Haaaaaaaaaax's picture
chest_xray
71d0896 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: dinov2-Base-finetuned-chest_xray
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.978
          - name: F1
            type: f1
            value: 0.9779992079714871

dinov2-Base-finetuned-chest_xray

This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1155
  • Accuracy: 0.978
  • F1: 0.9780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6168 1.0 500 0.3097 0.881 0.8804
0.4064 2.0 1000 0.2299 0.931 0.9309
0.2011 3.0 1500 0.1904 0.943 0.9430
0.148 4.0 2000 0.2213 0.94 0.9399
0.2495 5.0 2500 0.2518 0.933 0.9328
0.1926 6.0 3000 0.1155 0.966 0.9660
0.1565 7.0 3500 0.1711 0.959 0.9590
0.1881 8.0 4000 0.1235 0.967 0.9670
0.139 9.0 4500 0.1285 0.97 0.9700
0.1317 10.0 5000 0.1155 0.978 0.9780

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0