Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
143 items
•
Updated
•
6
This tiny model is for debugging. It is randomly initialized with the config adapted from black-forest-labs/FLUX.2-dev.
File size:
import io
import requests
import torch
from diffusers import Flux2Pipeline
from diffusers.utils import load_image
from huggingface_hub import get_token
model_id = "yujiepan/flux2-tiny-random"
device = "cuda:0"
torch_dtype = torch.bfloat16
pipe = Flux2Pipeline.from_pretrained(
model_id, torch_dtype=torch_dtype
).to(device)
prompt = "Realistic macro photograph of a hermit crab using a soda can as its shell"
cat_image = load_image(
"https://huggingface.co/spaces/zerogpu-aoti/FLUX.1-Kontext-Dev-fp8-dynamic/resolve/main/cat.png")
image = pipe(
prompt=prompt,
image=[cat_image], # optional multi-image input
generator=torch.Generator(device=device).manual_seed(42),
num_inference_steps=4,
guidance_scale=4,
text_encoder_out_layers=(1,),
).images[0]
print(image)
import json
import torch
from diffusers import (
AutoencoderKLFlux2,
FlowMatchEulerDiscreteScheduler,
Flux2Pipeline,
Flux2Transformer2DModel,
)
from huggingface_hub import hf_hub_download
from transformers import (
AutoConfig,
AutoTokenizer,
Mistral3ForConditionalGeneration,
PixtralProcessor,
)
from transformers.generation import GenerationConfig
source_model_id = "black-forest-labs/FLUX.2-dev"
save_folder = "/tmp/yujiepan/flux2-tiny-random"
torch.set_default_dtype(torch.bfloat16)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
source_model_id, subfolder='scheduler')
tokenizer = PixtralProcessor.from_pretrained(
source_model_id, subfolder='tokenizer')
def save_json(path, obj):
import json
from pathlib import Path
Path(path).parent.mkdir(parents=True, exist_ok=True)
with open(path, 'w', encoding='utf-8') as f:
json.dump(obj, f, indent=2, ensure_ascii=False)
def init_weights(model):
import torch
from transformers import set_seed
set_seed(42)
model = model.cpu()
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape, p.dtype, p.device)
with open(hf_hub_download(source_model_id, filename='text_encoder/config.json', repo_type='model'), 'r', encoding='utf - 8') as f:
config = json.load(f)
config['text_config'].update({
'hidden_size': 8,
'intermediate_size': 64,
"head_dim": 32,
'num_attention_heads': 8,
'num_hidden_layers': 2,
'num_key_value_heads': 4,
'tie_word_embeddings': True,
})
config['vision_config'].update(
{
"head_dim": 32,
"hidden_size": 32,
"intermediate_size": 64,
"num_attention_heads": 1,
"num_hidden_layers": 2,
}
)
save_json(f'{save_folder}/text_encoder/config.json', config)
text_encoder_config = AutoConfig.from_pretrained(
f'{save_folder}/text_encoder')
text_encoder = Mistral3ForConditionalGeneration(
text_encoder_config).to(torch.bfloat16)
generation_config = GenerationConfig.from_pretrained(
source_model_id, subfolder='text_encoder')
# text_encoder.config.generation_config = generation_config
text_encoder.generation_config = generation_config
init_weights(text_encoder)
with open(hf_hub_download(source_model_id, filename='transformer/config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config = json.load(f)
config.update({
'attention_head_dim': 32,
"in_channels": 32,
'axes_dims_rope': [8, 12, 12],
'joint_attention_dim': 8,
'num_attention_heads': 2,
'num_layers': 2,
'num_single_layers': 2,
})
save_json(f'{save_folder}/transformer/config.json', config)
transformer_config = Flux2Transformer2DModel.load_config(
f'{save_folder}/transformer')
transformer = Flux2Transformer2DModel.from_config(transformer_config)
init_weights(transformer)
with open(hf_hub_download(source_model_id, filename='vae/config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config = json.load(f)
config.update({
'layers_per_block': 1,
'block_out_channels': [32, 32],
'latent_channels': 8,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D']
})
save_json(f'{save_folder}/vae/config.json', config)
vae_config = AutoencoderKLFlux2.load_config(f'{save_folder}/vae')
vae = AutoencoderKLFlux2.from_config(vae_config)
init_weights(vae)
pipeline = Flux2Pipeline(
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
)
pipeline = pipeline.to(torch.bfloat16)
pipeline.save_pretrained(save_folder, safe_serialization=True)
print(pipeline)
Base model
black-forest-labs/FLUX.2-dev