ner-bge-small-en-v1_5
This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0950
- Precision: 0.9108
- Recall: 0.9281
- F1: 0.9194
- Accuracy: 0.9829
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.039 | 1.0 | 1252 | 0.0928 | 0.8740 | 0.9138 | 0.8935 | 0.9786 |
| 0.041 | 2.0 | 2504 | 0.0809 | 0.8931 | 0.9207 | 0.9067 | 0.9811 |
| 0.0257 | 3.0 | 3756 | 0.0824 | 0.9028 | 0.9243 | 0.9134 | 0.9817 |
| 0.0207 | 4.0 | 5008 | 0.0846 | 0.8985 | 0.9271 | 0.9126 | 0.9820 |
| 0.0233 | 5.0 | 6260 | 0.0834 | 0.9057 | 0.9278 | 0.9166 | 0.9825 |
| 0.0182 | 6.0 | 7512 | 0.0891 | 0.9115 | 0.9275 | 0.9194 | 0.9826 |
| 0.0093 | 7.0 | 8764 | 0.0938 | 0.9102 | 0.9298 | 0.9199 | 0.9825 |
| 0.0143 | 8.0 | 10016 | 0.0925 | 0.9076 | 0.9303 | 0.9188 | 0.9826 |
| 0.0127 | 9.0 | 11268 | 0.0943 | 0.9062 | 0.9280 | 0.9169 | 0.9824 |
| 0.0084 | 10.0 | 12520 | 0.0950 | 0.9108 | 0.9281 | 0.9194 | 0.9829 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 5
Model tree for vladsanz239/ner-bge-small-en-v1_5
Base model
BAAI/bge-small-en-v1.5