File size: 7,753 Bytes
857bc90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
import re
import json

import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from tqdm import tqdm

from utils import (
    calculate_psnr,
    calculate_ssim,
    calculate_fvd,
    calculate_epe,
    calculate_lpips,
    calculate_fid,
    calculate_clip_I,
    save_video_frames,
    preprocess
)

device = "cuda" if torch.cuda.is_available() else "cpu"

def preprocess_in_chunks(all_raw_videos, all_gen_videos, batch_size, target_resolution=(224, 224)):

    processed_raw_chunks = []
    processed_gen_chunks = []

    for i in range(0, len(all_raw_videos), batch_size):
        raw_chunk_videos = torch.cat(all_raw_videos[i:i + batch_size], dim=0)  # (batch_size * T, C, H, W)
        gen_chunk_videos = torch.cat(all_gen_videos[i:i + batch_size], dim=0)
        
        raw_chunk_processed = preprocess(raw_chunk_videos, target_resolution)  # 返回 (batch_size, C, T, H', W')
        gen_chunk_processed = preprocess(gen_chunk_videos, target_resolution)  # 同上

        processed_raw_chunks.append(raw_chunk_processed)
        processed_gen_chunks.append(gen_chunk_processed)

    processed_raw = torch.cat(processed_raw_chunks, dim=0)
    processed_gen = torch.cat(processed_gen_chunks, dim=0)

    return processed_raw, processed_gen

class NumpyEncoder(json.JSONEncoder):
    """ Custom encoder for numpy data types """
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        return super().default(obj)

def get_min_max_frame(frames_dir):
    frame_pattern = re.compile(r'^(.*?)_frame_(\d+)\.png$')
    max_frames = {}

    for filename in os.listdir(frames_dir):
        if not filename.endswith('.png'):
            continue
        match = frame_pattern.match(filename)
        if not match:
            continue
        video_name, frame_num = match.groups()
        frame_num = int(frame_num)
        current_max = max_frames.get(video_name, -1)
        if frame_num > current_max:
            max_frames[video_name] = frame_num

    return min(max_frames.values()) if max_frames else 0

def main():
    # raw_root = "gt/en"
    # gen_root = "results/en"
    raw_root = "gt/zh"
    gen_root = "results/zh"
    
    raw_frame_dir = f"{raw_root}_frames"
    gen_frame_dir = f"{gen_root}_frames"
    
    if not os.path.exists(raw_frame_dir):
        raw_frame_num = save_video_frames(raw_root, raw_frame_dir)
    else:
        raw_frame_num = get_min_max_frame(raw_frame_dir)

    if not os.path.exists(gen_frame_dir):
        gen_frame_num = save_video_frames(gen_root, gen_frame_dir)
    else:
        gen_frame_num = get_min_max_frame(gen_frame_dir)
        
    print(f"Evaluating with frame count: {gen_frame_num}")
    assert gen_frame_num <= raw_frame_num, "Generated frames exceed raw frames count"
    
    video_names = sorted([name for name in os.listdir(gen_root) if name.endswith('.mp4')])
    
    scores = {
        "clip": [],
        "epe": [],
        "lpips": [],
        "ssim": [],
        "psnr": [],
    }
    all_raw_videos, all_gen_videos = [], []

    with torch.no_grad():
        progress_bar = tqdm(video_names, desc="Processing videos")

        for video_name in progress_bar:
            base_name = video_name.replace(".mp4", "")
            clip, lpips, ssim, psnr = [], [], [], []
            raw_video, gen_video = [], []

            for frame_idx in range(gen_frame_num):
            # for frame_idx in range(16):
                raw_path = f"{raw_frame_dir}/{base_name}_frame_{frame_idx}.png"
                gen_path = f"{gen_frame_dir}/{base_name}_frame_{frame_idx}.png"

                try:
                    raw_img = Image.open(raw_path)
                    gen_img = Image.open(gen_path)
                except FileNotFoundError:
                    break


                # Align the size
                if raw_img.size != gen_img.size:
                    gen_img = gen_img.resize(raw_img.size)

                # Calculate metrics
                clip.append(calculate_clip_I(raw_img, gen_img))
                
                raw_tensor = transforms.ToTensor()(raw_img).unsqueeze(0)
                gen_tensor = transforms.ToTensor()(gen_img).unsqueeze(0)
                
                raw_video.append(raw_tensor)
                gen_video.append(gen_tensor)
                
                psnr.append(calculate_psnr(raw_tensor, gen_tensor).item())
                ssim.append(calculate_ssim(raw_tensor, gen_tensor).item())
                lpips.append(calculate_lpips(
                    raw_tensor.sub(0.5).div(0.5),
                    gen_tensor.sub(0.5).div(0.5)
                ).item())

            if not raw_video:
                continue

            # Process video-level metrics
            raw_video = torch.cat(raw_video)
            gen_video = torch.cat(gen_video)
            all_raw_videos.append(raw_video.unsqueeze(0))
            all_gen_videos.append(gen_video.unsqueeze(0))
            
            epe = calculate_epe(raw_video, gen_video).item()
            
            scores["clip"].append(np.mean(clip))
            scores["epe"].append(epe)
            scores["lpips"].append(np.mean(lpips))
            scores["ssim"].append(np.mean(ssim))
            scores["psnr"].append(np.mean(psnr))
            
            # Update progress_bar
            current_means = {
                k: round(np.mean(v), 2) 
                for k, v in scores.items() 
                if isinstance(v, list) and len(v) > 0
            }
            progress_bar.set_postfix(current_means)

        # FID
        try:
            fid = calculate_fid(raw_frame_dir, gen_frame_dir)
        except Exception as e:
            print(f"[WARN] FID calculation failed: {e}")
        else:
            scores["fid"] = fid
        
        # FVD
        processed_raw_chunks = []
        processed_gen_chunks = []

        batch_size = 20
        TARGET_RESOLUTION = (224, 224)


        for i in tqdm(range(0, len(all_raw_videos), batch_size)):

            raw_chunk_videos = torch.cat(all_raw_videos[i:i + batch_size]).mul(255).clamp(0, 255).byte().numpy()
            gen_chunk_videos = torch.cat(all_gen_videos[i:i + batch_size]).mul(255).clamp(0, 255).byte().numpy()
            raw_chunk_videos = raw_chunk_videos.transpose(0, 1, 3, 4, 2)  # [N, T, H, W, C]
            gen_chunk_videos = gen_chunk_videos.transpose(0, 1, 3, 4, 2)
            
            raw_chunk_processed = preprocess(raw_chunk_videos, TARGET_RESOLUTION)
            gen_chunk_processed = preprocess(gen_chunk_videos, TARGET_RESOLUTION)

            processed_raw_chunks.append(raw_chunk_processed)
            processed_gen_chunks.append(gen_chunk_processed)

        all_raw = torch.cat(processed_raw_chunks, dim=0)
        all_gen = torch.cat(processed_gen_chunks, dim=0)
        
        fvd = calculate_fvd(all_raw, all_gen)
        scores["fvd"] = fvd

        
        # Generate final results
        final_scores = {
            k: np.mean(v) if isinstance(v, list) else v
            for k, v in scores.items()
        }
        
        print("\nEvaluation Results:")
        for k, v in final_scores.items():
            print(f"{k.upper():<8}: {v:.4f}")
        
        results = {
            "raw_scores": scores,
            "final_scores": final_scores
        }
        with open("evaluation_results.json", "w") as f:
            json.dump(results, f, indent=4, cls=NumpyEncoder)
        print("\nResults saved to evaluation_results.json")

if __name__ == "__main__":
    main()