metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
In 2023, the foreign exchange effect on APAC's revenues showed an
unfavorable impact of $1,759 million.
sentences:
- >-
How did the change in non-rolling chip win percentage at The Venetian
Macao from 2022 to 2023 affect overall revenues?
- What was the foreign exchange effect on APAC's revenues in 2023?
- What are the characteristics of Garmin’s Force Trolling Motors?
- source_sentence: >-
The estimated cost of inventory for expected product returns was $226
million and $194 million as of May 31, 2023 and 2022, respectively, and
was recorded in Prepaid expenses and other current assets on the
Consolidated Balance Sheets.
sentences:
- >-
What factors influenced the cash conversion cycle during fiscal year
2023?
- >-
What were the estimated costs of inventory for expected product returns
as of May 31, 2023 and 2022, and how were these costs recorded on the
Consolidated Balance Sheets?
- >-
What are the potential consequences of the company being involved in
lawsuits related to their acquisitions?
- source_sentence: >-
The Concession requires the company to increase its investment in
non-gaming projects by up to 20% in the following year if Macao's annual
market gross gaming revenue achieves or exceeds 180 billion patacas.
sentences:
- >-
What is the required increase in non-gaming investment for the company
if Macao's annual gross gaming revenue exceeds a certain threshold?
- What is the valuation allowance of the company as of January 31, 2023?
- >-
What was the percentage decrease in net operating revenues due to
foreign currency exchange rate fluctuations in 2023?
- source_sentence: >-
During the 2023 audit, a critical matter was the auditing of Delta Air
Lines' employee benefit plan assets. Specifically, the valuation of assets
measured at Net Asset Value (NAV) posed a challenge due to the significant
judgment involved in estimating their fair value, primarily affected by a
delay in obtaining relevant data from investment fund managers.
sentences:
- What is the mission of the company described in the text?
- >-
What was the percentage increase or decrease in total research and
development expenses for the company from the previous year?
- >-
What significant accounting matter related to Delta Air Lines' employee
benefit plans was addressed in the 2023 audit?
- source_sentence: >-
A 1% increase in medical cost PMPM trend factors led to an increase in
medical costs payable by $1,128 million for the most recent two months as
of December 31, 2023.
sentences:
- >-
What financial impact would a 1% increase in medical cost PMPM trend
factors have on medical costs payable for the most recent two months as
of December 31, 2023?
- How does Kroger present its financial performance in its reporting?
- >-
What type of merchandising strategy does AutoZone employ to ensure
customer satisfaction?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6842857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8185714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6842857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27285714285714285
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6842857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8185714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7945477585006253
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7606122448979591
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7642505598444385
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6771428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8128571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8571428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6771428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6771428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8128571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8571428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7898291331612092
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7544075963718821
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7578545086967818
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8128571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.89
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27095238095238094
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08899999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8128571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.89
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.789006338619091
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7562443310657596
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7601401161539556
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6657142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8314285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.88
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6657142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16628571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.088
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6657142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8314285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.88
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.774536493588219
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.740644557823129
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7444027281070795
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6357142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7685714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8085714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8514285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6357142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2561904761904762
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1617142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08514285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6357142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7685714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8085714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8514285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7446661935095178
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7103339002267574
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7149306052438406
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("ybWw/bge-base-financial-matryoshka")
sentences = [
'A 1% increase in medical cost PMPM trend factors led to an increase in medical costs payable by $1,128 million for the most recent two months as of December 31, 2023.',
'What financial impact would a 1% increase in medical cost PMPM trend factors have on medical costs payable for the most recent two months as of December 31, 2023?',
'How does Kroger present its financial performance in its reporting?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6843 |
| cosine_accuracy@3 |
0.8186 |
| cosine_accuracy@5 |
0.8571 |
| cosine_accuracy@10 |
0.9 |
| cosine_precision@1 |
0.6843 |
| cosine_precision@3 |
0.2729 |
| cosine_precision@5 |
0.1714 |
| cosine_precision@10 |
0.09 |
| cosine_recall@1 |
0.6843 |
| cosine_recall@3 |
0.8186 |
| cosine_recall@5 |
0.8571 |
| cosine_recall@10 |
0.9 |
| cosine_ndcg@10 |
0.7945 |
| cosine_mrr@10 |
0.7606 |
| cosine_map@100 |
0.7643 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6771 |
| cosine_accuracy@3 |
0.8129 |
| cosine_accuracy@5 |
0.8571 |
| cosine_accuracy@10 |
0.9 |
| cosine_precision@1 |
0.6771 |
| cosine_precision@3 |
0.271 |
| cosine_precision@5 |
0.1714 |
| cosine_precision@10 |
0.09 |
| cosine_recall@1 |
0.6771 |
| cosine_recall@3 |
0.8129 |
| cosine_recall@5 |
0.8571 |
| cosine_recall@10 |
0.9 |
| cosine_ndcg@10 |
0.7898 |
| cosine_mrr@10 |
0.7544 |
| cosine_map@100 |
0.7579 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6829 |
| cosine_accuracy@3 |
0.8129 |
| cosine_accuracy@5 |
0.8557 |
| cosine_accuracy@10 |
0.89 |
| cosine_precision@1 |
0.6829 |
| cosine_precision@3 |
0.271 |
| cosine_precision@5 |
0.1711 |
| cosine_precision@10 |
0.089 |
| cosine_recall@1 |
0.6829 |
| cosine_recall@3 |
0.8129 |
| cosine_recall@5 |
0.8557 |
| cosine_recall@10 |
0.89 |
| cosine_ndcg@10 |
0.789 |
| cosine_mrr@10 |
0.7562 |
| cosine_map@100 |
0.7601 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6657 |
| cosine_accuracy@3 |
0.8 |
| cosine_accuracy@5 |
0.8314 |
| cosine_accuracy@10 |
0.88 |
| cosine_precision@1 |
0.6657 |
| cosine_precision@3 |
0.2667 |
| cosine_precision@5 |
0.1663 |
| cosine_precision@10 |
0.088 |
| cosine_recall@1 |
0.6657 |
| cosine_recall@3 |
0.8 |
| cosine_recall@5 |
0.8314 |
| cosine_recall@10 |
0.88 |
| cosine_ndcg@10 |
0.7745 |
| cosine_mrr@10 |
0.7406 |
| cosine_map@100 |
0.7444 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6357 |
| cosine_accuracy@3 |
0.7686 |
| cosine_accuracy@5 |
0.8086 |
| cosine_accuracy@10 |
0.8514 |
| cosine_precision@1 |
0.6357 |
| cosine_precision@3 |
0.2562 |
| cosine_precision@5 |
0.1617 |
| cosine_precision@10 |
0.0851 |
| cosine_recall@1 |
0.6357 |
| cosine_recall@3 |
0.7686 |
| cosine_recall@5 |
0.8086 |
| cosine_recall@10 |
0.8514 |
| cosine_ndcg@10 |
0.7447 |
| cosine_mrr@10 |
0.7103 |
| cosine_map@100 |
0.7149 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 6 tokens
- mean: 46.17 tokens
- max: 272 tokens
|
- min: 8 tokens
- mean: 20.72 tokens
- max: 42 tokens
|
- Samples:
| positive |
anchor |
For fiscal 2023, the net cash provided by operating activities was $7,111 million. |
What was the net cash provided by operating activities in fiscal 2023? |
Penalties for impermissible use or disclosure of PHI were increased by the HITECH Act by imposing tiered penalties of more than $50,000 per violation and up to $1.5 million per year for identical violations. |
What are the consequences of impermissible use or disclosure of PHI according to the HITECH Act? |
Global Day of Joy is Hasbro’s annual, company-wide day of service and has become a cherished tradition. Global Day of Joy takes place every December, and employees from each Hasbro office participate in service projects to benefit a variety of organizations. |
What is the purpose of the Global Day of Joy at Hasbro? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_768_cosine_map@100 |
dim_512_cosine_map@100 |
dim_256_cosine_map@100 |
dim_128_cosine_map@100 |
dim_64_cosine_map@100 |
| 0.8122 |
10 |
1.5383 |
- |
- |
- |
- |
- |
| 0.9746 |
12 |
- |
0.7575 |
0.7597 |
0.7428 |
0.7303 |
0.6889 |
| 1.6244 |
20 |
0.6278 |
- |
- |
- |
- |
- |
| 1.9492 |
24 |
- |
0.7623 |
0.7580 |
0.7582 |
0.7417 |
0.7100 |
| 2.4365 |
30 |
0.4388 |
- |
- |
- |
- |
- |
| 2.9239 |
36 |
- |
0.7649 |
0.7576 |
0.7571 |
0.7465 |
0.7142 |
| 3.2487 |
40 |
0.3729 |
- |
- |
- |
- |
- |
| 3.8985 |
48 |
- |
0.7643 |
0.7579 |
0.7601 |
0.7444 |
0.7149 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.8.20
- Sentence Transformers: 3.2.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}