Emolog IndoBERT (Fine-tuned for Emotion Classification in Indonesian)

πŸš€ This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an Indonesian emotion classification dataset.
It is trained to classify user-written daily mood/feeling texts into several emotional categories.


🧠 Model Details

  • Model Name: Emolog IndoBERT
  • Base Model: indobenchmark/indobert-base-p2
  • Fine-tuned by: Atherizz
  • Language: Indonesian (id)
  • Task: Text Classification (Emotion Detection)
  • License: Apache 2.0
  • Dataset: Chipan/indonesia-5-emotion-cls-dataset
  • Trained using: Hugging Face Transformers & PyTorch

πŸ“Š Labels (Emotions)

The model is trained to predict the following emotions:

  • Senang (Happy)
  • Sedih (Sad)
  • Marah (Angry)
  • Takut (Fear)
  • Jijik (Disgust)
  • Terkejut (Surprise)
  • Netral

πŸ“¦ Usage

You can use this model directly with the transformers library:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("Atherizz/emolog-indobert")
model = AutoModelForSequenceClassification.from_pretrained("Atherizz/emolog-indobert")

inputs = tokenizer("aku capek dan bingung hari ini", return_tensors="pt")
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits)
print(predicted_class)
Downloads last month
117
Safetensors
Model size
0.1B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train Atherizz/emolog-indobert