Enhance model card with metadata, paper link, usage example, and dataset info

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +88 -3
README.md CHANGED
@@ -1,3 +1,88 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ datasets:
6
+ - Edaizi/KG-TRACES-WebQSP
7
+ - Edaizi/KG-TRACES-CWQ
8
+ ---
9
+
10
+ # ✨ KG-TRACES: Unleashing Explainable Reasoning in LLMs with Knowledge Graphs ✨
11
+
12
+ This repository contains the official implementation of **KG-TRACES**, a novel framework that enhances the reasoning ability of Large Language Models (LLMs) through explicit supervision over reasoning paths and processes. KG-TRACES aims to provide explainable, accurate, and traceable reasoning by leveraging the power of Knowledge Graphs.
13
+
14
+ For more details, refer to the accompanying paper:
15
+ [**KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision**](https://huggingface.co/papers/2506.00783)
16
+
17
+ The full codebase and more information can be found on the official GitHub repository:
18
+ [https://github.com/Edaizi/KG-TRACES](https://github.com/Edaizi/KG-TRACES)
19
+
20
+ <p align="center">
21
+ <img src="https://github.com/Edaizi/KG-TRACES/raw/main/assets/teaser.png" width="750" alt="KG-TRACES Teaser Image: Comparison of Reasoning Methods">
22
+ </p>
23
+ *Figure 1: KG-TRACES (d) stands out by generating faithful, attributable responses, adapting to different KG access conditions.*
24
+
25
+ ## πŸ’‘ Our Solution: KG-TRACES
26
+
27
+ KG-TRACES is a novel framework that explicitly teaches LLMs *how* to reason by supervising their internal "thought process" with knowledge graphs guidance. We guide them to:
28
+
29
+ 1. πŸ—ΊοΈ **Chart the Course**: Predict symbolic **knowledge graph reasoning paths** from question to answer.
30
+ 2. πŸ“ **Show Their Work**: Generate **attribution-aware reasoning explanations**, clearly claim whether each step comes from the KG or the LLM's internal knowledge 🧠, and how effective it was!
31
+
32
+ <p align="center">
33
+ <img src="https://github.com/Edaizi/KG-TRACES/raw/main/assets/method.png" width="750" alt="KG-TRACES Method Overview">
34
+ </p>
35
+ *Figure 2: The KG-TRACES framework*
36
+
37
+ ---
38
+
39
+ ## 🌟 Why KG-TRACES Rocks
40
+
41
+ * πŸ” **Crystal-Clear Explanations**: Understand *why* the LLM reached its conclusion.
42
+ * πŸ›‘οΈ **Trustworthy & Attributable**: Know the evidence source of each reasoning step.
43
+ * πŸ’ͺ **Robust Performance**: Excels even with limited or no direct KG access during inference.
44
+ * 🌍 **Versatile**: Shows strong generalization to specialized fields like medicine.
45
+
46
+ ---
47
+
48
+ ## πŸš€ Quickstart: Pretrained Models
49
+
50
+ You can easily load our fine-tuned KG-TRACES models from the Hugging Face Model Hub using the `transformers` library:
51
+
52
+ ```python
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
+
55
+ model_hub_name = "Edaizi/KG-TRACES"
56
+ tokenizer = AutoTokenizer.from_pretrained(model_hub_name)
57
+ model = AutoModelForCausalLM.from_pretrained(model_hub_name)
58
+ ```
59
+
60
+ ## πŸ“š Datasets
61
+
62
+ We've meticulously prepared augmented SFT datasets for WebQSP and CWQ, packed with reasoning paths and augmented reasoning processes with source attributions. Find them on Hugging Face:
63
+
64
+ - [KG-TRACES-WebQSP](https://huggingface.co/datasets/Edaizi/KG-TRACES-WebQSP)
65
+ - [KG-TRACES-CWQ](https://huggingface.co/datasets/Edaizi/KG-TRACES-CWQ)
66
+
67
+ You can load these datasets as follows:
68
+ ```python
69
+ from datasets import load_dataset
70
+
71
+ webqsp_sft_data = load_dataset("Edaizi/KG-TRACES-WebQSP")
72
+ cwq_sft_data = load_dataset("Edaizi/KG-TRACES-CWQ")
73
+ ```
74
+
75
+ ## πŸ“œ Citation
76
+ If KG-TRACES helps your research or project, we'd love a shout-out! Please cite:
77
+
78
+ ```bibtex
79
+ @misc{wu2025kgtracesenhancinglargelanguage,
80
+ title={KG-TRACES: Enhancing Large Language Models with Knowledge Graph-constrained Trajectory Reasoning and Attribution Supervision},
81
+ author={Rong Wu and Pinlong Cai and Jianbiao Mei and Licheng Wen and Tao Hu and Xuemeng Yang and Daocheng Fu and Botian Shi},
82
+ year={2025},
83
+ eprint={2506.00783},
84
+ archivePrefix={arXiv},
85
+ primaryClass={cs.CL},
86
+ url={https://arxiv.org/abs/2506.00783},
87
+ }
88
+ ```