Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/bge-base-financial-matryoshka4")
# Run inference
sentences = [
'During the fiscal year ended March 31, 2023, a $118 million tax charge increased the valuation allowance on Swiss deferred tax assets, leading to a higher effective tax rate.',
'What accounted for the significant tax rate increase in fiscal year 2023?',
'What percentage of the box office revenue in the U.S./Canada was generated by the three largest exhibitors in 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
positive and anchor| positive | anchor | |
|---|---|---|
| type | string | string |
| details |
|
|
| positive | anchor |
|---|---|
For the year ended December 31, 2023, net cash used in financing activities included $1.8 billion for dividends to GM, which are eliminated within the consolidated statements of cash flows. |
What amount of dividends to GM were included in the net cash used in financing activities for GM Financial for the year ended December 31, 2023? |
Assets and liabilities of these foreign entities are translated at exchange rates in effect as of the balance sheet date. |
At what values are assets and liabilities of foreign entities translated in financial statements? |
The 21st Century Cures Act broadened patient access to certain enhanced benefits offered by Medicare Advantage plans, increasing the percentage of patients on these plans. |
How did the 21st Century Cures Act affect patient access to Medicare Advantage plans? |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
BAAI/bge-base-en-v1.5