VideoMAE_Base_wlasl_100_longtail_200_signer

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1722
  • Accuracy: 0.4911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 36000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
18.6664 0.005 180 4.6583 0.0118
18.5992 1.0050 360 4.6339 0.0178
18.5069 2.0050 540 4.6268 0.0178
18.3375 3.0050 721 4.6243 0.0148
18.3756 4.005 901 4.6087 0.0148
18.261 5.0050 1081 4.6026 0.0296
18.2009 6.0050 1261 4.5961 0.0296
17.9622 7.0050 1442 4.6306 0.0207
17.8938 8.005 1622 4.5548 0.0325
17.5516 9.0050 1802 4.4639 0.0325
16.9895 10.0050 1982 4.3051 0.0473
16.1262 11.0050 2163 4.1849 0.0680
15.1416 12.005 2343 3.8819 0.0710
13.63 13.0050 2523 3.5929 0.1272
12.171 14.0050 2703 3.3547 0.1686
10.7993 15.0050 2884 3.2239 0.1953
9.247 16.005 3064 2.9288 0.2692
7.9993 17.0050 3244 2.7451 0.3254
6.7092 18.0050 3424 2.6186 0.3107
5.6476 19.0050 3605 2.5365 0.3432
4.5493 20.005 3785 2.5129 0.3669
3.5897 21.0050 3965 2.3543 0.4142
2.8892 22.0050 4145 2.3046 0.4290
2.1829 23.0050 4326 2.2836 0.4172
1.7981 24.005 4506 2.1694 0.4497
1.3646 25.0050 4686 2.1481 0.4645
1.1696 26.0050 4866 2.0963 0.5089
0.9916 27.0050 5047 2.1982 0.4556
0.838 28.005 5227 2.2522 0.4586
0.7322 29.0050 5407 2.3319 0.4675
0.6987 30.0050 5587 2.3509 0.4704
0.5202 31.0050 5768 2.4369 0.4497
0.4621 32.005 5948 2.2251 0.4763
0.3921 33.0050 6128 2.5757 0.4615
0.2631 34.0050 6308 2.4664 0.4822
0.2354 35.0050 6489 2.4789 0.5325
0.2631 36.005 6669 2.7400 0.4763
0.2948 37.0050 6849 2.6437 0.4704
0.2759 38.0050 7029 2.6592 0.5118
0.1302 39.0050 7210 2.8729 0.4911
0.3844 40.005 7390 2.7358 0.4941
0.1758 41.0050 7570 2.9512 0.4882
0.1795 42.0050 7750 2.8297 0.5089
0.1759 43.0050 7931 2.8388 0.4970
0.1972 44.005 8111 2.9518 0.4822
0.1698 45.0050 8291 2.9395 0.5059
0.2269 46.0050 8471 2.9545 0.4763
0.1931 47.0050 8652 3.0034 0.4970
0.2059 48.005 8832 2.8843 0.5178
0.2354 49.0050 9012 2.8678 0.5148
0.2905 50.0050 9192 2.8964 0.4882
0.269 51.0050 9373 3.1370 0.4793
0.2801 52.005 9553 2.8580 0.5
0.1666 53.0050 9733 3.3069 0.4645
0.2119 54.0050 9913 3.2520 0.4911
0.1588 55.0050 10094 3.1722 0.4911

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
86.3M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Shawon16/VideoMAE_Base_wlasl_100_longtail_200_signer

Finetuned
(685)
this model

Evaluation results