|
|
--- |
|
|
license: apache-2.0 |
|
|
language: |
|
|
- en |
|
|
- zh |
|
|
pipeline_tag: text-to-image |
|
|
library_name: transformers |
|
|
--- |
|
|
|
|
|
<div align="center"> |
|
|
<img src="assets/longcat-image_logo.svg" width="45%" alt="LongCat-Image" /> |
|
|
</div> |
|
|
<hr> |
|
|
|
|
|
<div align="center" style="line-height: 1;"> |
|
|
<a href='https://arxiv.org/pdf/2512.07584'><img src='https://img.shields.io/badge/Technical-Report-red'></a> |
|
|
<a href='https://github.com/meituan-longcat/LongCat-Image'><img src='https://img.shields.io/badge/GitHub-Code-black'></a> |
|
|
<a href='https://github.com/meituan-longcat/LongCat-Flash-Chat/blob/main/figures/wechat_official_accounts.png'><img src='https://img.shields.io/badge/WeChat-LongCat-brightgreen?logo=wechat&logoColor=white'></a> |
|
|
<a href='https://x.com/Meituan_LongCat'><img src='https://img.shields.io/badge/Twitter-LongCat-white?logo=x&logoColor=white'></a> |
|
|
</div> |
|
|
|
|
|
<div align="center" style="line-height: 1;"> |
|
|
|
|
|
[//]: # ( <a href='https://meituan-longcat.github.io/LongCat-Image/'><img src='https://img.shields.io/badge/Project-Page-green'></a>) |
|
|
<a href='https://huggingface.co/meituan-longcat/LongCat-Image'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-LongCat--Image-blue'></a> |
|
|
<a href='https://huggingface.co/meituan-longcat/LongCat-Image-Dev'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-LongCat--Image--Dev-blue'></a> |
|
|
<a href='https://huggingface.co/meituan-longcat/LongCat-Image-Edit'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-LongCat--Image--Edit-blue'></a> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
## Introduction |
|
|
We introduce **LongCat-Image**, a pioneering open-source and bilingual (Chinese-English) foundation model for image generation, designed to address core challenges in multilingual text rendering, photorealism, deployment efficiency, and developer accessibility prevalent in current leading models. |
|
|
<div align="center"> |
|
|
<img src="assets/model_struct.jpg" width="90%" alt="LongCat-Image Generation Examples" /> |
|
|
</div> |
|
|
|
|
|
|
|
|
### Key Features |
|
|
- 🌟 **Exceptional Efficiency and Performance**: With only **6B parameters**, LongCat-Image surpasses numerous open-source models that are several times larger across multiple benchmarks, demonstrating the immense potential of efficient model design. |
|
|
- 🌟 **Powerful Chinese Text Rendering**: LongCat-Image demonstrates superior accuracy and stability in rendering common Chinese characters compared to existing SOTA open-source models and achieves industry-leading coverage of the Chinese dictionary. |
|
|
- 🌟 **Remarkable Photorealism**: Through an innovative data strategy and training framework, LongCat-Image achieves remarkable photorealism in generated images. |
|
|
|
|
|
[//]: # (For more details, please refer to the comprehensive [***LongCat-Image Technical Report***](https://arxiv.org/abs/2412.11963).) |
|
|
|
|
|
## 🎨 Showcase |
|
|
|
|
|
<div align="center"> |
|
|
<img src="assets/gallery.jpeg" width="90%" alt="LongCat-Image Generation Examples" /> |
|
|
</div> |
|
|
|
|
|
## Quick Start |
|
|
|
|
|
### Installation |
|
|
|
|
|
Clone the repo: |
|
|
|
|
|
```shell |
|
|
git clone --single-branch --branch main https://github.com/meituan-longcat/LongCat-Image |
|
|
cd LongCat-Image |
|
|
``` |
|
|
|
|
|
Install dependencies: |
|
|
|
|
|
```shell |
|
|
# create conda environment |
|
|
conda create -n longcat-image python=3.10 |
|
|
conda activate longcat-image |
|
|
|
|
|
# install other requirements |
|
|
pip install -r requirements.txt |
|
|
python setup.py develop |
|
|
``` |
|
|
|
|
|
### Run Text-to-Image Generation |
|
|
> [!TIP] |
|
|
> Leveraging a stronger LLM for prompt refinement can further enhance image generation quality. Please refer to [inference_t2i.py](https://github.com/meituan-longcat/LongCat-Image/blob/main/scripts/inference_t2i.py#L28) for detailed usage instructions. |
|
|
|
|
|
> [!CAUTION] |
|
|
> **Special Handling for Text Rendering** |
|
|
> |
|
|
> For both Text-to-Image and Image Editing tasks involving text generation, **you must enclose the target text within quotes (`""`)**. |
|
|
> |
|
|
> **Reason:** The tokenizer applies **character-level encoding** specifically to content found inside quotes. Failure to use explicit quotation marks will result in a significant degradation of text rendering quality. |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from transformers import AutoProcessor |
|
|
from longcat_image.models import LongCatImageTransformer2DModel |
|
|
from longcat_image.pipelines import LongCatImagePipeline |
|
|
|
|
|
device = torch.device('cuda') |
|
|
checkpoint_dir = './weights/LongCat-Image' |
|
|
|
|
|
text_processor = AutoProcessor.from_pretrained( checkpoint_dir, subfolder = 'tokenizer' ) |
|
|
transformer = LongCatImageTransformer2DModel.from_pretrained( checkpoint_dir , subfolder = 'transformer', |
|
|
torch_dtype=torch.bfloat16, use_safetensors=True).to(device) |
|
|
|
|
|
pipe = LongCatImagePipeline.from_pretrained( |
|
|
checkpoint_dir, |
|
|
transformer=transformer, |
|
|
text_processor=text_processor |
|
|
) |
|
|
# pipe.to(device, torch.bfloat16) # Uncomment for high VRAM devices (Faster inference) |
|
|
pipe.enable_model_cpu_offload() # Offload to CPU to save VRAM (Required ~17 GB); slower but prevents OOM |
|
|
|
|
|
prompt = '一个年轻的亚裔女性,身穿黄色针织衫,搭配白色项链。她的双手放在膝盖上,表情恬静。背景是一堵粗糙的砖墙,午后的阳光温暖地洒在她身上,营造出一种宁静而温馨的氛围。镜头采用中距离视角,突出她的神态和服饰的细节。光线柔和地打在她的脸上,强调她的五官和饰品的质感,增加画面的层次感与亲和力。整个画面构图简洁,砖墙的纹理与阳光的光影效果相得益彰,突显出人物的优雅与从容。' |
|
|
|
|
|
image = pipe( |
|
|
prompt, |
|
|
height=768, |
|
|
width=1344, |
|
|
guidance_scale=4.5, |
|
|
num_inference_steps=50, |
|
|
num_images_per_prompt=1, |
|
|
generator=torch.Generator("cpu").manual_seed(43), |
|
|
enable_cfg_renorm=True, |
|
|
enable_prompt_rewrite=True # Reusing the text encoder as a built-in prompt rewriter |
|
|
).images[0] |
|
|
image.save('./t2i_example.png') |
|
|
``` |