SodaXII's picture
Model save
77bb3d9 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: dinov2-base_rice-leaf-disease-augmented-v4_v5_fft
    results: []

dinov2-base_rice-leaf-disease-augmented-v4_v5_fft

This model is a fine-tuned version of facebook/dinov2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2683
  • Accuracy: 0.9430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_steps: 256
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3383 0.5 64 0.4827 0.8356
0.2775 1.0 128 0.3518 0.8658
0.1456 1.5 192 0.5239 0.8490
0.1629 2.0 256 0.2593 0.9295
0.1255 2.5 320 0.3740 0.8993
0.1142 3.0 384 0.3753 0.9128
0.06 3.5 448 0.3722 0.9295
0.0587 4.0 512 0.4174 0.9228
0.0157 4.5 576 0.3364 0.9329
0.0062 5.0 640 0.2237 0.9396
0.0012 5.5 704 0.2186 0.9530
0.0001 6.0 768 0.2342 0.9430
0.0 6.5 832 0.2343 0.9430
0.0 7.0 896 0.2563 0.9430
0.0 7.5 960 0.2597 0.9430
0.0 8.0 1024 0.2546 0.9430
0.0 8.5 1088 0.2553 0.9430
0.0 9.0 1152 0.2562 0.9430
0.0 9.5 1216 0.2570 0.9430
0.0 10.0 1280 0.2564 0.9430
0.0 10.5 1344 0.2566 0.9430
0.0 11.0 1408 0.2565 0.9430
0.0 11.5 1472 0.2578 0.9430
0.0 12.0 1536 0.2580 0.9430
0.0 12.5 1600 0.2571 0.9430
0.0 13.0 1664 0.2590 0.9430
0.0 13.5 1728 0.2599 0.9430
0.0 14.0 1792 0.2595 0.9430
0.0 14.5 1856 0.2594 0.9430
0.0 15.0 1920 0.2597 0.9430
0.0 15.5 1984 0.2596 0.9430
0.0 16.0 2048 0.2597 0.9430
0.0 16.5 2112 0.2605 0.9430
0.0 17.0 2176 0.2602 0.9430
0.0 17.5 2240 0.2608 0.9430
0.0 18.0 2304 0.2617 0.9430
0.0 18.5 2368 0.2628 0.9430
0.0 19.0 2432 0.2621 0.9430
0.0 19.5 2496 0.2621 0.9430
0.0 20.0 2560 0.2621 0.9430
0.0 20.5 2624 0.2621 0.9430
0.0 21.0 2688 0.2625 0.9430
0.0 21.5 2752 0.2625 0.9430
0.0 22.0 2816 0.2638 0.9430
0.0 22.5 2880 0.2648 0.9430
0.0 23.0 2944 0.2648 0.9430
0.0 23.5 3008 0.2645 0.9430
0.0 24.0 3072 0.2652 0.9430
0.0 24.5 3136 0.2654 0.9430
0.0 25.0 3200 0.2654 0.9430
0.0 25.5 3264 0.2654 0.9430
0.0 26.0 3328 0.2658 0.9430
0.0 26.5 3392 0.2657 0.9430
0.0 27.0 3456 0.2670 0.9430
0.0 27.5 3520 0.2680 0.9430
0.0 28.0 3584 0.2681 0.9430
0.0 28.5 3648 0.2687 0.9430
0.0 29.0 3712 0.2684 0.9430
0.0 29.5 3776 0.2683 0.9430
0.0 30.0 3840 0.2683 0.9430

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.1