Emolog IndoBERT (Fine-tuned for Emotion Classification in Indonesian)
π This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an Indonesian emotion classification dataset.
It is trained to classify user-written daily mood/feeling texts into several emotional categories.
π§ Model Details
- Model Name: Emolog IndoBERT
- Base Model:
indobenchmark/indobert-base-p2 - Fine-tuned by: Atherizz
- Language: Indonesian (id)
- Task: Text Classification (Emotion Detection)
- License: Apache 2.0
- Dataset: Chipan/indonesia-5-emotion-cls-dataset
- Trained using: Hugging Face Transformers & PyTorch
π Labels (Emotions)
The model is trained to predict the following emotions:
- Senang (Happy)
- Sedih (Sad)
- Marah (Angry)
- Takut (Fear)
- Jijik (Disgust)
- Terkejut (Surprise)
- Netral
π¦ Usage
You can use this model directly with the transformers library:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("Atherizz/emolog-indobert")
model = AutoModelForSequenceClassification.from_pretrained("Atherizz/emolog-indobert")
inputs = tokenizer("aku capek dan bingung hari ini", return_tensors="pt")
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits)
print(predicted_class)
- Downloads last month
- 117