vit-gpt2-rocov2-ct-finetuned

This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7354
  • Rouge1: 13.6823
  • Rougel: 11.8453
  • Meteor: 6.5068
  • Bleu: 845.0311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rougel Meteor Bleu
2.3859 1.0 180 5.0138 13.2987 11.4445 6.7696 926.3986
2.4285 2.0 360 4.8876 12.4047 11.0529 5.1461 1055.2670
2.3733 3.0 540 4.8102 12.7421 11.3659 5.9015 845.0311
2.3082 4.0 720 4.7644 14.1592 12.1093 6.8138 986.4703
2.3019 5.0 900 4.7465 12.7685 11.0803 5.9356 845.0311
2.245 6.0 1080 4.7354 13.6823 11.8453 6.5068 845.0311

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
1
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for WafaaFraih/vit-gpt2-rocov2-ct-finetuned

Finetuned
(16)
this model