hydra: run: # _${datasets.name}/ dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}/${now:%Y-%m-%d}/${now:%H-%M-%S} datasets: name: LibriTTS_960_WenetSpeech4TTS_Premium_Standard_TTSDatawithMultiStyleEmotion_Datatang_Haitianruisheng_Qingshu_XiaoyiF143_Bani # dataset name path: /home/ma-user/work/dehua/unit2speech/u2s_training_data/40ms_imedia_45wh_hubert_large_FSQ_8888_CTC_sampled_EN_CH_4000h_wulan_H20_mt_1280k_lr_3e-4_d2v_phase_nomask_20241018_8p_fromDaxin/LibriTTS_WenetSpeech4TTS_TTSDatawithMultiStyleEmotion_XiaoyiF143_Bani/train-960_Premium_Standard_datatang_haitianruisheng_qingshu_freetalk_style1_all-three batch_size_per_gpu: 2000 # 38400 # 8 GPUs, 8 * 38400 = 307200 batch_size_type: frame # "frame" or "sample" max_samples: 4 # 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models num_workers: 2 optim: epochs: 1000 # 15 learning_rate: 7.5e-5 num_warmup_updates: 20000 # warmup steps grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps max_grad_norm: 1.0 # gradient clipping bnb_optimizer: False # use bnb 8bit AdamW optimizer or not model: name: CADiT_Base_train_40ms_imedia_45wh_HuBERT_large_FSQ_8888_CTC_sampled_EN_CH_4000h_CTC_LibriTTS_960_WenetSpeech4TTS_Premium_Standard_TTSDatawithMultiStyleEmotion_Datatang_Haitianruisheng_Qingshu_XiaoyiF143_Bani_Shanghai_V100_5n8g_20250414 # model name tokenizer: custom # pinyin; tokenizer type # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) tokenizer_path: /home/ma-user/work/dehua/unit2speech/u2s_training_data/40ms_imedia_45wh_hubert_large_FSQ_8888_CTC_sampled_EN_CH_4000h_wulan_H20_mt_1280k_lr_3e-4_d2v_phase_nomask_20241018_8p_fromDaxin/LibriTTS_WenetSpeech4TTS_TTSDatawithMultiStyleEmotion_XiaoyiF143_Bani/train-960_Premium_Standard_datatang_haitianruisheng_qingshu_freetalk_style1_all-three/vocab.txt arch: dim: 1024 depth: 22 heads: 16 ff_mult: 2 text_dim: 512 should_extend_text: True conv_layers: 4 checkpoint_activations: False # recompute activations and save memory for extra compute mel_spec: target_sample_rate: 24000 n_mel_channels: 100 hop_length: 256 win_length: 1024 n_fft: 1024 mel_spec_type: vocos # 'vocos' or 'bigvgan' vocoder: is_local: True # use local offline ckpt or not local_path: /home/ma-user/work/dehua/unit2speech/CA-F5-TTS/pretrained_vocoder/charactr/vocos-mel-24khz # local vocoder path ckpts: logger: tensorboard # wandb | tensorboard | None save_per_updates: 50000 # save checkpoint per steps last_per_steps: 2000 # 5000 # save last checkpoint per steps save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer} # _${datasets.name}