Vignesh finetuned bge
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("viggypoker1/Vignesh-finetuned-bge")
sentences = [
'What was the total premiums revenue for the Insurance segment in 2023?',
'Insurance segment premiums revenue increased $13.6 billion, or 15.5%, from $87.7 billion in the 2022 period to $101.3 billion in the 2023 period.',
'On a quarterly basis, we employ a consistent, systematic and rational methodology to assess the adequacy of our warranty liability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6386 |
| cosine_accuracy@3 |
0.8057 |
| cosine_accuracy@5 |
0.8514 |
| cosine_accuracy@10 |
0.8886 |
| cosine_precision@1 |
0.6386 |
| cosine_precision@3 |
0.2686 |
| cosine_precision@5 |
0.1703 |
| cosine_precision@10 |
0.0889 |
| cosine_recall@1 |
0.6386 |
| cosine_recall@3 |
0.8057 |
| cosine_recall@5 |
0.8514 |
| cosine_recall@10 |
0.8886 |
| cosine_ndcg@10 |
0.7673 |
| cosine_mrr@10 |
0.7279 |
| cosine_map@100 |
0.7324 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6429 |
| cosine_accuracy@3 |
0.7957 |
| cosine_accuracy@5 |
0.8429 |
| cosine_accuracy@10 |
0.8786 |
| cosine_precision@1 |
0.6429 |
| cosine_precision@3 |
0.2652 |
| cosine_precision@5 |
0.1686 |
| cosine_precision@10 |
0.0879 |
| cosine_recall@1 |
0.6429 |
| cosine_recall@3 |
0.7957 |
| cosine_recall@5 |
0.8429 |
| cosine_recall@10 |
0.8786 |
| cosine_ndcg@10 |
0.7649 |
| cosine_mrr@10 |
0.7279 |
| cosine_map@100 |
0.733 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6414 |
| cosine_accuracy@3 |
0.8 |
| cosine_accuracy@5 |
0.84 |
| cosine_accuracy@10 |
0.8814 |
| cosine_precision@1 |
0.6414 |
| cosine_precision@3 |
0.2667 |
| cosine_precision@5 |
0.168 |
| cosine_precision@10 |
0.0881 |
| cosine_recall@1 |
0.6414 |
| cosine_recall@3 |
0.8 |
| cosine_recall@5 |
0.84 |
| cosine_recall@10 |
0.8814 |
| cosine_ndcg@10 |
0.765 |
| cosine_mrr@10 |
0.7273 |
| cosine_map@100 |
0.732 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.6171 |
| cosine_accuracy@3 |
0.7786 |
| cosine_accuracy@5 |
0.8243 |
| cosine_accuracy@10 |
0.8729 |
| cosine_precision@1 |
0.6171 |
| cosine_precision@3 |
0.2595 |
| cosine_precision@5 |
0.1649 |
| cosine_precision@10 |
0.0873 |
| cosine_recall@1 |
0.6171 |
| cosine_recall@3 |
0.7786 |
| cosine_recall@5 |
0.8243 |
| cosine_recall@10 |
0.8729 |
| cosine_ndcg@10 |
0.7478 |
| cosine_mrr@10 |
0.7076 |
| cosine_map@100 |
0.7124 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.59 |
| cosine_accuracy@3 |
0.7486 |
| cosine_accuracy@5 |
0.7943 |
| cosine_accuracy@10 |
0.8671 |
| cosine_precision@1 |
0.59 |
| cosine_precision@3 |
0.2495 |
| cosine_precision@5 |
0.1589 |
| cosine_precision@10 |
0.0867 |
| cosine_recall@1 |
0.59 |
| cosine_recall@3 |
0.7486 |
| cosine_recall@5 |
0.7943 |
| cosine_recall@10 |
0.8671 |
| cosine_ndcg@10 |
0.7258 |
| cosine_mrr@10 |
0.6811 |
| cosine_map@100 |
0.6856 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 311,351 training samples
- Columns:
anchor and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 7 tokens
- mean: 20.46 tokens
- max: 45 tokens
|
- min: 4 tokens
- mean: 45.94 tokens
- max: 439 tokens
|
- Samples:
| anchor |
positive |
What percentage of net revenues came from Mutual Funds, ETFs, and Collective Trust Funds (CTFs) in 2023? |
Mutual Funds, ETFs, and Collective Trust Funds (CTFs) contributed 13% to the net revenues in 2023. |
What was the amount of additional stock-based compensation expense recognized due to the Type 3 modification in the year ended December 31, 2023? |
A special award grant on February 23, 2023, resulted in a Type 3 modification of the 2022 PSU awards, leading to an additional stock-based compensation expense of $20.2 million recognized in that year. |
What was the percentage point decrease in earnings from operations as a percentage of net revenue for the Printing segment in the fiscal year 2023? |
Printing earnings from operations as a percentage of net revenue decreased by 0.2 percentage points in the fiscal year 2023. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
json
- Dataset: json
- Size: 700 evaluation samples
- Columns:
anchor and positive
- Approximate statistics based on the first 700 samples:
|
anchor |
positive |
| type |
string |
string |
| details |
- min: 10 tokens
- mean: 20.54 tokens
- max: 40 tokens
|
- min: 8 tokens
- mean: 47.84 tokens
- max: 371 tokens
|
- Samples:
| anchor |
positive |
How does GameStop optimize the efficiency of its product distribution? |
We use our distribution facilities, store locations and inventory management systems to optimize the efficiency of the flow of products to our stores and customers, enhance fulfillment efficiency and optimize in-stock and overall investment in inventory. |
What was the net production increase percentage of Chevron's worldwide oil-equivalent from 2022 to 2023? |
For the year 2023, Chevron's worldwide oil-equivalent production was 3.1 million barrels per day, marking an increase of about 4 percent from the 2022 level. |
How has Tesla sought to increase the affordability of their vehicles in international markets? |
Internationally, we also have manufacturing facilities in China (Gigafactory Shanghai) and Germany (Gigafactory Berlin-Brandenburg), which allows us to increase the affordability of our vehicles for customers in local markets by reducing transportation and manufacturing costs and eliminating the impact of unfavorable tariffs. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 128
per_device_eval_batch_size: 16
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: True
tf32: False
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 128
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: False
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
| 0.0658 |
10 |
12.7378 |
- |
- |
- |
- |
- |
- |
| 0.1315 |
20 |
16.125 |
- |
- |
- |
- |
- |
- |
| 0.1973 |
30 |
19.5213 |
- |
- |
- |
- |
- |
- |
| 0.2630 |
40 |
21.3366 |
- |
- |
- |
- |
- |
- |
| 0.3288 |
50 |
18.9311 |
- |
- |
- |
- |
- |
- |
| 0.3946 |
60 |
5.5988 |
- |
- |
- |
- |
- |
- |
| 0.4603 |
70 |
2.9878 |
- |
- |
- |
- |
- |
- |
| 0.5261 |
80 |
2.0073 |
- |
- |
- |
- |
- |
- |
| 0.5919 |
90 |
1.5752 |
- |
- |
- |
- |
- |
- |
| 0.6576 |
100 |
1.3491 |
- |
- |
- |
- |
- |
- |
| 0.7234 |
110 |
1.1473 |
- |
- |
- |
- |
- |
- |
| 0.7891 |
120 |
1.0644 |
- |
- |
- |
- |
- |
- |
| 0.8549 |
130 |
0.9987 |
- |
- |
- |
- |
- |
- |
| 0.9207 |
140 |
0.8948 |
- |
- |
- |
- |
- |
- |
| 0.9864 |
150 |
0.877 |
- |
- |
- |
- |
- |
- |
| 0.9996 |
152 |
- |
0.3206 |
0.6646 |
0.6955 |
0.7089 |
0.6391 |
0.7145 |
| 1.0522 |
160 |
7.7524 |
- |
- |
- |
- |
- |
- |
| 1.1180 |
170 |
12.5198 |
- |
- |
- |
- |
- |
- |
| 1.1837 |
180 |
16.8236 |
- |
- |
- |
- |
- |
- |
| 1.2495 |
190 |
18.7345 |
- |
- |
- |
- |
- |
- |
| 1.3152 |
200 |
18.986 |
- |
- |
- |
- |
- |
- |
| 1.3810 |
210 |
5.3162 |
- |
- |
- |
- |
- |
- |
| 1.4468 |
220 |
1.1987 |
- |
- |
- |
- |
- |
- |
| 1.5125 |
230 |
0.8596 |
- |
- |
- |
- |
- |
- |
| 1.5783 |
240 |
0.7595 |
- |
- |
- |
- |
- |
- |
| 1.6441 |
250 |
0.7377 |
- |
- |
- |
- |
- |
- |
| 1.7098 |
260 |
0.6657 |
- |
- |
- |
- |
- |
- |
| 1.7756 |
270 |
0.6838 |
- |
- |
- |
- |
- |
- |
| 1.8413 |
280 |
0.6813 |
- |
- |
- |
- |
- |
- |
| 1.9071 |
290 |
0.6322 |
- |
- |
- |
- |
- |
- |
| 1.9729 |
300 |
0.6296 |
- |
- |
- |
- |
- |
- |
| 1.9992 |
304 |
- |
0.2404 |
0.6884 |
0.7126 |
0.7240 |
0.6529 |
0.7285 |
| 2.0386 |
310 |
4.0272 |
- |
- |
- |
- |
- |
- |
| 2.1044 |
320 |
11.576 |
- |
- |
- |
- |
- |
- |
| 2.1702 |
330 |
14.1756 |
- |
- |
- |
- |
- |
- |
| 2.2359 |
340 |
17.5422 |
- |
- |
- |
- |
- |
- |
| 2.3017 |
350 |
19.0518 |
- |
- |
- |
- |
- |
- |
| 2.3674 |
360 |
7.1039 |
- |
- |
- |
- |
- |
- |
| 2.4332 |
370 |
0.9404 |
- |
- |
- |
- |
- |
- |
| 2.4990 |
380 |
0.7094 |
- |
- |
- |
- |
- |
- |
| 2.5647 |
390 |
0.5907 |
- |
- |
- |
- |
- |
- |
| 2.6305 |
400 |
0.6083 |
- |
- |
- |
- |
- |
- |
| 2.6963 |
410 |
0.5486 |
- |
- |
- |
- |
- |
- |
| 2.7620 |
420 |
0.5529 |
- |
- |
- |
- |
- |
- |
| 2.8278 |
430 |
0.5734 |
- |
- |
- |
- |
- |
- |
| 2.8935 |
440 |
0.5653 |
- |
- |
- |
- |
- |
- |
| 2.9593 |
450 |
0.534 |
- |
- |
- |
- |
- |
- |
| 2.9988 |
456 |
- |
0.2078 |
0.7028 |
0.7266 |
0.7336 |
0.6671 |
0.7349 |
| 3.0251 |
460 |
1.5518 |
- |
- |
- |
- |
- |
- |
| 3.0908 |
470 |
10.991 |
- |
- |
- |
- |
- |
- |
| 3.1566 |
480 |
12.393 |
- |
- |
- |
- |
- |
- |
| 3.2224 |
490 |
16.9122 |
- |
- |
- |
- |
- |
- |
| 3.2881 |
500 |
18.3968 |
- |
- |
- |
- |
- |
- |
| 3.3539 |
510 |
10.9782 |
- |
- |
- |
- |
- |
- |
| 3.4196 |
520 |
0.654 |
- |
- |
- |
- |
- |
- |
| 3.4854 |
530 |
0.607 |
- |
- |
- |
- |
- |
- |
| 3.5512 |
540 |
0.5474 |
- |
- |
- |
- |
- |
- |
| 3.6169 |
550 |
0.5771 |
- |
- |
- |
- |
- |
- |
| 3.6827 |
560 |
0.5364 |
- |
- |
- |
- |
- |
- |
| 3.7485 |
570 |
0.5323 |
- |
- |
- |
- |
- |
- |
| 3.8142 |
580 |
0.5458 |
- |
- |
- |
- |
- |
- |
| 3.8800 |
590 |
0.5738 |
- |
- |
- |
- |
- |
- |
| 3.9457 |
600 |
0.5353 |
- |
- |
- |
- |
- |
- |
| 3.9984 |
608 |
- |
0.1882 |
0.7124 |
0.732 |
0.733 |
0.6856 |
0.7324 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}