4186cfdf1d95bdfa0471b8e053c2cbd6
This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll03-german on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6460
- Data Size: 1.0
- Epoch Runtime: 24.1408
- Accuracy: 0.6651
- F1 Macro: 0.3994
- Rouge1: 0.6657
- Rouge2: 0.0
- Rougel: 0.6645
- Rougelsum: 0.6651
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.6627 | 0 | 3.2616 | 0.6645 | 0.4009 | 0.6651 | 0.0 | 0.6645 | 0.6645 |
| No log | 1 | 114 | 0.8463 | 0.0078 | 3.6675 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 2 | 228 | 0.6482 | 0.0156 | 4.3664 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.6360 | 0.0312 | 5.2776 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.022 | 4 | 456 | 0.6350 | 0.0625 | 6.4853 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.022 | 5 | 570 | 0.6404 | 0.125 | 7.4629 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.022 | 6 | 684 | 0.6376 | 0.25 | 9.7413 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.1603 | 7 | 798 | 0.6379 | 0.5 | 14.5205 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6475 | 8.0 | 912 | 0.6460 | 1.0 | 24.1408 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 16