| hydra: | |
| run: | |
| # _${datasets.name}/ | |
| dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}/${now:%Y-%m-%d}/${now:%H-%M-%S} | |
| datasets: | |
| name: LibriTTS_960_WenetSpeech4TTS_Premium_Standard_TTSDatawithMultiStyleEmotion_Datatang_Haitianruisheng_Qingshu_XiaoyiF143_Bani # dataset name | |
| path: /home/ma-user/work/dehua/unit2speech/u2s_training_data/40ms_imedia_45wh_hubert_large_FSQ_8888_CTC_sampled_EN_CH_4000h_wulan_H20_mt_1280k_lr_3e-4_d2v_phase_nomask_20241018_8p_fromDaxin/LibriTTS_WenetSpeech4TTS_TTSDatawithMultiStyleEmotion_XiaoyiF143_Bani/train-960_Premium_Standard_datatang_haitianruisheng_qingshu_freetalk_style1_all-three | |
| batch_size_per_gpu: 2000 # 38400 # 8 GPUs, 8 * 38400 = 307200 | |
| batch_size_type: frame # "frame" or "sample" | |
| max_samples: 4 # 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models | |
| num_workers: 2 | |
| optim: | |
| epochs: 1000 # 15 | |
| learning_rate: 7.5e-5 | |
| num_warmup_updates: 20000 # warmup steps | |
| grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps | |
| max_grad_norm: 1.0 # gradient clipping | |
| bnb_optimizer: False # use bnb 8bit AdamW optimizer or not | |
| model: | |
| name: CADiT_Base_train_40ms_imedia_45wh_HuBERT_large_FSQ_8888_CTC_sampled_EN_CH_4000h_CTC_LibriTTS_960_WenetSpeech4TTS_Premium_Standard_TTSDatawithMultiStyleEmotion_Datatang_Haitianruisheng_Qingshu_XiaoyiF143_Bani_Shanghai_V100_5n8g_20250414 # model name | |
| tokenizer: custom # pinyin; tokenizer type | |
| # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) | |
| tokenizer_path: /home/ma-user/work/dehua/unit2speech/u2s_training_data/40ms_imedia_45wh_hubert_large_FSQ_8888_CTC_sampled_EN_CH_4000h_wulan_H20_mt_1280k_lr_3e-4_d2v_phase_nomask_20241018_8p_fromDaxin/LibriTTS_WenetSpeech4TTS_TTSDatawithMultiStyleEmotion_XiaoyiF143_Bani/train-960_Premium_Standard_datatang_haitianruisheng_qingshu_freetalk_style1_all-three/vocab.txt | |
| arch: | |
| dim: 1024 | |
| depth: 22 | |
| heads: 16 | |
| ff_mult: 2 | |
| text_dim: 512 | |
| should_extend_text: True | |
| conv_layers: 4 | |
| checkpoint_activations: False # recompute activations and save memory for extra compute | |
| mel_spec: | |
| target_sample_rate: 24000 | |
| n_mel_channels: 100 | |
| hop_length: 256 | |
| win_length: 1024 | |
| n_fft: 1024 | |
| mel_spec_type: vocos # 'vocos' or 'bigvgan' | |
| vocoder: | |
| is_local: True # use local offline ckpt or not | |
| local_path: /home/ma-user/work/dehua/unit2speech/CA-F5-TTS/pretrained_vocoder/charactr/vocos-mel-24khz # local vocoder path | |
| ckpts: | |
| logger: tensorboard # wandb | tensorboard | None | |
| save_per_updates: 50000 # save checkpoint per steps | |
| last_per_steps: 2000 # 5000 # save last checkpoint per steps | |
| save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer} # _${datasets.name} |