qwen3-1.7b-18432-r16-a32-lr1e4-ep3-bs4x2-adamw8bit-no-think - GGUF
This model was finetuned and converted to GGUF format using Unsloth.
Example usage:
- For text only LLMs: llama-cli --hf repo_id/model_name -p "why is the sky blue?"
- For multimodal models: llama-mtmd-cli -m model_name.gguf --mmproj mmproj_file.gguf
Available Model files:
qwen3-1.7b.Q4_K_M.gguf
Ollama
An Ollama Modelfile is included for easy deployment.
Dataset
https://huggingface.co/datasets/tisu1902/var-full-no-think
Wandb
https://wandb.ai/quangphamm1902/huggingface/runs/4bv2nr1q?nw=nwuserquangphamm1902
from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_dataset,
eval_dataset=val_dataset,
args=SFTConfig(
dataset_text_field="text",
max_seq_length=18432,
# Reduce effective batch for more steps
per_device_train_batch_size=4, # Down from 6
gradient_accumulation_steps=2, # Down from 6
# Effective batch = 8 (instead of 36)
# New steps per epoch = 410 / 8 โ 51
# Total steps = 51 ร 3 = 153 steps
per_device_eval_batch_size=1,
# Training
num_train_epochs=3,
learning_rate=1e-4,
warmup_ratio=0.1,
lr_scheduler_type="cosine",
# Optimization
optim="adamw_8bit",
weight_decay=0.01,
max_grad_norm=0.3,
# Memory
fp16=not torch.cuda.is_bf16_supported(),
bf16=torch.cuda.is_bf16_supported(),
gradient_checkpointing=True,
# Evaluation & Saving - ADJUSTED FOR FEWER STEPS
eval_strategy="steps",
eval_steps=25,
save_strategy="steps",
save_steps=25,
save_total_limit=3,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
# Logging
logging_steps=5,
logging_first_step=True,
# Other
seed=3407,
output_dir="outputs",
remove_unused_columns=False,
# TRL specific
dataset_num_proc=4,
packing=False,
),
)
- Downloads last month
- 22
Hardware compatibility
Log In
to view the estimation
4-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support