YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Rgveda Embedding Model - Optimized for Deployment
This repository contains the rgveda-embedding-gemma model optimized for deployment.
Based on Ganaraj/rgveda-embedding-gemma, a fine-tuned embedding model for Sanskrit/Devanagari text from the Rigveda.
📋 ONNX Format Available
✅ This repository includes ONNX model files!
Due to limitations in exporting the Gemma3TextModel architecture, this repo uses a hybrid approach:
- Base transformer: ONNX format (
onnx/model.onnx+onnx/model.onnx_data) from onnx-community/embeddinggemma-300m-ONNX - Fine-tuning: Rigveda-specific dense layer weights (
weights/dense1_weight.npy,weights/dense2_weight.npy) - Inference: Combines ONNX Runtime for transformer with numpy for fine-tuned layers
This provides:
- ✅ ONNX compatibility (uses ONNX Runtime)
- ✅ Rigveda-specific fine-tuning (dense layer weights)
- ✅ Production-ready deployment
- ✅ Standard repository structure
Model Information
- Base Model: google/embeddinggemma-300m
- Fine-tuned for: Rigveda text embedding and retrieval
- Languages: Sanskrit (Devanagari script)
- Embedding Dimension: 768
- Max Sequence Length: 2048 tokens
Model Architecture
1. Transformer (Gemma3TextModel) - 300M parameters
2. Pooling (mean pooling with attention mask)
3. Dense Layer 1: 768 → 3072 (no bias)
4. Dense Layer 2: 3072 → 768 (no bias)
5. L2 Normalization
Installation
pip install transformers torch numpy
Usage
ONNX Inference (Recommended)
from inference_onnx import RgvedaEmbeddingONNXHybrid
# Initialize
model = RgvedaEmbeddingONNXHybrid(".")
# Encode texts
prefixes = {
"query": "task: search result | query: ",
"document": "title: none | text: ",
}
query = prefixes["query"] + "वृष्टि-विद्युत्-सदृशं दैविकं आगमनम्"
documents = [
prefixes["document"] + "असामि हि प्रयज्यवः",
prefixes["document"] + "उत द्वार उशतीर् वि श्रयन्ताम्",
]
# Get embeddings
query_emb = model.encode(query)
doc_embs = model.encode(documents)
# Compute similarity
similarities = query_emb @ doc_embs.T
print(similarities)
Prompt Instructions
Use these prefixes for optimal performance:
| Use Case | Prefix |
|---|---|
| Search Query | task: search result | query: {text} |
| Document/Passage | title: none | text: {text} |
| Question Answering | task: question answering | query: {text} |
| Classification | task: classification | query: {text} |
| Semantic Similarity | task: sentence similarity | query: {text} |
Repository Structure
.
├── onnx/
│ ├── model.onnx # ONNX model graph (469 KB)
│ └── model.onnx_data # ONNX model weights (1.1 GB)
├── weights/
│ ├── dense1_weight.npy # Fine-tuned dense layer 1 (3072×768)
│ └── dense2_weight.npy # Fine-tuned dense layer 2 (768×3072)
├── inference_onnx.py # ONNX inference script (recommended)
├── inference.py # PyTorch inference script (alternative)
├── tokenizer.json # Tokenizer vocabulary
├── tokenizer_config.json # Tokenizer settings
├── special_tokens_map.json # Special tokens
└── README.md # This file
Performance
The model achieves:
- Cosine Accuracy (test): 0.9553
- Optimized for Sanskrit/Rigveda text retrieval
- Trained on 51,368 samples
Citation
Original Model
@misc{ganaraj2024rgveda,
author = {Ganaraj},
title = {rgveda-embedding-gemma},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/Ganaraj/rgveda-embedding-gemma}
}
Base Model
@misc{embeddinggemma,
title = {EmbeddingGemma},
author = {Google DeepMind},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/google/embeddinggemma-300m}
}
License
This model inherits the Gemma license from the base model. Please refer to the Gemma Terms of Use.
Acknowledgments
- Base model: google/embeddinggemma-300m
- Fine-tuning: Ganaraj
- Conversion: Optimized for deployment with PyTorch/ONNX compatibility
- Downloads last month
- 38
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support