d-fine-small / README.md
jagennath-hari's picture
update README.md
4a2231f
metadata
language:
  - en
license: apache-2.0
tags:
  - object-detection
  - AgTech
  - transformers
library_name: pytorch
inference: false
datasets:
  - Laudando-Associates-LLC/pucks
base_model: Laudando-Associates-LLC/d-fine
base_model_relation: finetune
model-index:
  - name: D-FINE Small
    results:
      - task:
          type: object-detection
          name: Object Detection
        dataset:
          type: Laudando-Associates-LLC/pucks
          name: L&A Pucks Dataset
          config: default
          split: validation
        metrics:
          - type: mean_average_precision
            name: mAP@[IoU=0.50:0.95]
            value: 0.816
          - type: mean_average_precision
            name: [email protected]
            value: 0.983
          - type: mean_average_precision
            name: [email protected]
            value: 0.96
          - type: recall
            name: AR@[IoU=0.50:0.95 | maxDets=100]
            value: 0.859
          - type: recall
            name: [email protected]
            value: 0.994
          - type: recall
            name: [email protected]
            value: 0.97
          - type: f1
            value: 0.951
          - type: precision
            value: 0.975
          - type: recall
            value: 0.928
          - type: iou
            value: 0.819

D-FINE Small

This repository contains the D-FINE Small model, a real-time object detector designed for efficient and accurate object detection tasks.

Small Detections

Try it in the Browser

You can test this model using our interactive Gradio demo:

Model Overview

  • Architecture: D-FINE Small

  • Parameters: 10.3M

  • Performance:

    • mAP@[0.50:0.95]: 0.816

    • mAP@[0.50]: 0.983

    • AR@[0.50:0.95]: 0.859

    • F1 Score: 0.951

  • Framework: PyTorch / ONNX

  • Training Hardware: 2× NVIDIA RTX A6000 GPUs

Download

Format Link
ONNX
PyTorch

Usage

To utilize this model, ensure you have the shared D-FINE processor:

from transformers import AutoProcessor, AutoModel

# Load processor
processor = AutoProcessor.from_pretrained("Laudando-Associates-LLC/d-fine", trust_remote_code=True)

# Load model
model = AutoModel.from_pretrained("Laudando-Associates-LLC/d-fine-small", trust_remote_code=True)

# Process image
inputs = processor(image)

# Run inference
outputs = model(**inputs, conf_threshold=0.4)

Evaluation

This model was trained and evaluated on the L&A Pucks Dataset.

License

This model is licensed under the Apache License 2.0.

Citation

If you use D-FINE or its methods in your work, please cite the following BibTeX entries:

@misc{peng2024dfine,
      title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement},
      author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu},
      year={2024},
      eprint={2410.13842},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}