ner-bge-small-en-v1_5

This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0950
  • Precision: 0.9108
  • Recall: 0.9281
  • F1: 0.9194
  • Accuracy: 0.9829

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.039 1.0 1252 0.0928 0.8740 0.9138 0.8935 0.9786
0.041 2.0 2504 0.0809 0.8931 0.9207 0.9067 0.9811
0.0257 3.0 3756 0.0824 0.9028 0.9243 0.9134 0.9817
0.0207 4.0 5008 0.0846 0.8985 0.9271 0.9126 0.9820
0.0233 5.0 6260 0.0834 0.9057 0.9278 0.9166 0.9825
0.0182 6.0 7512 0.0891 0.9115 0.9275 0.9194 0.9826
0.0093 7.0 8764 0.0938 0.9102 0.9298 0.9199 0.9825
0.0143 8.0 10016 0.0925 0.9076 0.9303 0.9188 0.9826
0.0127 9.0 11268 0.0943 0.9062 0.9280 0.9169 0.9824
0.0084 10.0 12520 0.0950 0.9108 0.9281 0.9194 0.9829

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
33.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for vladsanz239/ner-bge-small-en-v1_5

Finetuned
(273)
this model