CryoFM: Flow-based Foundation Model for Cryo-EM Density Maps
Model Description
CryoFM1 is a flow-based foundation model for 3D cryo-electron microscopy (cryo-EM) density maps. The model employs a Hierarchical Diffusion Transformer (HDiT) architecture, specifically designed to learn deep priors of 3D cryo-EM densities. CryoFM1 supports various downstream tasks including density map denoising, anisotropy noise correction, missing wedge inpainting, and ab initio modeling.
Key Features
- Flow Matching Framework: Uses flow matching for efficient and stable training
- HDiT Architecture: Hierarchical Diffusion Transformer with local and global attention mechanisms
- Two Model Variants: CryoFM-S (64³) and CryoFM-L (128³) for different resolution needs
- Downstream Task Support: Denoising, anisotropy noise correction, missing wedge restoration, and more
Model Details
CryoFM1 employs a Hierarchical Diffusion Transformer (HDiT) architecture that combines local neighborhood attention with global attention mechanisms. This design enables the model to effectively capture both fine-grained local structures and long-range dependencies in 3D cryo-EM density maps. The architecture processes 3D volumes through a hierarchical patch-based approach, progressively building representations at multiple scales.
The model is available in two variants optimized for different resolution requirements. The following table summarizes the key architectural and training parameters for each variant:
| Parameter | CRYOFM-S | CRYOFM-L |
|---|---|---|
| Parameters | 335.18 M | 308.54 M |
| GFLOP/forward | 395.87 | 427.26 |
| Training Steps | 150k | 300k |
| Batch Size | 128 | 128 |
| Precision | bf16 | bf16 |
| Training Hardware | 8×A100 | 8×A100 |
| Patchifying | 4 | 4 |
| Levels (Local + Global Attention) | 1 + 1 | 2 + 1 |
| Depth | [4, 8] | [2, 2, 12] |
| Widths | [768, 1536] | [320, 640, 1280] |
| Attention Heads (Width / Head Dim) | [12, 24] | [5, 10, 20] |
| Attention Head Dim | 64 | 64 |
| Neighborhood Kernel Size | 7 | 7 |
Quick Start
Unconditional Generation
CryoFM1 provides two model variants for different resolution needs:
- CryoFM-S: Generates 64×64×64 voxel density maps at 1.5 Å/pixel resolution
- CryoFM-L: Generates 128×128×128 voxel density maps at 3.0 Å/pixel resolution
import torch
from mmengine import Config
from cryofm.core.utils.mrc_io import save_mrc
from cryofm.projects.cryofm1.lit_modules import CryoFM1
from cryofm.core.utils.sampling_fm import sample_from_fm
# Choose model variant: "cryofm-s" or "cryofm-l"
model_variant = "cryofm-s" # or "cryofm-l"
model_config = {
"cryofm-s": {
"config_path": "cryofm-v1/cryofm-s/config.yaml",
"model_path": "cryofm-v1/cryofm-s/model.safetensors",
"side_shape": 64,
"apix": 1.5
},
"cryofm-l": {
"config_path": "cryofm-v1/cryofm-l/config.yaml",
"model_path": "cryofm-v1/cryofm-l/model.safetensors",
"side_shape": 128,
"apix": 3.0
}
}
# Load configuration and model
cfg = Config.fromfile(model_config[model_variant]["config_path"])
lit_model = CryoFM1.load_from_safetensors(
model_config[model_variant]["model_path"],
cfg=cfg
)
# Set up device and model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
lit_model = lit_model.to(device)
lit_model.eval()
# Define vector field function for flow matching
def v_xt_t(_xt, _t):
return lit_model(_xt, _t)
# Generate samples
# Note: Enable bfloat16 if your GPU supports it for better performance
with torch.no_grad(), torch.autocast("cuda", dtype=torch.bfloat16):
out = sample_from_fm(
v_xt_t,
lit_model.noise_scheduler,
method="euler",
num_steps=200,
num_samples=3,
device=device,
side_shape=model_config[model_variant]["side_shape"]
)
# Apply z-scaling normalization if configured
if hasattr(lit_model.cfg, "z_scale") and lit_model.cfg.z_scale.mean is not None:
out = out * lit_model.cfg.z_scale.std + lit_model.cfg.z_scale.mean
# Save generated density maps
for i in range(3):
save_mrc(
out[i].float().cpu().numpy(),
f"sample-{i}.mrc",
apix=model_config[model_variant]["apix"] # Angstroms per pixel
)
Ethical Considerations
This model is intended for scientific research and structural biology applications. Users should:
- Ensure proper attribution when using generated structures
- Validate generated structures through experimental verification
- Be aware of potential biases in the training data
Citation
If you use CryoFM1 in your research, please cite:
@inproceedings{
zhou2025cryofm,
title={Cryo{FM}: A Flow-based Foundation Model for Cryo-{EM} Densities},
author={Yi Zhou and Yilai Li and Jing Yuan and Quanquan Gu},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=T4sMzjy7fO}
}
License
This model is released under the Apache 2.0 License. See the LICENSE file for details.
Acknowledgments
This work is developed by the ByteDance Seed Team. For more information, visit: