|
|
--- |
|
|
widget: |
|
|
- text: >- |
|
|
Dih apaan banget dah buang sampah ke sungai begitu. Ada aktivis lingkungan |
|
|
yg sampe dipenjara karena menyuarakan peduli lingkungan. Ini pengangguran |
|
|
satu malah enak bener buang sampah sembarangan. Pantes lu susah, kelakuan lu |
|
|
nyusahin orang lain sih. |
|
|
example_title: Example 1 |
|
|
output: |
|
|
- label: Disgust |
|
|
score: 0.672 |
|
|
- label: Anger |
|
|
score: 0.282 |
|
|
- label: Sadness |
|
|
score: 0.033 |
|
|
- label: Joy |
|
|
score: 0.004 |
|
|
- label: Surprise |
|
|
score: 0.003 |
|
|
- label: Trust |
|
|
score: 0.003 |
|
|
- label: Fear |
|
|
score: 0.002 |
|
|
- label: Anticipation |
|
|
score: 0.001 |
|
|
- text: >- |
|
|
Februari 2009, wartawan Jawa Pos Radar Bali dibunuh dengan keji karena |
|
|
berita korupsi. Januari 2019, Presiden memberikan grasi kepada otak |
|
|
pembunuhan Prabangsa, dari seumur hidup menjadi cuma 20 tahun penjara. |
|
|
Sebuah langkah mundur yang menyakitkan! |
|
|
example_title: Example 2 |
|
|
output: |
|
|
- label: Sadness |
|
|
score: 0.604 |
|
|
- label: Anger |
|
|
score: 0.194 |
|
|
- label: Surprise |
|
|
score: 0.127 |
|
|
- label: Joy |
|
|
score: 0.021 |
|
|
- label: Fear |
|
|
score: 0.018 |
|
|
- label: Disgust |
|
|
score: 0.018 |
|
|
- label: Anticipation |
|
|
score: 0.016 |
|
|
- label: Trust |
|
|
score: 0.003 |
|
|
- text: >- |
|
|
Salut banget sama perjalanan hidup mereka ini kalo diproduksi jadi film |
|
|
pasti bakal rame dan menginspirasi banget woi |
|
|
example_title: Example 3 |
|
|
output: |
|
|
- label: Joy |
|
|
score: 0.9637 |
|
|
- label: Trust |
|
|
score: 0.0219 |
|
|
- label: Anticipation |
|
|
score: 0.0079 |
|
|
- label: Surprise |
|
|
score: 0.0029 |
|
|
- label: Disgust |
|
|
score: 0.0013 |
|
|
- label: Sadness |
|
|
score: 0.0010 |
|
|
- label: Anger |
|
|
score: 0.0007 |
|
|
- label: Fear |
|
|
score: 0.0006 |
|
|
- text: >- |
|
|
SUMPAH HARUS DIBEBASKAN!!! KENAPA GAK TANGKEPIN KORUPTOR AJA DARIPADA |
|
|
NGURUSIN MEME DARI AI GW MARAH BANGET SHIBAL |
|
|
example_title: Example 4 |
|
|
output: |
|
|
- label: Anger |
|
|
score: 0.9889 |
|
|
- label: Disgust |
|
|
score: 0.0035 |
|
|
- label: Sadness |
|
|
score: 0.0026 |
|
|
- label: Fear |
|
|
score: 0.0015 |
|
|
- label: Surprise |
|
|
score: 0.0012 |
|
|
- label: Trust |
|
|
score: 0.0011 |
|
|
- label: Anticipation |
|
|
score: 0.0009 |
|
|
- label: Joy |
|
|
score: 0.0003 |
|
|
- text: >- |
|
|
ga pernah pacaran, sekarang hidup kesepian bgt. pengen minta kenalin cowo |
|
|
ke temen tp mereka jg sama struggle nya. jd nyesel dulu pas sekolah-kuliah |
|
|
kenapa ga pernah 'macem2' |
|
|
example_title: Example 5 |
|
|
output: |
|
|
- label: Sadness |
|
|
score: 0.9526 |
|
|
- label: Anger |
|
|
score: 0.0175 |
|
|
- label: Fear |
|
|
score: 0.0114 |
|
|
- label: Disgust |
|
|
score: 0.0079 |
|
|
- label: Trust |
|
|
score: 0.0038 |
|
|
- label: Anticipation |
|
|
score: 0.0036 |
|
|
- label: Joy |
|
|
score: 0.0019 |
|
|
- label: Surprise |
|
|
score: 0.0013 |
|
|
- text: >- |
|
|
Komisi Penyiaran Indonesia (KPI) meminta agar tayangan televisi menampilkan |
|
|
citra positif Polri secara edukatif dan akurat. Hal ini disampaikan ketua |
|
|
KPI Pusat Ubaidillah dalam sebuah diskusi panel |
|
|
example_title: Example 6 |
|
|
output: |
|
|
- label: Anticipation |
|
|
score: 0.4323 |
|
|
- label: Trust |
|
|
score: 0.3996 |
|
|
- label: Joy |
|
|
score: 0.0500 |
|
|
- label: Anger |
|
|
score: 0.0388 |
|
|
- label: Disgust |
|
|
score: 0.0362 |
|
|
- label: Surprise |
|
|
score: 0.0186 |
|
|
- label: Fear |
|
|
score: 0.0137 |
|
|
- label: Sadness |
|
|
score: 0.0108 |
|
|
|
|
|
library_name: transformers |
|
|
license: mit |
|
|
language: |
|
|
- id |
|
|
--- |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
The EmoSense-ID is a model designed to identify and analyze emotions in Indonesian texts based on Plutchik's eight basic emotions: Anticipation, Anger, Disgust, Fear, Joy, Sadness, Surprise, and Trust. |
|
|
This model is developed using the [NusaBERT-base](https://huggingface.co/LazarusNLP/NusaBERT-base) and trained using Indonesian tweets categorized into eight emotion categories. The evaluation results of this model can be utilized to analyze emotions in social media, providing insights into users' emotional responses. |
|
|
|
|
|
### Bias |
|
|
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
Keep in mind that this model is trained using certain data which may cause bias in the emotion classification process. Therefore, it is important to consider and account for such biases when using this model. |
|
|
|
|
|
### Evaluation Results |
|
|
The model was trained using the Hyperparameter Tuning technique with Optuna. In this process, Optuna conducted five trials to determine the optimal combination of learning rate (1e-6 to 1e-4) and weight decay (1e-6 to 1e-2). Each trial trained the BERT model with different hyperparameter configurations on the training dataset and then evaluated using the validation dataset. After all the experiments are completed, the best hyperparameter combination is used to train the final model. |
|
|
|
|
|
<table style="text-align: center; width: 100%;"> |
|
|
<tr> |
|
|
<th>Epoch</th> |
|
|
<th>Training Loss</th> |
|
|
<th>Validation Loss</th> |
|
|
<th>Accuracy</th> |
|
|
<th>F1</th> |
|
|
<th>Precision</th> |
|
|
<th>Recall</th> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>1</td> |
|
|
<td>0.758400</td> |
|
|
<td>0.583508</td> |
|
|
<td>0.829932</td> |
|
|
<td>0.830203</td> |
|
|
<td>0.833136</td> |
|
|
<td>0.829932</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>2</td> |
|
|
<td>0.370100</td> |
|
|
<td>0.394630</td> |
|
|
<td>0.866213</td> |
|
|
<td>0.865496</td> |
|
|
<td>0.870364</td> |
|
|
<td>0.866213</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>3</td> |
|
|
<td>0.231500</td> |
|
|
<td>0.355294</td> |
|
|
<td>0.884354</td> |
|
|
<td>0.884585</td> |
|
|
<td>0.888140</td> |
|
|
<td>0.884354</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>4</td> |
|
|
<td>0.071000</td> |
|
|
<td>0.322376</td> |
|
|
<td>0.902494</td> |
|
|
<td>0.902801</td> |
|
|
<td>0.904842</td> |
|
|
<td>0.902494</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>5</td> |
|
|
<td>0.129900</td> |
|
|
<td>0.308596</td> |
|
|
<td>0.900227</td> |
|
|
<td>0.900340</td> |
|
|
<td>0.902132</td> |
|
|
<td>0.900227</td> |
|
|
</tr> |
|
|
</table> |
|
|
|
|
|
## Citation |
|
|
|
|
|
``` |
|
|
@misc{Ardiyanto_Mikhael_2024, |
|
|
author = {Mikhael Ardiyanto}, |
|
|
title = {EmoSense-ID}, |
|
|
year = {2024}, |
|
|
URL = {Aardiiiiy/EmoSense-ID-Indonesian-Emotion-Classifier}, |
|
|
publisher = {Hugging Face} |
|
|
} |