metadata
language:
- en
license: apache-2.0
tags:
- object-detection
- AgTech
- transformers
library_name: pytorch
inference: false
datasets:
- Laudando-Associates-LLC/pucks
base_model: Laudando-Associates-LLC/d-fine
base_model_relation: finetune
model-index:
- name: D-FINE Small
results:
- task:
type: object-detection
name: Object Detection
dataset:
type: Laudando-Associates-LLC/pucks
name: L&A Pucks Dataset
config: default
split: validation
metrics:
- type: mean_average_precision
name: mAP@[IoU=0.50:0.95]
value: 0.816
- type: mean_average_precision
name: [email protected]
value: 0.983
- type: mean_average_precision
name: [email protected]
value: 0.96
- type: recall
name: AR@[IoU=0.50:0.95 | maxDets=100]
value: 0.859
- type: recall
name: [email protected]
value: 0.994
- type: recall
name: [email protected]
value: 0.97
- type: f1
value: 0.951
- type: precision
value: 0.975
- type: recall
value: 0.928
- type: iou
value: 0.819
D-FINE Small
This repository contains the D-FINE Small model, a real-time object detector designed for efficient and accurate object detection tasks.
Try it in the Browser
You can test this model using our interactive Gradio demo:
Model Overview
Architecture: D-FINE Small
Parameters: 10.3M
Performance:
mAP@[0.50:0.95]: 0.816
mAP@[0.50]: 0.983
AR@[0.50:0.95]: 0.859
F1 Score: 0.951
Framework: PyTorch / ONNX
Training Hardware: 2× NVIDIA RTX A6000 GPUs
Download
Usage
To utilize this model, ensure you have the shared D-FINE processor:
from transformers import AutoProcessor, AutoModel
# Load processor
processor = AutoProcessor.from_pretrained("Laudando-Associates-LLC/d-fine", trust_remote_code=True)
# Load model
model = AutoModel.from_pretrained("Laudando-Associates-LLC/d-fine-small", trust_remote_code=True)
# Process image
inputs = processor(image)
# Run inference
outputs = model(**inputs, conf_threshold=0.4)
Evaluation
This model was trained and evaluated on the L&A Pucks Dataset.
License
This model is licensed under the Apache License 2.0.
Citation
If you use D-FINE or its methods in your work, please cite the following BibTeX entries:
@misc{peng2024dfine,
title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement},
author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu},
year={2024},
eprint={2410.13842},
archivePrefix={arXiv},
primaryClass={cs.CV}
}