babylm-base5M-gpt2 (Fork with chck_100M Checkpoint)

This repository is a fork of alexandertam/babylm-base5m-gpt2, created for the BabyLM Challenge 2025 submission. It extends the original model by including an additional checkpoint (chck_100M), adhering to the challenge's guidelines.

Model Description

This model is a pre-trained version of the GPT-2 architecture. It achieves the following results on the evaluation set:

  • Loss: 3.0628
  • Accuracy: 0.4521

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 190
  • training_steps: 19000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.579 0.1024 200 4.7677 0.3189
4.7716 0.2048 400 4.3385 0.3544
4.5162 0.3072 600 4.1772 0.3593
4.4056 0.4096 800 4.0754 0.3693
4.3138 0.5120 1000 4.0143 0.3626
4.2148 0.6144 1200 3.9601 0.3554
4.1925 0.7168 1400 3.9019 0.3723
4.0293 0.8193 1600 3.8579 0.3749
3.9407 0.9217 1800 3.8101 0.3782
3.8371 1.0241 2000 3.7870 0.3721
3.0659 2.0481 4000 3.4672 0.4085
2.6866 3.0722 6000 3.2850 0.4316
2.5063 4.0963 8000 3.1963 0.4372
2.4139 5.1203 10000 3.1406 0.4442
2.3246 6.1444 12000 3.1152 0.4484
2.3111 7.1685 14000 3.0879 0.4489
2.2761 8.1925 16000 3.0668 0.4542
2.2231 9.2166 18000 3.0695 0.4517

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
2,214
Safetensors
Model size
98.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results