SentenceTransformer based on thenlper/gte-large
This is a sentence-transformers model finetuned from thenlper/gte-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JFernandoGRE/gtelarge-colombian-elitenames2")
# Run inference
sentences = [
'JOSE ALBERTO SOTELO PAZ',
'JOLBERTOSOTELO PAZ',
'CESAR AUGUSTO ARANGUREN LONDONO',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 21,959 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 8.22 tokens
- max: 17 tokens
- min: 4 tokens
- mean: 8.58 tokens
- max: 16 tokens
- 0: ~78.10%
- 1: ~21.90%
- Samples:
sentence1 sentence2 label ABDON EDUARDO ESPINOSA GUTIERREZLUISPEREZ GUTIERREZ0JOSE GUSTAVO BARBOSA COBOJOSE GUSTAVO BARBOZA COBO1LUZ MILA MORELLI SOCARRASLUZMILA MORELLI SOCARRAS1 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 5,490 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 4 tokens
- mean: 8.17 tokens
- max: 18 tokens
- min: 4 tokens
- mean: 8.63 tokens
- max: 14 tokens
- 0: ~78.10%
- 1: ~21.90%
- Samples:
sentence1 sentence2 label GLADIS MARINA GIRALDO GOMEZGLADIS GIRALDO GOMEZ1CARLOS ANDRES PEREZ FERRERCARLOS ANDRES PEREZ GUEERERO0ALEXANDER PINEDA BONILLA EN REORGANIZACIONLUIS FELIPE MENDOSA BONILLA0 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 1e-05num_train_epochs: 5warmup_ratio: 0.182fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.182warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0728 | 100 | 0.2313 | 0.2908 |
| 0.1457 | 200 | 0.2094 | 0.2922 |
| 0.2185 | 300 | 0.1951 | 0.3055 |
| 0.2913 | 400 | 0.1721 | 0.3221 |
| 0.3642 | 500 | 0.1275 | 0.2690 |
| 0.4370 | 600 | 0.1477 | 0.2556 |
| 0.5098 | 700 | 0.1415 | 0.2106 |
| 0.5827 | 800 | 0.1074 | 0.1935 |
| 0.6555 | 900 | 0.1195 | 0.2059 |
| 0.7283 | 1000 | 0.1259 | 0.1856 |
| 0.8012 | 1100 | 0.1129 | 0.1640 |
| 0.8740 | 1200 | 0.1094 | 0.1834 |
| 0.9468 | 1300 | 0.1119 | 0.1672 |
| 1.0197 | 1400 | 0.1247 | 0.1946 |
| 1.0925 | 1500 | 0.0735 | 0.1717 |
| 1.1653 | 1600 | 0.0836 | 0.1589 |
| 1.2382 | 1700 | 0.0871 | 0.1595 |
| 1.3110 | 1800 | 0.089 | 0.1609 |
| 1.3838 | 1900 | 0.0926 | 0.1723 |
| 1.4567 | 2000 | 0.086 | 0.1553 |
| 1.5295 | 2100 | 0.087 | 0.1591 |
| 1.6023 | 2200 | 0.0935 | 0.1617 |
| 1.6752 | 2300 | 0.0969 | 0.1510 |
| 1.7480 | 2400 | 0.1021 | 0.1436 |
| 1.8208 | 2500 | 0.0729 | 0.1431 |
| 1.8937 | 2600 | 0.0951 | 0.1398 |
| 1.9665 | 2700 | 0.0996 | 0.1357 |
| 2.0393 | 2800 | 0.0596 | 0.1454 |
| 2.1122 | 2900 | 0.0594 | 0.1365 |
| 2.1850 | 3000 | 0.0747 | 0.1325 |
| 2.2578 | 3100 | 0.0547 | 0.1378 |
| 2.3307 | 3200 | 0.0511 | 0.1326 |
| 2.4035 | 3300 | 0.0467 | 0.1307 |
| 2.4763 | 3400 | 0.0478 | 0.1327 |
| 2.5492 | 3500 | 0.0497 | 0.1281 |
| 2.6220 | 3600 | 0.0712 | 0.1264 |
| 2.6948 | 3700 | 0.0652 | 0.1375 |
| 2.7677 | 3800 | 0.0582 | 0.1308 |
| 2.8405 | 3900 | 0.0571 | 0.1322 |
| 2.9133 | 4000 | 0.0609 | 0.1282 |
| 2.9862 | 4100 | 0.0516 | 0.1156 |
| 3.0590 | 4200 | 0.0528 | 0.1229 |
| 3.1318 | 4300 | 0.0359 | 0.1125 |
| 3.2047 | 4400 | 0.0313 | 0.1206 |
| 3.2775 | 4500 | 0.0418 | 0.1225 |
| 3.3503 | 4600 | 0.0552 | 0.1218 |
| 3.4232 | 4700 | 0.0445 | 0.1244 |
| 3.4960 | 4800 | 0.048 | 0.1261 |
| 3.5688 | 4900 | 0.0425 | 0.1278 |
| 3.6417 | 5000 | 0.0365 | 0.1289 |
| 3.7145 | 5100 | 0.0587 | 0.1291 |
| 3.7873 | 5200 | 0.0536 | 0.1269 |
| 3.8602 | 5300 | 0.0384 | 0.1272 |
| 3.9330 | 5400 | 0.0448 | 0.1211 |
| 4.0058 | 5500 | 0.0466 | 0.1214 |
| 4.0787 | 5600 | 0.0329 | 0.1193 |
| 4.1515 | 5700 | 0.0306 | 0.1169 |
| 4.2243 | 5800 | 0.0463 | 0.1186 |
| 4.2972 | 5900 | 0.0322 | 0.1210 |
| 4.3700 | 6000 | 0.0298 | 0.1204 |
| 4.4428 | 6100 | 0.034 | 0.1192 |
| 4.5157 | 6200 | 0.0261 | 0.1182 |
| 4.5885 | 6300 | 0.033 | 0.1168 |
| 4.6613 | 6400 | 0.0394 | 0.1162 |
| 4.7342 | 6500 | 0.0342 | 0.1169 |
| 4.8070 | 6600 | 0.0295 | 0.1161 |
| 4.8798 | 6700 | 0.0272 | 0.1164 |
| 4.9527 | 6800 | 0.0333 | 0.1161 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- -
Model tree for JFernandoGRE/gtelarge-colombian-elitenames-righttail
Base model
thenlper/gte-large