Text Generation
GGUF
English
TensorBlock
GGUF
morriszms's picture
Update README.md
3b12265 verified
metadata
license: apache-2.0
datasets:
  - Skylion007/openwebtext
  - JeanKaddour/minipile
language:
  - en
pipeline_tag: text-generation
inference:
  parameters:
    do_sample: true
    temperature: 0.5
    top_p: 0.5
    top_k: 50
    max_new_tokens: 250
    repetition_penalty: 1.176
base_model: Locutusque/TinyMistral-248M
tags:
  - TensorBlock
  - GGUF
TensorBlock

Website Twitter Discord GitHub Telegram

Locutusque/TinyMistral-248M - GGUF

This repo contains GGUF format model files for Locutusque/TinyMistral-248M.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
πŸš€ Try it now! πŸš€
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
TinyMistral-248M-Q2_K.gguf Q2_K 0.098 GB smallest, significant quality loss - not recommended for most purposes
TinyMistral-248M-Q3_K_S.gguf Q3_K_S 0.112 GB very small, high quality loss
TinyMistral-248M-Q3_K_M.gguf Q3_K_M 0.120 GB very small, high quality loss
TinyMistral-248M-Q3_K_L.gguf Q3_K_L 0.128 GB small, substantial quality loss
TinyMistral-248M-Q4_0.gguf Q4_0 0.139 GB legacy; small, very high quality loss - prefer using Q3_K_M
TinyMistral-248M-Q4_K_S.gguf Q4_K_S 0.139 GB small, greater quality loss
TinyMistral-248M-Q4_K_M.gguf Q4_K_M 0.145 GB medium, balanced quality - recommended
TinyMistral-248M-Q5_0.gguf Q5_0 0.164 GB legacy; medium, balanced quality - prefer using Q4_K_M
TinyMistral-248M-Q5_K_S.gguf Q5_K_S 0.164 GB large, low quality loss - recommended
TinyMistral-248M-Q5_K_M.gguf Q5_K_M 0.167 GB large, very low quality loss - recommended
TinyMistral-248M-Q6_K.gguf Q6_K 0.190 GB very large, extremely low quality loss
TinyMistral-248M-Q8_0.gguf Q8_0 0.246 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/TinyMistral-248M-GGUF --include "TinyMistral-248M-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/TinyMistral-248M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'