Datasets:
image
imagewidth (px) 2.04k
11k
| unique_id
stringlengths 14
14
| width
int32 2.04k
11k
| height
int32 2.12k
9.52k
| image_mode_on_disk
stringclasses 1
value | original_file_format
stringclasses 1
value |
|---|---|---|---|---|---|
img_00001_fbd6
| 3,375
| 6,000
|
RGB
|
JPEG
|
|
img_00002_0e73
| 4,975
| 3,317
|
RGB
|
JPEG
|
|
img_00003_67ef
| 3,121
| 4,689
|
RGB
|
JPEG
|
|
img_00004_f817
| 4,896
| 3,264
|
RGB
|
JPEG
|
|
img_00005_088e
| 6,016
| 4,016
|
RGB
|
JPEG
|
|
img_00006_29b5
| 6,048
| 4,024
|
RGB
|
JPEG
|
|
img_00007_5a71
| 4,000
| 6,000
|
RGB
|
JPEG
|
|
img_00008_6c33
| 5,923
| 3,949
|
RGB
|
JPEG
|
|
img_00009_63cb
| 6,048
| 8,064
|
RGB
|
JPEG
|
|
img_00010_c013
| 5,836
| 3,891
|
RGB
|
JPEG
|
|
img_00011_486c
| 6,400
| 4,267
|
RGB
|
JPEG
|
|
img_00012_2c02
| 6,720
| 4,480
|
RGB
|
JPEG
|
|
img_00013_4624
| 4,016
| 6,016
|
RGB
|
JPEG
|
|
img_00014_47aa
| 5,450
| 3,637
|
RGB
|
JPEG
|
|
img_00015_9f74
| 5,546
| 3,697
|
RGB
|
JPEG
|
|
img_00016_29da
| 5,976
| 3,984
|
RGB
|
JPEG
|
|
img_00017_94f8
| 5,257
| 3,505
|
RGB
|
JPEG
|
|
img_00018_9735
| 3,879
| 5,819
|
RGB
|
JPEG
|
|
img_00019_85d4
| 8,000
| 4,504
|
RGB
|
JPEG
|
|
img_00020_e26b
| 9,504
| 6,336
|
RGB
|
JPEG
|
|
img_00021_89ed
| 4,331
| 4,768
|
RGB
|
JPEG
|
|
img_00022_66c8
| 4,672
| 7,008
|
RGB
|
JPEG
|
|
img_00023_f425
| 3,861
| 5,677
|
RGB
|
JPEG
|
|
img_00024_a34e
| 4,000
| 6,000
|
RGB
|
JPEG
|
|
img_00025_2f00
| 2,730
| 3,641
|
RGB
|
JPEG
|
|
img_00026_0fc3
| 3,200
| 4,800
|
RGB
|
JPEG
|
|
img_00027_35c9
| 4,032
| 3,024
|
RGB
|
JPEG
|
|
img_00028_d150
| 5,610
| 3,740
|
RGB
|
JPEG
|
|
img_00029_83d3
| 4,016
| 6,016
|
RGB
|
JPEG
|
|
img_00030_ad6e
| 3,000
| 4,831
|
RGB
|
JPEG
|
|
img_00031_2c46
| 4,000
| 6,000
|
RGB
|
JPEG
|
|
img_00032_7973
| 5,616
| 3,744
|
RGB
|
JPEG
|
|
img_00033_a1f3
| 5,716
| 3,216
|
RGB
|
JPEG
|
|
img_00034_cc65
| 6,914
| 4,731
|
RGB
|
JPEG
|
|
img_00035_7ec3
| 6,016
| 4,000
|
RGB
|
JPEG
|
|
img_00036_9016
| 3,264
| 4,896
|
RGB
|
JPEG
|
|
img_00037_282b
| 3,264
| 4,928
|
RGB
|
JPEG
|
|
img_00038_2cd4
| 3,888
| 6,000
|
RGB
|
JPEG
|
|
img_00039_cbd2
| 3,376
| 6,000
|
RGB
|
JPEG
|
|
img_00040_a659
| 5,289
| 7,929
|
RGB
|
JPEG
|
|
img_00041_7da6
| 2,624
| 3,936
|
RGB
|
JPEG
|
|
img_00042_4f23
| 4,032
| 2,268
|
RGB
|
JPEG
|
|
img_00043_c14b
| 6,955
| 4,637
|
RGB
|
JPEG
|
|
img_00044_c09c
| 4,669
| 7,000
|
RGB
|
JPEG
|
|
img_00045_2b77
| 3,952
| 5,928
|
RGB
|
JPEG
|
|
img_00046_3837
| 3,456
| 4,608
|
RGB
|
JPEG
|
|
img_00047_3c6a
| 4,000
| 5,000
|
RGB
|
JPEG
|
|
img_00048_058b
| 2,228
| 3,963
|
RGB
|
JPEG
|
|
img_00049_7d2e
| 6,336
| 9,520
|
RGB
|
JPEG
|
|
img_00050_fb36
| 4,608
| 2,592
|
RGB
|
JPEG
|
|
img_00051_0686
| 5,743
| 3,836
|
RGB
|
JPEG
|
|
img_00052_2ea3
| 7,589
| 5,062
|
RGB
|
JPEG
|
|
img_00053_757c
| 6,016
| 4,016
|
RGB
|
JPEG
|
|
img_00054_52d2
| 2,818
| 4,928
|
RGB
|
JPEG
|
|
img_00055_8231
| 3,024
| 4,032
|
RGB
|
JPEG
|
|
img_00056_7fd2
| 6,691
| 4,281
|
RGB
|
JPEG
|
|
img_00057_8ef4
| 2,750
| 2,115
|
RGB
|
JPEG
|
|
img_00058_a95d
| 2,043
| 3,047
|
RGB
|
JPEG
|
|
img_00059_ac6a
| 3,835
| 5,755
|
RGB
|
JPEG
|
|
img_00060_2738
| 4,553
| 2,561
|
RGB
|
JPEG
|
|
img_00061_787f
| 3,176
| 4,795
|
RGB
|
JPEG
|
|
img_00062_821c
| 3,389
| 5,083
|
RGB
|
JPEG
|
|
img_00063_a933
| 3,648
| 5,472
|
RGB
|
JPEG
|
|
img_00064_d5e9
| 5,464
| 3,640
|
RGB
|
JPEG
|
|
img_00065_efd7
| 3,665
| 5,498
|
RGB
|
JPEG
|
|
img_00066_45ab
| 6,240
| 3,512
|
RGB
|
JPEG
|
|
img_00067_2e53
| 3,648
| 4,752
|
RGB
|
JPEG
|
|
img_00068_686e
| 3,150
| 4,200
|
RGB
|
JPEG
|
|
img_00069_4a7e
| 5,504
| 7,496
|
RGB
|
JPEG
|
|
img_00070_13dc
| 7,952
| 5,304
|
RGB
|
JPEG
|
|
img_00071_9a0a
| 5,135
| 7,698
|
RGB
|
JPEG
|
|
img_00072_74f2
| 4,160
| 6,240
|
RGB
|
JPEG
|
|
img_00073_8c8f
| 8,192
| 4,684
|
RGB
|
JPEG
|
|
img_00074_fdf0
| 7,360
| 4,912
|
RGB
|
JPEG
|
|
img_00075_758b
| 5,803
| 4,690
|
RGB
|
JPEG
|
|
img_00076_d146
| 6,144
| 8,192
|
RGB
|
JPEG
|
|
img_00077_1054
| 5,304
| 7,072
|
RGB
|
JPEG
|
|
img_00078_d8bc
| 6,240
| 4,160
|
RGB
|
JPEG
|
|
img_00079_a6e8
| 5,288
| 6,630
|
RGB
|
JPEG
|
|
img_00080_8cca
| 7,199
| 4,587
|
RGB
|
JPEG
|
|
img_00081_d9ff
| 7,360
| 4,912
|
RGB
|
JPEG
|
|
img_00082_94f6
| 4,160
| 6,240
|
RGB
|
JPEG
|
|
img_00083_7183
| 7,500
| 5,000
|
RGB
|
JPEG
|
|
img_00084_533d
| 4,160
| 6,240
|
RGB
|
JPEG
|
|
img_00085_5d79
| 6,240
| 4,160
|
RGB
|
JPEG
|
|
img_00086_6f5d
| 4,749
| 7,360
|
RGB
|
JPEG
|
|
img_00087_88e8
| 5,433
| 7,323
|
RGB
|
JPEG
|
|
img_00088_d400
| 5,993
| 5,770
|
RGB
|
JPEG
|
|
img_00089_e51b
| 7,072
| 5,304
|
RGB
|
JPEG
|
|
img_00090_609c
| 7,072
| 5,304
|
RGB
|
JPEG
|
|
img_00091_2e18
| 6,739
| 4,497
|
RGB
|
JPEG
|
|
img_00092_bbd6
| 2,868
| 4,914
|
RGB
|
JPEG
|
|
img_00093_1582
| 5,901
| 3,934
|
RGB
|
JPEG
|
|
img_00094_f345
| 5,340
| 3,004
|
RGB
|
JPEG
|
|
img_00095_3c27
| 7,219
| 4,061
|
RGB
|
JPEG
|
|
img_00096_c08d
| 5,542
| 3,117
|
RGB
|
JPEG
|
|
img_00097_b237
| 6,000
| 4,000
|
RGB
|
JPEG
|
|
img_00098_9fac
| 6,000
| 3,499
|
RGB
|
JPEG
|
|
img_00099_8735
| 5,510
| 3,559
|
RGB
|
JPEG
|
|
img_00100_85b9
| 5,671
| 3,998
|
RGB
|
JPEG
|
Churches
High resolution image subset from the Aesthetic-Train-V2 dataset, a collection of Church buildings including facades, interior shots and landscapes.
Dataset Details
- Curator: Roscosmos
- Version: 1.0.0
- Total Images: 780
- Average Image Size (on disk): ~5.8 MB compressed
- Primary Content: Church buildings
- Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.
Dataset Creation & Provenance
1. Original Master Dataset
This dataset is a subset derived from:
zhang0jhon/Aesthetic-Train-V2
- Link: https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
- Providence: Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
- Original License: MIT
2. Iterative Curation Methodology
CLIP retrieval / manual curation.
Dataset Structure & Content
This dataset offers the following configurations/subsets:
Default (Full
traindata) configuration: Contains the full, high-resolution image data and associated metadata. Each example (row) in the dataset contains the following fields:image: The actual image data. In the default (full) configuration.unique_id: A unique identifier assigned to each image.width: The width of the image in pixels (from the full-resolution image).height: The height of the image in pixels (from the full-resolution image).
Usage
To download and load this dataset from the Hugging Face Hub:
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Church_Buildings", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
Citation
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
Contact
N/A
- Downloads last month
- 126