An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Paper
•
2010.11929
•
Published
•
15
This model is a fine-tuned version of google/vit-large-patch16-224 for multiclass classification of brain MRI scans to detect Alzheimer's disease stages.
Key Features:
| Metric | Value |
|---|---|
| Accuracy | 0.9375 |
| Precision | 0.9374 |
| Recall | 0.9375 |
| F1 Score | 0.9373 |
This model is designed for research purposes in medical image classification, specifically for:
Note: This model is NOT intended for clinical diagnosis. Always consult qualified medical professionals.
from transformers import AutoImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# Load model and processor
processor = AutoImageProcessor.from_pretrained("NotIshaan/vit-large-alzheimer-6layers-75M-final")
model = ViTForImageClassification.from_pretrained("NotIshaan/vit-large-alzheimer-6layers-75M-final")
# Load and preprocess image
image = Image.open("brain_mri.jpg")
inputs = processor(images=image, return_tensors="pt")
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
print(f"Predicted class: {model.config.id2label[predicted_class]}")
print(f"Confidence: {confidence:.2%}")
{0: '0', 1: '1', 2: '2', 3: '3'}
If you use this model, please cite:
@misc{vit-large-alzheimer,
author = {Your Name},
title = {ViT-Large for Alzheimer's Detection},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/NotIshaan/vit-large-alzheimer-6layers-75M-final}}
}