Hemg's picture
Model save
fbdb463 verified
|
raw
history blame
2.31 kB
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: violence-audio-Recognition-88822
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9491701244813278
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# violence-audio-Recognition-88822
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1980
- Accuracy: 0.9492
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4717 | 1.0 | 60 | 0.2778 | 0.8859 |
| 0.2436 | 1.99 | 120 | 0.2150 | 0.9336 |
| 0.1808 | 2.99 | 180 | 0.1529 | 0.9585 |
| 0.1444 | 4.0 | 241 | 0.2275 | 0.9098 |
| 0.098 | 5.0 | 301 | 0.1924 | 0.9471 |
| 0.0752 | 5.99 | 361 | 0.1087 | 0.9720 |
| 0.0646 | 6.99 | 421 | 0.1321 | 0.9699 |
| 0.0762 | 8.0 | 482 | 0.1387 | 0.9627 |
| 0.0464 | 9.0 | 542 | 0.1980 | 0.9492 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2