
|
|
for k, v in final_scores.items(): |
|
|
print(f"{k.upper():<8}: {v:.4f}") |
|
|
|
|
|
results = { |
|
|
"raw_scores": scores, |
|
|
"final_scores": final_scores |
|
|
} |
|
|
with open("evaluation_results.json", "w") as f: |
|
|
json.dump(results, f, indent=4, cls=NumpyEncoder) |
|
|
print("\nResults saved to evaluation_results.json") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |