2db6019289449a695dcc3dce40353968
This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll03-german on the nyu-mll/glue [qnli] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6932
- Data Size: 1.0
- Epoch Runtime: 505.5655
- Accuracy: 0.5057
- F1 Macro: 0.3359
- Rouge1: 0.5053
- Rouge2: 0.0
- Rougel: 0.5057
- Rougelsum: 0.5056
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7048 | 0 | 8.1442 | 0.5064 | 0.3509 | 0.5064 | 0.0 | 0.5061 | 0.5064 |
| No log | 1 | 3273 | 0.6979 | 0.0078 | 12.4270 | 0.5193 | 0.4141 | 0.5189 | 0.0 | 0.5190 | 0.5193 |
| 0.0114 | 2 | 6546 | 0.6940 | 0.0156 | 17.0283 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.7073 | 3 | 9819 | 0.7107 | 0.0312 | 25.6120 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.7017 | 4 | 13092 | 0.6941 | 0.0625 | 41.0203 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.7004 | 5 | 16365 | 0.6936 | 0.125 | 72.6893 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.6987 | 6 | 19638 | 0.6925 | 0.25 | 133.7448 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.6969 | 7 | 22911 | 0.7013 | 0.5 | 259.8177 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.6944 | 8.0 | 26184 | 0.6932 | 1.0 | 507.4146 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.695 | 9.0 | 29457 | 0.6945 | 1.0 | 506.6142 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.6956 | 10.0 | 32730 | 0.6921 | 1.0 | 505.3873 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.697 | 11.0 | 36003 | 0.6915 | 1.0 | 506.8079 | 0.4915 | 0.3452 | 0.4917 | 0.0 | 0.4919 | 0.4915 |
| 0.6976 | 12.0 | 39276 | 0.6947 | 1.0 | 505.7576 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.6959 | 13.0 | 42549 | 0.6928 | 1.0 | 506.2805 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
| 0.6958 | 14.0 | 45822 | 0.6937 | 1.0 | 504.0697 | 0.4943 | 0.3308 | 0.4947 | 0.0 | 0.4943 | 0.4944 |
| 0.6944 | 15.0 | 49095 | 0.6932 | 1.0 | 505.5655 | 0.5057 | 0.3359 | 0.5053 | 0.0 | 0.5057 | 0.5056 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 9